Block Coordinate Descent Algorithms for Auxiliary-Function-Based Independent Vector Extraction

In this paper, we address the problem of extracting all super-Gaussian source signals from a linear mixture in which (i) the number of super-Gaussian sources <inline-formula><tex-math notation="LaTeX">K</tex-math></inline-formula> is less than that of sensors <in...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on signal processing Vol. 69; pp. 3252 - 3267
Main Authors Ikeshita, Rintaro, Nakatani, Tomohiro, Araki, Shoko
Format Journal Article
LanguageEnglish
Published New York IEEE 2021
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN1053-587X
1941-0476
DOI10.1109/TSP.2021.3076884

Cover

Abstract In this paper, we address the problem of extracting all super-Gaussian source signals from a linear mixture in which (i) the number of super-Gaussian sources <inline-formula><tex-math notation="LaTeX">K</tex-math></inline-formula> is less than that of sensors <inline-formula><tex-math notation="LaTeX">M</tex-math></inline-formula>, and (ii) there are up to <inline-formula><tex-math notation="LaTeX">M - K</tex-math></inline-formula> stationary Gaussian noises that do not need to be extracted. To solve this problem, independent vector extraction (IVE) using a majorization minimization and block coordinate descent (BCD) algorithms has been developed, attaining robust source extraction and low computational cost. We here improve the conventional BCDs for IVE by carefully exploiting the stationarity of the Gaussian noise components. We also newly develop a BCD for a semiblind IVE in which the transfer functions for several super-Gaussian sources are given a priori. Both algorithms consist of a closed-form formula and a generalized eigenvalue decomposition. In a numerical experiment of extracting speech signals from noisy mixtures, we show that when <inline-formula><tex-math notation="LaTeX">K = 1</tex-math></inline-formula> in a blind case or at least <inline-formula><tex-math notation="LaTeX">K - 1</tex-math></inline-formula> transfer functions are given in a semiblind case, the convergence of our proposed BCDs is significantly faster than those of the conventional ones.
AbstractList In this paper, we address the problem of extracting all super-Gaussian source signals from a linear mixture in which (i) the number of super-Gaussian sources [Formula Omitted] is less than that of sensors [Formula Omitted], and (ii) there are up to [Formula Omitted] stationary Gaussian noises that do not need to be extracted. To solve this problem, independent vector extraction (IVE) using a majorization minimization and block coordinate descent (BCD) algorithms has been developed, attaining robust source extraction and low computational cost. We here improve the conventional BCDs for IVE by carefully exploiting the stationarity of the Gaussian noise components. We also newly develop a BCD for a semiblind IVE in which the transfer functions for several super-Gaussian sources are given a priori. Both algorithms consist of a closed-form formula and a generalized eigenvalue decomposition. In a numerical experiment of extracting speech signals from noisy mixtures, we show that when [Formula Omitted] in a blind case or at least [Formula Omitted] transfer functions are given in a semiblind case, the convergence of our proposed BCDs is significantly faster than those of the conventional ones.
In this paper, we address the problem of extracting all super-Gaussian source signals from a linear mixture in which (i) the number of super-Gaussian sources <inline-formula><tex-math notation="LaTeX">K</tex-math></inline-formula> is less than that of sensors <inline-formula><tex-math notation="LaTeX">M</tex-math></inline-formula>, and (ii) there are up to <inline-formula><tex-math notation="LaTeX">M - K</tex-math></inline-formula> stationary Gaussian noises that do not need to be extracted. To solve this problem, independent vector extraction (IVE) using a majorization minimization and block coordinate descent (BCD) algorithms has been developed, attaining robust source extraction and low computational cost. We here improve the conventional BCDs for IVE by carefully exploiting the stationarity of the Gaussian noise components. We also newly develop a BCD for a semiblind IVE in which the transfer functions for several super-Gaussian sources are given a priori. Both algorithms consist of a closed-form formula and a generalized eigenvalue decomposition. In a numerical experiment of extracting speech signals from noisy mixtures, we show that when <inline-formula><tex-math notation="LaTeX">K = 1</tex-math></inline-formula> in a blind case or at least <inline-formula><tex-math notation="LaTeX">K - 1</tex-math></inline-formula> transfer functions are given in a semiblind case, the convergence of our proposed BCDs is significantly faster than those of the conventional ones.
