A hybrid genetic-particle swarm optimization algorithm for multi-constraint optimization problems
This paper presents a new hybrid genetic-particle swarm optimization (GPSO) algorithm for solving multi-constrained optimization problems. This algorithm is different from the traditional GPSO algorithm, which adopts genetic algorithm (GA) and particle swarm optimization (PSO) in series, and it comb...
Saved in:
Published in | Soft computing (Berlin, Germany) Vol. 26; no. 21; pp. 11695 - 11711 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Berlin/Heidelberg
Springer Berlin Heidelberg
01.11.2022
|
Subjects | |
Online Access | Get full text |
ISSN | 1432-7643 1433-7479 |
DOI | 10.1007/s00500-022-07489-8 |
Cover
Abstract | This paper presents a new hybrid genetic-particle swarm optimization (GPSO) algorithm for solving multi-constrained optimization problems. This algorithm is different from the traditional GPSO algorithm, which adopts genetic algorithm (GA) and particle swarm optimization (PSO) in series, and it combines PSO and GA through parallel architecture, so as to make full use of the high efficiency of PSO and the global optimization ability of GA. The algorithm takes PSO as the main body and runs PSO at the initial stage of optimization, while GA does not participate in operation. When the global best value (gbest) does not change for successive generations, it is assumed that it falls into local optimum. At this time, GA is used to replace PSO for particle selection, crossover and mutation operations to update particles and help particles jump out of local optimum. In addition, the GPSO adopts adaptive inertia weight, adaptive mutation parameters and multi-point crossover operation between particles and personal best value (pbest) to improve the optimization ability of the algorithm. Finally, this paper uses a nonlinear constraint problem (Himmelblau’s nonlinear optimization problem) and three structural optimization problems (pressure vessel design problem, the welded beam design problem and the gear train design problem) as test functions and compares the proposed GPSO with the traditional GPSO, dingo optimization algorithm, whale optimization algorithm and grey wolf optimizer. The performance evaluation of the proposed algorithm is carried out by using the evaluation indexes such as best value, mean value, median value, worst value, standard deviation, operation time and convergence speed. The comparison results show that the proposed GPSO has obvious advantages in finding the optimal value, convergence speed and time overhead. |
---|---|
AbstractList | This paper presents a new hybrid genetic-particle swarm optimization (GPSO) algorithm for solving multi-constrained optimization problems. This algorithm is different from the traditional GPSO algorithm, which adopts genetic algorithm (GA) and particle swarm optimization (PSO) in series, and it combines PSO and GA through parallel architecture, so as to make full use of the high efficiency of PSO and the global optimization ability of GA. The algorithm takes PSO as the main body and runs PSO at the initial stage of optimization, while GA does not participate in operation. When the global best value (gbest) does not change for successive generations, it is assumed that it falls into local optimum. At this time, GA is used to replace PSO for particle selection, crossover and mutation operations to update particles and help particles jump out of local optimum. In addition, the GPSO adopts adaptive inertia weight, adaptive mutation parameters and multi-point crossover operation between particles and personal best value (pbest) to improve the optimization ability of the algorithm. Finally, this paper uses a nonlinear constraint problem (Himmelblau’s nonlinear optimization