Block Coordinate Descent Algorithms for Auxiliary-Function-Based Independent Vector Extraction
In this paper, we address the problem of extracting all super-Gaussian source signals from a linear mixture in which (i) the number of super-Gaussian sources <inline-formula><tex-math notation="LaTeX">K</tex-math></inline-formula> is less than that of sensors <in...
        Saved in:
      
    
          | Published in | IEEE transactions on signal processing Vol. 69; pp. 3252 - 3267 | 
|---|---|
| Main Authors | , , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
        New York
          IEEE
    
        2021
     The Institute of Electrical and Electronics Engineers, Inc. (IEEE)  | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 1053-587X 1941-0476  | 
| DOI | 10.1109/TSP.2021.3076884 | 
Cover
| Abstract | In this paper, we address the problem of extracting all super-Gaussian source signals from a linear mixture in which (i) the number of super-Gaussian sources <inline-formula><tex-math notation="LaTeX">K</tex-math></inline-formula> is less than that of sensors <inline-formula><tex-math notation="LaTeX">M</tex-math></inline-formula>, and (ii) there are up to <inline-formula><tex-math notation="LaTeX">M - K</tex-math></inline-formula> stationary Gaussian noises that do not need to be extracted. To solve this problem, independent vector extraction (IVE) using a majorization minimization and block coordinate descent (BCD) algorithms has been developed, attaining robust source extraction and low computational cost. We here improve the conventional BCDs for IVE by carefully exploiting the stationarity of the Gaussian noise components. We also newly develop a BCD for a semiblind IVE in which the transfer functions for several super-Gaussian sources are given a priori. Both algorithms consist of a closed-form formula and a generalized eigenvalue decomposition. In a numerical experiment of extracting speech signals from noisy mixtures, we show that when <inline-formula><tex-math notation="LaTeX">K = 1</tex-math></inline-formula> in a blind case or at least <inline-formula><tex-math notation="LaTeX">K - 1</tex-math></inline-formula> transfer functions are given in a semiblind case, the convergence of our proposed BCDs is significantly faster than those of the conventional ones. | 
    
|---|---|
| AbstractList | In this paper, we address the problem of extracting all super-Gaussian source signals from a linear mixture in which (i) the number of super-Gaussian sources [Formula Omitted] is less than that of sensors [Formula Omitted], and (ii) there are up to [Formula Omitted] stationary Gaussian noises that do not need to be extracted. To solve this problem, independent vector extraction (IVE) using a majorization minimization and block coordinate descent (BCD) algorithms has been developed, attaining robust source extraction and low computational cost. We here improve the conventional BCDs for IVE by carefully exploiting the stationarity of the Gaussian noise components. We also newly develop a BCD for a semiblind IVE in which the transfer functions for several super-Gaussian sources are given a priori. Both algorithms consist of a closed-form formula and a generalized eigenvalue decomposition. In a numerical experiment of extracting speech signals from noisy mixtures, we show that when [Formula Omitted] in a blind case or at least [Formula Omitted] transfer functions are given in a semiblind case, the convergence of our proposed BCDs is significantly faster than those of the conventional ones. In this paper, we address the problem of extracting all super-Gaussian source signals from a linear mixture in which (i) the number of super-Gaussian sources <inline-formula><tex-math notation="LaTeX">K</tex-math></inline-formula> is less than that of sensors <inline-formula><tex-math notation="LaTeX">M</tex-math></inline-formula>, and (ii) there are up to <inline-formula><tex-math notation="LaTeX">M - K</tex-math></inline-formula> stationary Gaussian noises that do not need to be extracted. To solve this problem, independent vector extraction (IVE) using a majorization minimization and block coordinate descent (BCD) algorithms has been developed, attaining robust source extraction and low computational cost. We here improve the conventional BCDs for IVE by carefully exploiting the stationarity of the Gaussian noise components. We also newly develop a BCD for a semiblind IVE in which the transfer functions for several super-Gaussian sources are given a priori. Both algorithms consist of a closed-form formula and a generalized eigenvalue decomposition. In a numerical experiment of extracting speech signals from noisy mixtures, we show that when <inline-formula><tex-math notation="LaTeX">K = 1</tex-math></inline-formula> in a blind case or at least <inline-formula><tex-math notation="LaTeX">K - 1</tex-math></inline-formula> transfer functions are given in a semiblind case, the convergence of our proposed BCDs is significantly faster than those of the conventional ones.  | 
    