Author Ikeshita, Rintaro
Araki, Shoko
Nakatani, Tomohiro
Author_xml – sequence: 1
  givenname: Rintaro
  orcidid: 0000-0003-2608-1999
  surname: Ikeshita
  fullname: Ikeshita, Rintaro
  email: ikeshita@ieee.org
  organization: NTT Communication Science Laboratories, NTT Corporation, Kyoto, Japan
– sequence: 2
  givenname: Tomohiro
  orcidid: 0000-0002-7487-7150
  surname: Nakatani
  fullname: Nakatani, Tomohiro
  email: tnak@ieee.org
  organization: NTT Communication Science Laboratories, NTT Corporation, Kyoto, Japan
– sequence: 3
  givenname: Shoko
  surname: Araki
  fullname: Araki, Shoko
  email: araki.shoko@lab.ntt.co.jp
  organization: NTT Communication Science Laboratories, NTT Corporation, Kyoto, Japan
BookMark eNp9kM9LwzAUx4MouE3vgpeC586k-dHmuM1NBwMFp3gypGmqmV0zkxTmf2_mhgcPvkNeCJ_Py-PbB8etbTUAFwgOEYL8evn4MMxghoYY5qwoyBHoIU5QCknOjuMdUpzSIn85BX3vVxAiQjjrgddxY9VHMrHWVaaVQSc32ivdhmTUvFlnwvvaJ7V1yajbmsZI95XOulYFY9t0LL2uknlb6Y2OR3SetQqRnW6Dkz_MGTipZeP1-aEPwNNsupzcpYv72_lktEhVxlFIFYNYVpiSUiJKJZUlVzyv44uSKC-rUmW0pFWhZE5j1bWEecalLnnBq4JhPABX-7kbZz877YNY2c618UuRUYIIY5BlkWJ7SjnrvdO1UCbI3Z5xX9MIBMUuSxGzFLssxSHLKMI_4saZdQzjP-Vyrxit9S_OSQYxIvgbgPKCmw
CODEN ITPRED
CitedBy_id crossref_primary_10_1016_j_neucom_2024_129292
crossref_primary_10_53829_ntr202210fa7
crossref_primary_10_1049_cmu2_12472
crossref_primary_10_1109_LSENS_2025_3533642
crossref_primary_10_1109_TSP_2024_3375629
crossref_primary_10_1109_TASLP_2022_3155271
crossref_primary_10_1186_s13636_024_00373_3
crossref_primary_10_1016_j_apacoust_2024_110149
crossref_primary_10_1016_j_apacoust_2024_110135
crossref_primary_10_1109_TWC_2022_3162704
crossref_primary_10_1109_TASLP_2024_3352249
crossref_primary_10_1109_TITS_2024_3516839
crossref_primary_10_1109_TASLP_2024_3351353
crossref_primary_10_1109_TASLP_2023_3301227
crossref_primary_10_1002_ett_5038
Cites_doi 10.1080/03610929808832115
10.1049/ip-f-2.1993.0054
10.1214/aos/1176349519
10.1109/TSP.2012.2190728
10.1109/ICASSP40776.2020.9053790
10.1162/neco_a_01217
10.1023/A:1017501703105
10.1016/S0925-2312(00)00345-3
10.1080/01621459.1987.10478427
10.1109/ICASSP.2019.8682291
10.23919/EUSIPCO.2019.8902557
10.1109/TSP.2009.2021636
10.1109/TSP.2012.2189389
10.1109/T-C.1974.224051
10.1162/neco.1997.9.7.1483
10.1016/0165-1684(95)00042-C
10.1109/TNN.2006.880980
10.1109/TSP.2011.2181836
10.1016/j.sigpro.2012.10.021
10.1007/978-3-642-15995-4_21
10.1109/TASLP.2016.2577880
10.23919/EUSIPCO.2017.8081391
10.1109/TASL.2007.898454
10.1109/TNN.2004.828764
10.1109/5.720251
10.1109/TSA.2005.858005
10.1109/CAMSAP.2009.5413271
10.1109/TSP.2015.2468686
10.1109/ASRU.2015.7404837
10.1109/WASPAA.2019.8937080
10.23919/EUSIPCO.2019.8902753
10.7551/mitpress/3717.001.0001
10.1007/11679363_75
10.1016/j.sigpro.2011.04.016
10.1109/TASLP.2019.2925450
10.1109/78.942614
10.1109/WASPAA.2019.8937171
10.1109/TASL.2006.872618
10.1007/978-1-4757-2851-4_2
10.1137/050622821
10.23919/EUSIPCO.2017.8081389
10.1109/ASPAA.2011.6082320
10.1109/TSP.2004.827195
10.1109/TSP.2018.2887185
10.1109/72.761722
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
DOI 10.1109/TSP.2021.3076884
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList Technology Research Database

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1941-0476