problem) and three structural optimization problems (pressure vessel design problem, the welded beam design problem and the gear train design problem) as test functions and compares the proposed GPSO with the traditional GPSO, dingo optimization algorithm, whale optimization algorithm and grey wolf optimizer. The performance evaluation of the proposed algorithm is carried out by using the evaluation indexes such as best value, mean value, median value, worst value, standard deviation, operation time and convergence speed. The comparison results show that the proposed GPSO has obvious advantages in finding the optimal value, convergence speed and time overhead. |
Author | Guo, Chuangqiang Liu, Hong Duan, Bosong |
Author_xml | – sequence: 1 givenname: Bosong surname: Duan fullname: Duan, Bosong organization: State Key Laboratory of Robotics and System, Harbin Institute of Technology – sequence: 2 givenname: Chuangqiang surname: Guo fullname: Guo, Chuangqiang email: chuangqiang.guo@hit.edu.cn organization: State Key Laboratory of Robotics and System, Harbin Institute of Technology – sequence: 3 givenname: Hong surname: Liu fullname: Liu, Hong organization: State Key Laboratory of Robotics and System, Harbin Institute of Technology |
BookMark | eNp9kMtOwzAQRS1UJNrCD7DKDxjGj9T2sqp4SZXYwNpyErt1lcSR7QqVrydt2cCiqzsjzZmZe2do0ofeInRP4IEAiMcEUAJgoBSD4FJheYWmhDOGBRdqcqopFgvObtAspR0AJaJkU2SWxfZQRd8UG9vb7Gs8mDhKa4v0ZWJXhCH7zn-b7ENfmHYTos_brnAhFt2-zR7XoU85Gt_nv7NDDFVru3SLrp1pk7371Tn6fH76WL3i9fvL22q5xjVVJOO65FwaI8HxyjnqxraiVnLHgSwaWgGY0qlaKSMsYw1USi5Uw8BISkolGJsjet5bx5BStE4P0XcmHjQBfQxJn0PSY0j6FJKWIyT_QbXPp_-PltrLKDujabzTb2zUu7CP_WjxEvUD3HCAbQ |
CitedBy_id | crossref_primary_10_3390_app15073474 crossref_primary_10_3390_math10224169 crossref_primary_10_1016_j_apm_2024_115860 crossref_primary_10_1080_0305215X_2023_2260992 crossref_primary_10_1016_j_apm_2022_11_016 crossref_primary_10_4018_IJSIR_354885 crossref_primary_10_1016_j_engappai_2024_108891 crossref_primary_10_1093_comjnl_bxae088 crossref_primary_10_3390_electronics12204249 crossref_primary_10_3390_math11204287 crossref_primary_10_3390_su15032483 crossref_primary_10_1109_ACCESS_2024_3413157 crossref_primary_10_1016_j_ast_2023_108482 |
Cites_doi | 10.1016/j.advengsoft.2013.12.007 10.1007/s12652-020-02288-1 10.1007/s10489-019-01409-4 10.1016/j.swevo.2017.12.004 10.1002/cpe.5370 10.1007/s00500-022-07068-x 10.3934/jimo.2014.10.777 10.3389/fnins.2019.00390 10.1016/j.advengsoft.2016.01.008 10.1155/2021/8902328 10.1007/s00521-022-06899-x 10.1080/03052150410001704854 10.1016/j.neucom.2019.10.096 10.1155/2021/9107547 10.1109/ACCESS.2021.3116066 10.1016/j.apenergy.2022.118851 10.1109/ACCESS.2021.3049175 10.1016/j.engappai.2006.03.003 10.1007/s00500-018-3335-2 10.1016/j.measurement.2021.110524 10.1016/j.jweia.2017.10.032 10.1016/j.est.2022.104343 10.1111/coin.12257 10.1016/j.seta.2022.102150 10.1016/S0166-3615(99)00046-9 10.1016/j.amc.2015.11.001 10.1007/s00500-020-05069-2 10.1109/TCBB.2017.2701367 10.1007/s10009-018-00506-y 10.1016/S1474-0346(02)00011-3 10.1007/s13369-022-06605-y 10.1016/j.cma.2006.06.010 10.1007/s00500-019-03756-3 10.1007/s00500-014-1345-2 10.1002/tee.23468 10.1109/CSCWD49262.2021.9437623 |
ContentType | Journal Article |
Copyright | The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2022. Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. |
Copyright_xml | – notice: The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2022. Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. |
DBID | AAYXX CITATION |
DOI | 10.1007/s00500-022-07489-8 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Computer Science |
EISSN | 1433-7479 |
EndPage | 11711 |
ExternalDocumentID | 10_1007_s00500_022_07489_8 |