| Author | Ikeshita, Rintaro Araki, Shoko Nakatani, Tomohiro  | 
    
| Author_xml | – sequence: 1 givenname: Rintaro orcidid: 0000-0003-2608-1999 surname: Ikeshita fullname: Ikeshita, Rintaro email: ikeshita@ieee.org organization: NTT Communication Science Laboratories, NTT Corporation, Kyoto, Japan – sequence: 2 givenname: Tomohiro orcidid: 0000-0002-7487-7150 surname: Nakatani fullname: Nakatani, Tomohiro email: tnak@ieee.org organization: NTT Communication Science Laboratories, NTT Corporation, Kyoto, Japan – sequence: 3 givenname: Shoko surname: Araki fullname: Araki, Shoko email: araki.shoko@lab.ntt.co.jp organization: NTT Communication Science Laboratories, NTT Corporation, Kyoto, Japan  | 
    
| BookMark | eNp9kM9LwzAUx4MouE3vgpeC586k-dHmuM1NBwMFp3gypGmqmV0zkxTmf2_mhgcPvkNeCJ_Py-PbB8etbTUAFwgOEYL8evn4MMxghoYY5qwoyBHoIU5QCknOjuMdUpzSIn85BX3vVxAiQjjrgddxY9VHMrHWVaaVQSc32ivdhmTUvFlnwvvaJ7V1yajbmsZI95XOulYFY9t0LL2uknlb6Y2OR3SetQqRnW6Dkz_MGTipZeP1-aEPwNNsupzcpYv72_lktEhVxlFIFYNYVpiSUiJKJZUlVzyv44uSKC-rUmW0pFWhZE5j1bWEecalLnnBq4JhPABX-7kbZz877YNY2c618UuRUYIIY5BlkWJ7SjnrvdO1UCbI3Z5xX9MIBMUuSxGzFLssxSHLKMI_4saZdQzjP-Vyrxit9S_OSQYxIvgbgPKCmw | 
    
| CODEN | ITPRED | 
    
| CitedBy_id | crossref_primary_10_1016_j_neucom_2024_129292 crossref_primary_10_53829_ntr202210fa7 crossref_primary_10_1049_cmu2_12472 crossref_primary_10_1109_LSENS_2025_3533642 crossref_primary_10_1109_TSP_2024_3375629 crossref_primary_10_1109_TASLP_2022_3155271 crossref_primary_10_1186_s13636_024_00373_3 crossref_primary_10_1016_j_apacoust_2024_110149 crossref_primary_10_1016_j_apacoust_2024_110135 crossref_primary_10_1109_TWC_2022_3162704 crossref_primary_10_1109_TASLP_2024_3352249 crossref_primary_10_1109_TITS_2024_3516839 crossref_primary_10_1109_TASLP_2024_3351353 crossref_primary_10_1109_TASLP_2023_3301227 crossref_primary_10_1002_ett_5038  | 
    