EndPage 3267
ExternalDocumentID 10_1109_TSP_2021_3076884
9420314
Genre orig-research
GroupedDBID -~X
.DC
0R~
29I
3EH
4.4
53G
5GY
5VS
6IK
85S
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABFSI
ABQJQ
ABVLG
ACGFO
ACIWK
ACKIV
ACNCT
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AJQPL
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
E.L
EBS
EJD
F5P
HZ~
H~9
ICLAB
IFIPE
IFJZH
IPLJI
JAVBF
LAI
MS~
O9-
OCL
P2P
RIA
RIE
RNS
TAE
TN5
VH1
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c291t-c603ad354ba155a5ab9c97fd35ca17bdbc25b5d8ca75555ffa0729aeb989d8633
IEDL.DBID RIE
ISSN 1053-587X
IngestDate Mon Jun 30 10:11:33 EDT 2025
Wed Oct 01 03:34:36 EDT 2025
Thu Apr 24 22:50:54 EDT 2025
Wed Aug 27 02:50:50 EDT 2025
IsPeerReviewed true
IsScholarly true
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c291t-c603ad354ba155a5ab9c97fd35ca17bdbc25b5d8ca75555ffa0729aeb989d8633
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-2608-1999
0000-0002-7487-7150
PQID 2541466062
PQPubID 85478
PageCount 16
ParticipantIDs crossref_citationtrail_10_1109_TSP_2021_3076884
ieee_primary_9420314
proquest_journals_2541466062
crossref_primary_10_1109_TSP_2021_3076884
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20210000
2021-00-00
20210101
PublicationDateYYYYMMDD 2021-01-01
PublicationDate_xml – year: 2021
  text: 20210000
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on signal processing
PublicationTitleAbbrev TSP
PublicationYear 2021
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref56
ref12
ref59
ref15
ref14
ref55
ref11
ref54
ref10
comon (ref1) 2010
johnson (ref47) 1992
ref17
ref16
ref19
cichocki (ref2) 2002
scheibler (ref26) 2020
ref18
amari (ref52) 0
ref51
ref50
ono (ref31) 0
ref46
ref45
ref48
ref42
ref41
ref43
lange (ref28) 2016; 147
ref49
garofolo (ref58) 1993
ref8
ref7
ref9
ref4
nocedal (ref53) 2006
ref3
ref6
ref5
ref40
janskýžd (ref23) 0
ref35
ref34
ono (ref32) 0
ref37
ref36
ref30
nakamura (ref57) 0
ref33
ref39
ref38
ref24
scheibler (ref25) 0
ref20
ref22
ref21
trees (ref44) 2004
ref27
ref29
atkinson (ref60) 2008
ref61
References_xml – year: 1993
  ident: ref58
  article-title: TIMIT Acoustic-Phonetic Continuous Speech Corpus LDC93S1. Web Download. Philadelphia: Linguistic Data Consortium
  publication-title: TIMIT Acoustic-Phonetic Continuous Speech Corpus
– start-page: 757
  year: 0
  ident: ref52
  article-title: A new learning algorithm for blind signal separation
  publication-title: Proc Int Conf Neural Inf Process
– ident: ref51
  doi: 10.1080/03610929808832115
– ident: ref13
  doi: 10.1049/ip-f-2.1993.0054
– start-page: 601
  year: 0
  ident: ref25
  article-title: Fast independent vector extraction by iterative SINR maximization
  publication-title: Proc IEEE Int Conf Acoust Speech Signal Process
– start-page: 437
  year: 0
  ident: ref32
  article-title: Fast algorithm for independent component/vector/low-rank matrix analysis with three or more sources
  publication-title: Proc ASJ Spring meeting
– ident: ref11
  doi: 10.1214/aos/1176349519
– ident: ref37
  doi: 10.1109/TSP.2012.2190728
– ident: ref27
  doi: 10.1109/ICASSP40776.2020.9053790
– start-page: 676
  year: 0
  ident: ref23