GroupedDBID | -5B -5G -BR -EM -Y2 -~C .86 .VR 06D 0R~ 0VY 1N0 1SB 203 29~ 2J2 2JN 2JY 2KG 2LR 2P1 2VQ 2~H 30V 4.4 406 408 409 40D 40E 5VS 67Z 6NX 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTD ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACSNA ACZOJ ADHHG ADHIR ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFGCZ AFKRA AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARAPS ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN B-. BA0 BDATZ BENPR BGLVJ BGNMA BSONS CAG CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 EBLON EBS EIOEI EJD ESBYG FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I09 IHE IJ- IKXTQ IWAJR IXC IXD IXE IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ K7- KDC KOV LAS LLZTM M4Y MA- N2Q NB0 NPVJJ NQJWS NU0 O9- O93 O9J OAM P2P P9P PF0 PT4 PT5 QOS R89 R9I RIG RNI ROL RPX RSV RZK S16 S1Z S27 S3B SAP SDH SEG SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 TSG TSK TSV TUC U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR Z45 Z5O Z7R Z7X Z7Y Z7Z Z81 Z83 Z88 ZMTXR AAPKM AAYXX ABBRH ABDBE ABFSG ABRTQ ACSTC ADHKG ADKFA AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT PQGLB PUEGO |
ID | FETCH-LOGICAL-c291t-c5448aa80f4bff2f544b2e84f4016d2b00a5f9c99a7e33d0b9869d30a82159733 |
IEDL.DBID | AGYKE |
ISSN | 1432-7643 |
IngestDate | Wed Oct 01 03:00:24 EDT 2025 Thu Apr 24 23:01:44 EDT 2025 Fri Feb 21 02:44:29 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 21 |
Keywords | Genetic-particle swarm optimization algorithm Multi-constraint optimization problem Genetic algorithm Particle swarm optimization |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c291t-c5448aa80f4bff2f544b2e84f4016d2b00a5f9c99a7e33d0b9869d30a82159733 |
PageCount | 17 |
ParticipantIDs | crossref_primary_10_1007_s00500_022_07489_8 crossref_citationtrail_10_1007_s00500_022_07489_8 springer_journals_10_1007_s00500_022_07489_8 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20221100 2022-11-00 |
PublicationDateYYYYMMDD | 2022-11-01 |
PublicationDate_xml | – month: 11 year: 2022 text: 20221100 |
PublicationDecade | 2020 |
PublicationPlace | Berlin/Heidelberg |
PublicationPlace_xml | – name: Berlin/Heidelberg |
PublicationSubtitle | A Fusion of Foundations, Methodologies and Applications |
PublicationTitle | Soft computing (Berlin, Germany) |
PublicationTitleAbbrev | Soft Comput |
PublicationYear | 2022 |
Publisher | Springer Berlin Heidelberg |
Publisher_xml | – name: Springer Berlin Heidelberg |
References | Garg (CR16) 2016; 274 Rahman, Zakarya, Raza, Khan (CR28) 2020 Jamei, Karbasi, Mosharaf-Dehkordi, Adewale Olumegbon, Abualigah, Said, Asadi (CR22) 2022; 189 Garg (CR15) 2014; 10 Abd Elaziz, Almodfer, Ahmadianfar, Ibrahim, Mudhsh, Abualigah, Lu, Abd El-Latif, Yousri (CR2) 2022; 52 Al-qaness, Ewees, Fan, Abualigah, Elaziz (CR6) 2022; 314 Dimopoulos (CR12) 2006; 196 Al-Bahrani, Patra (CR4) 2018; 40 Alrufaiaat, Althahab (CR7) 2021; 12 CR30 Guan, Hong, Kang, Zeng, Sun, Lin (CR17) 2019; 13 Liu, Mu, Kou, Liu (CR24) 2015; 19 Aravinth, Senthilkumar, Mohanraj, Suresh (CR8) 2021 He, Wang (CR19) 2007; 20 Song, Chen, Wang (CR31) 2018; 172 Allawi, Al Manaseer, Al Shraideh (CR5) 2020; 22 Hernan, Adrian, Gustavo (CR21) 2021; 202 Su, Zhao, Wang (CR32) 2021; 2021 Turgut, Turgut, Abualigah (CR33) 2022; 34 Kharrich, Abualigah, Kamel, AbdEl-Sattar, Tostado-Véliz (CR23) 2022; 51 Abbassi, Ben Mehrez, Bensalem, Abbassi, Kchaou, Jemli, Abualigah, Altalhi (CR1) 2022 Coello (CR10) 2000; 41 Zhao, Zhou, Xiang (CR36) 2019; 49 Ekinci, Izci, Al Nasar, Abu Zitar, Abualigah (CR13) 2022 Gao, Li, Yang, Wang, Dong, Chiang (CR14) 2020; 380 Abdelhalim, Nakata, Alem, Eltawil (CR3) 2019; 23 Salaria, Menhas, Manzoor (CR29) 2021; 9 Chen, Li (CR9) 2021; 9 Coello, Montes (CR11) 2002; 16 Zhang (CR34) 2021; 16 Guo, Si, Xue, Mao, Wang, Wu (CR18) 2018; 15 Zhang, Zhang, Zhang, Huang (CR35) 2019; 23 Mir, Dayyani, Sutikno, Mohammadi