| Cites_doi | 10.1080/03610929808832115 10.1049/ip-f-2.1993.0054 10.1214/aos/1176349519 10.1109/TSP.2012.2190728 10.1109/ICASSP40776.2020.9053790 10.1162/neco_a_01217 10.1023/A:1017501703105 10.1016/S0925-2312(00)00345-3 10.1080/01621459.1987.10478427 10.1109/ICASSP.2019.8682291 10.23919/EUSIPCO.2019.8902557 10.1109/TSP.2009.2021636 10.1109/TSP.2012.2189389 10.1109/T-C.1974.224051 10.1162/neco.1997.9.7.1483 10.1016/0165-1684(95)00042-C 10.1109/TNN.2006.880980 10.1109/TSP.2011.2181836 10.1016/j.sigpro.2012.10.021 10.1007/978-3-642-15995-4_21 10.1109/TASLP.2016.2577880 10.23919/EUSIPCO.2017.8081391 10.1109/TASL.2007.898454 10.1109/TNN.2004.828764 10.1109/5.720251 10.1109/TSA.2005.858005 10.1109/CAMSAP.2009.5413271 10.1109/TSP.2015.2468686 10.1109/ASRU.2015.7404837 10.1109/WASPAA.2019.8937080 10.23919/EUSIPCO.2019.8902753 10.7551/mitpress/3717.001.0001 10.1007/11679363_75 10.1016/j.sigpro.2011.04.016 10.1109/TASLP.2019.2925450 10.1109/78.942614 10.1109/WASPAA.2019.8937171 10.1109/TASL.2006.872618 10.1007/978-1-4757-2851-4_2 10.1137/050622821 10.23919/EUSIPCO.2017.8081389 10.1109/ASPAA.2011.6082320 10.1109/TSP.2004.827195 10.1109/TSP.2018.2887185 10.1109/72.761722  | 
    
| ContentType | Journal Article | 
    
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021 | 
    
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021 | 
    
| DBID | 97E RIA RIE AAYXX CITATION 7SC 7SP 8FD JQ2 L7M L~C L~D  | 
    
| DOI | 10.1109/TSP.2021.3076884 | 
    
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts  Academic Computer and Information Systems Abstracts Professional  | 
    
| DatabaseTitle | CrossRef Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional  | 
    
| DatabaseTitleList | Technology Research Database | 
    
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher  | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Engineering | 
    
| EISSN | 1941-0476 | 
    
| EndPage | 3267 | 
    
| ExternalDocumentID | 10_1109_TSP_2021_3076884 9420314  | 
    
| Genre | orig-research | 
    
| GroupedDBID | -~X .DC 0R~ 29I 3EH 4.4 53G 5GY 5VS 6IK 85S 97E AAJGR AARMG AASAJ AAWTH ABAZT ABFSI ABQJQ ABVLG ACGFO ACIWK ACKIV ACNCT AENEX AETIX AGQYO AGSQL AHBIQ AI. AIBXA AJQPL AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 E.L EBS EJD F5P HZ~ H~9 ICLAB IFIPE IFJZH IPLJI JAVBF LAI MS~ O9- OCL P2P RIA RIE RNS TAE TN5 VH1 AAYXX CITATION 7SC 7SP 8FD JQ2 L7M L~C L~D  | 
    
| ID | FETCH-LOGICAL-c291t-c603ad354ba155a5ab9c97fd35ca17bdbc25b5d8ca75555ffa0729aeb989d8633 | 
    
| IEDL.DBID | RIE | 
    
| ISSN | 1053-587X | 
    
| IngestDate | Mon Jun 30 10:11:33 EDT 2025 Wed Oct 01 03:34:36 EDT 2025 Thu Apr 24 22:50:54 EDT 2025 Wed Aug 27 02:50:50 EDT 2025  | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Language | English | 
    
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037  | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-c291t-c603ad354ba155a5ab9c97fd35ca17bdbc25b5d8ca75555ffa0729aeb989d8633 | 
    