  article-title: Adaptive blind audio source extraction supervised by dominant speaker identification using x-vectors
  publication-title: Proc ICASSP IEEE Int Conf Acoust Speech Signal Process
– ident: ref40
  doi: 10.1162/neco_a_01217
– ident: ref38
  doi: 10.1023/A:1017501703105
– ident: ref55
  doi: 10.1016/S0925-2312(00)00345-3
– year: 2002
  ident: ref2
  publication-title: Adaptive Blind Signal and Image Processing Learning Algorithms and Applications
– ident: ref12
  doi: 10.1080/01621459.1987.10478427
– ident: ref43
  doi: 10.1109/ICASSP.2019.8682291
– start-page: 1
  year: 0
  ident: ref31
  article-title: Fast stereo independent vector analysis and its implementation on mobile phone
  publication-title: Proc IWAENC Int Workshop Acoust Signal Enhancement
– year: 2004
  ident: ref44
  publication-title: Optimum Array Processing Part IV of Detection Estimation and Modulation Theory
– year: 1992
  ident: ref47
  publication-title: Array Signal Processing Concepts and Techniques
– ident: ref42
  doi: 10.23919/EUSIPCO.2019.8902557
– ident: ref7
  doi: 10.1109/TSP.2009.2021636
– year: 0
  ident: ref57
  article-title: Acoustical sound database in real environments for sound scene understanding and hands-free speech recognition
  publication-title: Proc Second Int Conf Lang Resources Evaluation (LREC'00)
– ident: ref49
  doi: 10.1109/TSP.2012.2189389
– year: 2020
  ident: ref26
  article-title: MM Algorithms for joint independent subspace analysis with application to blind single and multi-source extraction
– ident: ref10
  doi: 10.1109/T-C.1974.224051
– ident: ref17
  doi: 10.1162/neco.1997.9.7.1483
– ident: ref14
  doi: 10.1016/0165-1684(95)00042-C
– ident: ref19
  doi: 10.1109/TNN.2006.880980
– ident: ref9
  doi: 10.1109/TSP.2011.2181836
– ident: ref50
  doi: 10.1016/j.sigpro.2012.10.021
– year: 2006
  ident: ref53
  publication-title: Numerical Optimization
– ident: ref29
  doi: 10.1007/978-3-642-15995-4_21
– ident: ref39
  doi: 10.1109/TASLP.2016.2577880
– year: 2008
  ident: ref60
  publication-title: An Introduction to Numerical Analysis
– ident: ref46
  doi: 10.23919/EUSIPCO.2017.8081391
– volume: 147
  year: 2016
  ident: ref28
  publication-title: MM Optimization Algorithms
– ident: ref48
  doi: 10.1109/TASL.2007.898454
– ident: ref15
  doi: 10.1109/TNN.2004.828764
– ident: ref16
  doi: 10.1109/5.720251
– ident: ref56
  doi: 10.1109/TSA.2005.858005
– ident: ref36
  doi: 10.1109/CAMSAP.2009.5413271
– ident: ref20
  doi: 10.1109/TSP.2015.2468686
– ident: ref59
  doi: 10.1109/ASRU.2015.7404837
– ident: ref24
  doi: 10.1109/WASPAA.2019.8937080
– ident: ref61
  doi: 10.23919/EUSIPCO.2019.8902753
– ident: ref4
  doi: 10.7551/mitpress/3717.001.0001
– ident: ref6
  doi: 10.1007/11679363_75
– ident: ref8
  doi: 10.1016/j.sigpro.2011.04.016
– ident: ref41
  doi: 10.1109/TASLP.2019.2925450
– ident: ref33
  doi: 10.1109/78.942614
– ident: ref45
  doi: 10.1109/TASL.2007.898454
– ident: ref54
  doi: 10.1109/WASPAA.2019.8937171
– ident: ref5
  doi: 10.1109/TASL.2006.872618
– ident: ref3
  doi: 10.1007/978-1-4757-2851-4_2
– ident: ref35
  doi: 10.1137/050622821
– ident: ref22
  doi: 10.23919/EUSIPCO.2017.8081389
– ident: ref30
  doi: 10.1109/ASPAA.2011.6082320
– year: 2010
  ident: ref1