Zanjireh, Razmjooy (CR25) 2020; 36 Mirjalili, Mirjalili, Lewis (CR27) 2014; 69 He, Prempain, Wu (CR20) 2004; 36 Mirjalili, Lewis (CR26) 2016; 95 CAC Coello (7489_CR11) 2002; 16 Y Liu (7489_CR24) 2015; 19 S Mirjalili (7489_CR27) 2014; 69 WY Zhang (7489_CR35) 2019; 23 IU Rahman (7489_CR28) 2020 HM Allawi (7489_CR5) 2020; 22 SB Su (7489_CR32) 2021; 2021 A Abbassi (7489_CR1) 2022 A Abdelhalim (7489_CR3) 2019; 23 WA Guo (7489_CR18) 2018; 15 SAK Alrufaiaat (7489_CR7) 2021; 12 CH Chen (7489_CR9) 2021; 9 ZK Gao (7489_CR14) 2020; 380 S Mirjalili (7489_CR26) 2016; 95 7489_CR30 MX Song (7489_CR31) 2018; 172 M Abd Elaziz (7489_CR2) 2022; 52 M Jamei (7489_CR22) 2022; 189 S He (7489_CR20) 2004; 36 JS Guan (7489_CR17) 2019; 13 UA Salaria (7489_CR29) 2021; 9 SS Aravinth (7489_CR8) 2021 MS Turgut (7489_CR33) 2022; 34 M Kharrich (7489_CR23) 2022; 51 PV Hernan (7489_CR21) 2021; 202 LT Al-Bahrani (7489_CR4) 2018; 40 M Mir (7489_CR25) 2020; 36 ZM Zhang (7489_CR34) 2021; 16 CAC Coello (7489_CR10) 2000; 41 Q He (7489_CR19) 2007; 20 S Ekinci (7489_CR13) 2022 H Garg (7489_CR15) 2014; 10 MAA Al-qaness (7489_CR6) 2022; 314 H Garg (7489_CR16) 2016; 274 XR Zhao (7489_CR36) 2019; 49 GG Dimopoulos (7489_CR12) 2006; 196 |
References_xml | – volume: 69 start-page: 46 year: 2014 end-page: 61 ident: CR27 article-title: Grey wolf optimizer publication-title: Adv Eng Softw doi: 10.1016/j.advengsoft.2013.12.007 – volume: 12 start-page: 1967 issue: 2 year: 2021 end-page: 1980 ident: CR7 article-title: Robust decoding strategy of MIMO-STBC using one source Kurtosis based GPSO algorithm publication-title: J Ambient Intell Hum Comput doi: 10.1007/s12652-020-02288-1 – volume: 49 start-page: 2862 issue: 8 year: 2019 end-page: 2873 ident: CR36 article-title: A grouping particle swarm optimizer publication-title: Appl Intell doi: 10.1007/s10489-019-01409-4 – volume: 40 start-page: 1 year: 2018 end-page: 23 ident: CR4 article-title: A novel orthogonal PSO algorithm based on orthogonal diagonalization publication-title: Swarm Evol Comput doi: 10.1016/j.swevo.2017.12.004 – year: 2021 ident: CR8 article-title: A hybrid swarm intelligence based optimization approach for solving minimum exposure problem in wireless sensor networks publication-title: Concurr Comput Pract E doi: 10.1002/cpe.5370 – year: 2022 ident: CR13 article-title: Logarithmic spiral search based arithmetic optimization algorithm with selective mechanism and its application to functional electrical stimulation system control publication-title: Soft Comput doi: 10.1007/s00500-022-07068-x – volume: 10 start-page: 777 issue: 3 year: 2014 end-page: 794 ident: CR15 article-title: Solving structural engineering design optimization problems using an artificial bee colony algorithm publication-title: J Ind Manag Optim doi: 10.3934/jimo.2014.10.777 – volume: 13 start-page: 390 year: 2019 ident: CR17 article-title: Robust adaptive recurrent cerebellar model neural network for non-linear system based on GPSO publication-title: Front Neurosci Switz doi: 10.3389/fnins.2019.00390 – volume: 95 start-page: 51 year: 2016 end-page: 67 ident: CR26 article-title: The whale optimization algorithm publication-title: Adv Eng Softw doi: 10.1016/j.advengsoft.2016.01.008 – ident: CR30 – volume: 2021 start-page: 1 year: 2021 end-page: 16 ident: CR32 article-title: Parallel swarm intelligent motion planning with energy-balanced for multirobot in obstacle environment publication-title: Wirel Commun Mob Comput doi: 10.1155/2021/8902328 – volume: 34 start-page: 8103 issue: 10 year: 2022 end-page: 8135 ident: CR33 article-title: Chaotic quasi-oppositional arithmetic optimization algorithm for thermo-economic design of a shell and tube condenser running with different refrigerant mixture pairs publication-title: Neural Comput Appl doi: 