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14  | 
    
| ORCID | 0000-0003-2608-1999 0000-0002-7487-7150  | 
    
| PQID | 2541466062 | 
    
| PQPubID | 85478 | 
    
| PageCount | 16 | 
    
| ParticipantIDs | crossref_citationtrail_10_1109_TSP_2021_3076884 ieee_primary_9420314 proquest_journals_2541466062 crossref_primary_10_1109_TSP_2021_3076884  | 
    
| ProviderPackageCode | CITATION AAYXX  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 20210000 2021-00-00 20210101  | 
    
| PublicationDateYYYYMMDD | 2021-01-01 | 
    
| PublicationDate_xml | – year: 2021 text: 20210000  | 
    
| PublicationDecade | 2020 | 
    
| PublicationPlace | New York | 
    
| PublicationPlace_xml | – name: New York | 
    
| PublicationTitle | IEEE transactions on signal processing | 
    
| PublicationTitleAbbrev | TSP | 
    
| PublicationYear | 2021 | 
    
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE)  | 
    
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)  | 
    
| References | ref13 ref56 ref12 ref59 ref15 ref14 ref55 ref11 ref54 ref10 comon (ref1) 2010 johnson (ref47) 1992 ref17 ref16 ref19 cichocki (ref2) 2002 scheibler (ref26) 2020 ref18 amari (ref52) 0 ref51 ref50 ono (ref31) 0 ref46 ref45 ref48 ref42 ref41 ref43 lange (ref28) 2016; 147 ref49 garofolo (ref58) 1993 ref8 ref7 ref9 ref4 nocedal (ref53) 2006 ref3 ref6 ref5 ref40 janskýžd (ref23) 0 ref35 ref34 ono (ref32) 0 ref37 ref36 ref30 nakamura (ref57) 0 ref33 ref39 ref38 ref24 scheibler (ref25) 0 ref20 ref22 ref21 trees (ref44) 2004 ref27 ref29 atkinson (ref60) 2008 ref61  | 
    