  publication-title: Handbook of Blind Source Separation Independent Component Analysis and Applications
– ident: ref34
  doi: 10.1109/TSP.2004.827195
– ident: ref21
  doi: 10.1109/TSP.2018.2887185
– ident: ref18
  doi: 10.1109/72.761722
SSID ssj0014496
Score 2.4535203
Snippet In this paper, we address the problem of extracting all super-Gaussian source signals from a linear mixture in which (i) the number of super-Gaussian sources...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 3252
SubjectTerms Algorithms
Blind source extraction
block coordinate descent method
Eigenvalues
generalized eigenvalue problem
independent component analysis
independent vector analysis
IP networks
Mathematical analysis
Noise measurement
Probabilistic logic
Random noise
Robustness (mathematics)
Sensors
Signal processing algorithms
Source separation
Speech recognition
Transfer functions
Title Block Coordinate Descent Algorithms for Auxiliary-Function-Based Independent Vector Extraction
URI https://ieeexplore.ieee.org/document/9420314
https://www.proquest.com/docview/2541466062
Volume 69
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1941-0476
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014496
  issn: 1053-587X
  databaseCode: RIE
  dateStart: 19910101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NT9swGH4FPbED2-gQHWzygQsSbhPHTuxj27ViSCAkCuppkb_KqnYtalOJ7dfPdtKIfQiRUxTZkeXHyfv9vACnQlkWRVbgjCuKPeEdVpNYYm6iTHmYbcjNubpOL-7o5ZiNd-C8roWx1obkM9v2tyGWb5Z6411lHUGJZ1vfhd2Mp2WtVh0xoDT04nLqQoIZz8bbkGQkOqPbG2cIkrid-LATp3-IoNBT5Z8fcZAuw7dwtV1XmVQya28K1da__qJsfO3C38F-pWaibnku3sOOXRzAm2fkg0341nNybIb6S2d-ThdO5URfSmon1J0_LFfT4vuPNXIqLepunqbzqVz9xEMnBD2QuOdkn0Ff6xa6BboP3n80eCpWZanEB7gbDkb9C1x1W8CaiLjAOo0SaRJGlXQ6hmRSCS2yiXuiZZwpozRhihmuZcbcNZlITzourRJcGJ4mySE0FsuFPQKkUpMxmkptI021TqSOVRyb1BLCuSZJCzpbAHJdUZH7jhjzPJgkkcgdZLmHLK8ga8FZPeOxpOF4YWzTI1CPqza_BSdbjPPqO13nxHdBT50RRz7-f9Yx7Pl3l06XE2gUq4395NSQQn0O5-83q5Pabg
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3Lb9MwGP_UjQPbgVeHVlbABy5IuE0cO7GP7VjVwjoh0aKeiPwqq9a1qEulsb8e20kjXprIKYpsxfLPyff-fQBvhLIsiqzAGVcUe8I7rOaxxNxEmfIw25CbM75Ih1P6YcZmDXhX18JYa0Pyme342xDLN2u99a6yrqDEs63vwQNGKWVltVYdM6A0dONyCkOCGc9mu6BkJLqTz5-cKUjiTuIDT5z-JoRCV5W_fsVBvgwew3i3sjKt5KqzLVRH3_1B2vi_S38CjypFE_XKk_EUGnb1DA5_oR9swte-k2RX6HTtDNDFyimd6H1J7oR6y2_rzaK4vL5BTqlFve3tYrmQmx944MSghxL3nfQzaFQ30S3Ql-D_R2e3xaYsljiC6eBscjrEVb8FrImIC6zTKJEmYVRJp2VIJpXQIpu7J1rGmTJKE6aY4VpmzF3zufS049IqwYXhaZI8h_3VemWPAanUZIymUttIU60TqWMVxya1hHCuSdKC7g6AXFdk5L4nxjIPRkkkcgdZ7iHLK8ha8Lae8b0k4rhnbNMjUI-rNr8F7R3GefWl3uTE90FPnRlHXvx71mt4OJyMz_Pz0cXHEzjw7yldMG3YLzZb-9IpJYV6Fc7iT0KI3bs
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Block+Coordinate+Descent+Algorithms+for+Auxiliary-Function-Based+Independent+Vector+Extraction&rft.jtitle=IEEE+transactions+on+signal+processing&rft.au=Ikeshita%2C+Rintaro&rft.au=Nakatani%2C+Tomohiro&rft.au=Araki%2C+Shoko&rft.date=2021&rft.pub=IEEE&rft.issn=1053-587X&rft.volume=69&rft.spage=3252&rft.epage=3267&rft_id=info:doi/10.1109%2FTSP.2021.3076884&rft.externalDocID=9420314
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1053-587X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1053-587X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1053-587X&client=summon