10.1007/s00521-022-06899-x – volume: 36 start-page: 585 issue: 5 year: 2004 end-page: 605 ident: CR20 article-title: An improved particle swarm optimizer for mechanical design optimization problems publication-title: Eng Optim doi: 10.1080/03052150410001704854 – volume: 380 start-page: 225 year: 2020 end-page: 235 ident: CR14 article-title: A GPSO-optimized convolutional neural networks for EEG-based emotion recognition publication-title: Neurocomputing doi: 10.1016/j.neucom.2019.10.096 – volume: 202 start-page: 11 year: 2021 end-page: 19 ident: CR21 article-title: A bio-inspired method for engineering design optimization inspired by dingoes hunting strategies publication-title: Math Probl Eng doi: 10.1155/2021/9107547 – volume: 9 start-page: 134081 year: 2021 end-page: 134095 ident: CR29 article-title: Quasi oppositional population based global particle swarm optimizer with inertial weights (QPGPSO-W) for solving economic load dispatch problem publication-title: IEEE Access doi: 10.1109/ACCESS.2021.3116066 – volume: 314 year: 2022 ident: CR6 article-title: Boosted ANFIS model using augmented marine predator algorithm with mutation operators for wind power forecasting publication-title: Appl Energy doi: 10.1016/j.apenergy.2022.118851 – volume: 9 start-page: 7723 year: 2021 end-page: 7731 ident: CR9 article-title: Process synthesis and design problems based on a global particle swarm optimization algorithm publication-title: IEEE Access doi: 10.1109/ACCESS.2021.3049175 – volume: 20 start-page: 89 issue: 1 year: 2007 end-page: 99 ident: CR19 article-title: An effective co-evolutionary particle swarm optimization for constrained engineering design problems publication-title: Eng Appl Artif Intell doi: 10.1016/j.engappai.2006.03.003 – volume: 23 start-page: 6979 issue: 16 year: 2019 end-page: 6994 ident: CR35 article-title: A novel method based on FTS with both GA-FCM and multifactor BPNN for stock forecasting publication-title: Soft Comput doi: 10.1007/s00500-018-3335-2 – volume: 189 year: 2022 ident: CR22 article-title: Estimating the density of hybrid nanofluids for thermal energy application: application of non-parametric and evolutionary polynomial regression data-intelligent techniques publication-title: Measurement doi: 10.1016/j.measurement.2021.110524 – volume: 172 start-page: 317 year: 2018 end-page: 324 ident: CR31 article-title: Three-dimensional wind turbine positioning using Gaussian particle swarm optimization with differential evolution publication-title: J Wind Eng Ind Aerodyn doi: 10.1016/j.jweia.2017.10.032 – volume: 51 year: 2022 ident: CR23 article-title: An improved arithmetic optimization algorithm for design of a microgrid with energy storage system: Case study of El Kharga Oasis publication-title: Egypt J Energy Storage doi: 10.1016/j.est.2022.104343 – volume: 36 start-page: 225 issue: 1 year: 2020 end-page: 258 ident: CR25 article-title: Employing a Gaussian particle swarm optimization method for tuning multi input multi output-fuzzy system as an integrated controller of a micro-grid with stability analysis publication-title: Comput Intell-US doi: 10.1111/coin.12257 – volume: 52 start-page: 102150 year: 2022 ident: CR2 article-title: Static models for implementing photovoltaic panels characteristics under various environmental conditions using improved gradient-based optimizer publication-title: Sustain Energy Technol Assess doi: 10.1016/j.seta.2022.102150 – volume: 41 start-page: 113 year: 2000 end-page: 127 ident: CR10 article-title: Use of a self -adaptive penalty approach for engineering optimization problems publication-title: Comput Ind doi: 10.1016/S0166-3615(99)00046-9 – volume: 274 start-page: 292 year: 2016 end-page: 305 ident: CR16 article-title: A hybrid PSO-GA algorithm for constrained optimization