| References_xml | – year: 1993 ident: ref58 article-title: TIMIT Acoustic-Phonetic Continuous Speech Corpus LDC93S1. Web Download. Philadelphia: Linguistic Data Consortium publication-title: TIMIT Acoustic-Phonetic Continuous Speech Corpus – start-page: 757 year: 0 ident: ref52 article-title: A new learning algorithm for blind signal separation publication-title: Proc Int Conf Neural Inf Process – ident: ref51 doi: 10.1080/03610929808832115 – ident: ref13 doi: 10.1049/ip-f-2.1993.0054 – start-page: 601 year: 0 ident: ref25 article-title: Fast independent vector extraction by iterative SINR maximization publication-title: Proc IEEE Int Conf Acoust Speech Signal Process – start-page: 437 year: 0 ident: ref32 article-title: Fast algorithm for independent component/vector/low-rank matrix analysis with three or more sources publication-title: Proc ASJ Spring meeting – ident: ref11 doi: 10.1214/aos/1176349519 – ident: ref37 doi: 10.1109/TSP.2012.2190728 – ident: ref27 doi: 10.1109/ICASSP40776.2020.9053790 – start-page: 676 year: 0 ident: ref23 article-title: Adaptive blind audio source extraction supervised by dominant speaker identification using x-vectors publication-title: Proc ICASSP IEEE Int Conf Acoust Speech Signal Process – ident: ref40 doi: 10.1162/neco_a_01217 – ident: ref38 doi: 10.1023/A:1017501703105 – ident: ref55 doi: 10.1016/S0925-2312(00)00345-3 – year: 2002 ident: ref2 publication-title: Adaptive Blind Signal and Image Processing Learning Algorithms and Applications – ident: ref12 doi: 10.1080/01621459.1987.10478427 – ident: ref43 doi: 10.1109/ICASSP.2019.8682291 – start-page: 1 year: 0 ident: ref31 article-title: Fast stereo independent vector analysis and its implementation on mobile phone publication-title: Proc IWAENC Int Workshop Acoust Signal Enhancement – year: 2004 ident: ref44 publication-title: Optimum Array Processing Part IV of Detection Estimation and Modulation Theory – year: 1992 ident: ref47 publication-title: Array Signal Processing Concepts and Techniques – ident: ref42 doi: 10.23919/EUSIPCO.2019.8902557 – ident: ref7 doi: 10.1109/TSP.2009.2021636 – year: 0 ident: ref57 article-title: Acoustical sound database in real environments for sound scene understanding and hands-free speech recognition publication-title: Proc Second Int Conf Lang Resources Evaluation (LREC'00) – ident: ref49 doi: 10.1109/TSP.2012.2189389 – year: 2020 ident: ref26 article-title: MM Algorithms for joint independent subspace analysis with application to blind single and multi-source extraction – ident: ref10 doi: 10.1109/T-C.1974.224051 – ident: ref17 doi: 10.1162/neco.1997.9.7.1483 – ident: ref14 doi: 10.1016/0165-1684(95)00042-C – ident: ref19 doi: 10.1109/TNN.2006.880980 – ident: ref9 doi: 10.1109/TSP.2011.2181836 – ident: ref50 doi: 10.1016/j.sigpro.2012.10.021 – year: 2006 ident: ref53 publication-title: Numerical Optimization – ident: ref29 doi: 10.1007/978-3-642-15995-4_21 – ident: ref39 doi: 10.1109/TASLP.2016.2577880 – year: 2008 ident: ref60 publication-title: An Introduction to Numerical Analysis – ident: ref46 doi: 10.23919/EUSIPCO.2017.8081391 – volume: 147 year: 2016 ident: ref28 publication-title: MM Optimization Algorithms – ident: ref48 doi: 10.1109/TASL.2007.898454 – ident: ref15 doi: 10.1109/TNN.2004.828764 – ident: ref16 doi: 10.1109/5.720251 – ident: ref56 doi: 10.1109/TSA.2005.858005 – ident: ref36 doi: 10.1109/CAMSAP.2009.5413271 – ident: ref20 doi: 10.1109/TSP.2015.2468686 – ident: ref59 doi: 10.1109/ASRU.2015.7404837 – ident: ref24 doi: 10.1109/WASPAA.2019.8937080 – ident: ref61 doi: 10.23919/EUSIPCO.2019.8902753 – ident: ref4 doi: 10.7551/mitpress/3717.001.0001 – ident: ref6 doi: 10.1007/11679363_75 – ident: ref8 doi: 10.1016/j.sigpro.2011.04.016 – ident: ref41 doi: 10.1109/TASLP.2019.2925450 – ident: ref33 doi: 10.1109/78.942614 – ident: ref45 doi: 10.1109/TASL.2007.898454 – ident: ref54 doi: 10.1109/WASPAA.2019.8937171 – ident: ref5 doi: 10.1109/TASL.2006.872618 – ident: ref3 doi: 10.1007/978-1-4757-2851-4_2 – ident: ref35 doi: 10.1137/050622821 – ident: ref22 doi: 10.23919/EUSIPCO.2017.8081389 – ident: ref30 doi: 10.1109/ASPAA.2011.6082320 – year: 2010 ident: ref1 publication-title: Handbook of Blind Source Separation Independent Component Analysis and Applications – ident: ref34 doi: 10.1109/TSP.2004.827195 – ident: ref21 doi: 10.1109/TSP.2018.2887185 – ident: ref18 doi: 10.1109/72.761722  | 
    
| SSID | ssj0014496 | 
    
| Score | 2.4535203 | 
    
| Snippet | In this paper, we address the problem of extracting all super-Gaussian source signals from a linear mixture in which (i) the number of super-Gaussian sources... | 
    
| SourceID | proquest crossref ieee  | 
    
| SourceType | Aggregation Database Enrichment Source Index Database Publisher  | 
    
| StartPage | 3252 | 
    
| SubjectTerms | Algorithms Blind source extraction block coordinate descent method Eigenvalues generalized eigenvalue problem independent component analysis independent vector analysis IP networks Mathematical analysis Noise measurement Probabilistic logic Random noise Robustness (mathematics) Sensors Signal processing algorithms Source separation Speech recognition Transfer functions  | 
    
| Title | Block Coordinate Descent Algorithms for Auxiliary-Function-Based Independent Vector Extraction | 
    
| URI | https://ieeexplore.ieee.org/document/9420314 https://www.proquest.com/docview/2541466062  | 
    
| Volume | 69 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 1941-0476 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0014496 issn: 1053-587X databaseCode: RIE dateStart: 19910101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NT9swGH4FPbED2-gQHWzygQsSbhPHTuxj27ViSCAkCuppkb_KqnYtalOJ7dfPdtKIfQiRUxTZkeXHyfv9vACnQlkWRVbgjCuKPeEdVpNYYm6iTHmYbcjNubpOL-7o5ZiNd-C8roWx1obkM9v2tyGWb5Z6411lHUGJZ1vfhd2Mp2WtVh0xoDT04nLqQoIZz8bbkGQkOqPbG2cIkrid-LATp3-IoNBT5Z8fcZAuw7dwtV1XmVQya28K1da__qJsfO3C38F-pWaibnku3sOOXRzAm2fkg0341nNybIb6S2d-ThdO5URfSmon1J0_LFfT4vuPNXIqLepunqbzqVz9xEMnBD2QuOdkn0Ff6xa6BboP3n80eCpWZanEB7gbDkb9C1x1W8CaiLjAOo0SaRJGlXQ6hmRSCS2yiXuiZZwpozRhihmuZcbcNZlITzourRJcGJ4mySE0FsuFPQKkUpMxmkptI021TqSOVRyb1BLCuSZJCzpbAHJdUZH7jhjzPJgkkcgdZLmHLK8ga8FZPeOxpOF4YWzTI1CPqza_BSdbjPPqO13nxHdBT50RRz7-f9Yx7Pl3l06XE2gUq4395NSQQn0O5-83q5Pabg | 
    
| linkProvider | IEEE | 
    
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3Lb9MwGP_UjQPbgVeHVlbABy5IuE0cO7GP7VjVwjoh0aKeiPwqq9a1qEulsb8e20kjXprIKYpsxfLPyff-fQBvhLIsiqzAGVcUe8I7rOaxxNxEmfIw25CbM75Ih1P6YcZmDXhX18JYa0Pyme342xDLN2u99a6yrqDEs63vwQNGKWVltVYdM6A0dONyCkOCGc9mu6BkJLqTz5-cKUjiTuIDT5z-JoRCV5W_fsVBvgwew3i3sjKt5KqzLVRH3_1B2vi_S38CjypFE_XKk_EUGnb1DA5_oR9swte-k2RX6HTtDNDFyimd6H1J7oR6y2_rzaK4vL5BTqlFve3tYrmQmx944MSghxL3nfQzaFQ30S3Ql-D_R2e3xaYsljiC6eBscjrEVb8FrImIC6zTKJEmYVRJp2VIJpXQIpu7J1rGmTJKE6aY4VpmzF3zufS049IqwYXhaZI8h_3VemWPAanUZIymUttIU60TqWMVxya1hHCuSdKC7g6AXFdk5L4nxjIPRkkkcgdZ7iHLK8ha8Lae8b0k4rhnbNMjUI-rNr8F7R3GefWl3uTE90FPnRlHXvx71mt4OJyMz_Pz0cXHEzjw7yldMG3YLzZb-9IpJYV6Fc7iT0KI3bs | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Block+Coordinate+Descent+Algorithms+for+Auxiliary-Function-Based+Independent+Vector+Extraction&rft.jtitle=IEEE+transactions+on+signal+processing&rft.au=Ikeshita%2C+Rintaro&rft.au=Nakatani%2C+Tomohiro&rft.au=Araki%2C+Shoko&rft.date=2021&rft.pub=IEEE&rft.issn=1053-587X&rft.volume=69&rft.spage=3252&rft.epage=3267&rft_id=info:doi/10.1109%2FTSP.2021.3076884&rft.externalDocID=9420314 | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1053-587X&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1053-587X&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1053-587X&client=summon |