problems publication-title: Appl Math Comput doi: 10.1016/j.amc.2015.11.001 – year: 2020 ident: CR28 article-title: An n-state switching PSO algorithm for scalable optimization publication-title: Soft Comput (Prepublish) doi: 10.1007/s00500-020-05069-2 – volume: 15 start-page: 1904 issue: 6 year: 2018 end-page: 1915 ident: CR18 article-title: A grouping particle swarm optimizer with personal-best-position guidance for large scale optimization publication-title: IEEE ACM Trans Comput Biol Bioinform doi: 10.1109/TCBB.2017.2701367 – volume: 22 start-page: 183 issue: 2 year: 2020 end-page: 194 ident: CR5 article-title: A greedy particle swarm optimization (GPSO) algorithm for testing real-world smart card applications publication-title: Int J Softw Tools Technol Transf doi: 10.1007/s10009-018-00506-y – volume: 16 start-page: 193 year: 2002 end-page: 203 ident: CR11 article-title: Constraint- handling in genetic algorithms through the use of dominance-based tournament selection publication-title: Adv Eng Inf doi: 10.1016/S1474-0346(02)00011-3 – year: 2022 ident: CR1 article-title: Improved arithmetic optimization algorithm for parameters extraction of photovoltaic solar cell single-diode model publication-title: Arab J Sci Eng doi: 10.1007/s13369-022-06605-y – volume: 196 start-page: 803 issue: 4 year: 2006 end-page: 817 ident: CR12 article-title: Mixed-variable engineering optimization based on evolutionary and social metaphors publication-title: Comput Methods Appl Mech Eng doi: 10.1016/j.cma.2006.06.010 – volume: 23 start-page: 12001 issue: 22 year: 2019 end-page: 12015 ident: CR3 article-title: A hybrid evolutionary-simplex search method to solve nonlinear constrained optimization problems publication-title: Soft Comput doi: 10.1007/s00500-019-03756-3 – volume: 19 start-page: 1311 issue: 5 year: 2015 end-page: 1327 ident: CR24 article-title: Modified particle swarm optimization-based multilevel thresholding for image segmentation publication-title: Soft Comput doi: 10.1007/s00500-014-1345-2 – volume: 16 start-page: 1647 issue: 12 year: 2021 end-page: 1652 ident: CR34 article-title: Abnormal detection of pumping unit bearing based on extension theory publication-title: IEEJ Trans Electr Electron doi: 10.1002/tee.23468 – volume: 172 start-page: 317 year: 2018 ident: 7489_CR31 publication-title: J Wind Eng Ind Aerodyn doi: 10.1016/j.jweia.2017.10.032 – volume: 36 start-page: 585 issue: 5 year: 2004 ident: 7489_CR20 publication-title: Eng Optim doi: 10.1080/03052150410001704854 – year: 2022 ident: 7489_CR1 publication-title: Arab J Sci Eng doi: 10.1007/s13369-022-06605-y – volume: 16 start-page: 1647 issue: 12 year: 2021 ident: 7489_CR34 publication-title: IEEJ Trans Electr Electron doi: 10.1002/tee.23468 – volume: 22 start-page: 183 issue: 2 year: 2020 ident: 7489_CR5 publication-title: Int J Softw Tools Technol Transf doi: 10.1007/s10009-018-00506-y – volume: 16 start-page: 193 year: 2002 ident: 7489_CR11 publication-title: Adv Eng Inf doi: 10.1016/S1474-0346(02)00011-3 – volume: 314 year: 2022 ident: 7489_CR6 publication-title: Appl Energy doi: 10.1016/j.apenergy.2022.118851 – volume: 380 start-page: 225 year: 2020 ident: 7489_CR14 publication-title: Neurocomputing doi: 10.1016/j.neucom.2019.10.096 – volume: 36 start-page: 225 issue: 1 year: 2020 ident: 7489_CR25 publication-title: Comput Intell-US doi: 10.1111/coin.12257 – year: 2022 ident: 7489_CR13 publication-title: Soft Comput doi: 10.1007/s00500-022-07068-x – volume: 51 year: 2022 ident: 7489_CR23 publication-title: Egypt J Energy Storage doi: 10.1016/j.est.2022.104343 – volume: 202 start-page: 11 year: 2021 ident: 7489_CR21 publication-title: Math Probl Eng doi: 10.1155/2021/9107547 – year: 2021 ident: 7489_CR8 publication-title: Concurr Comput Pract E doi: 10.1002/cpe.5370 – volume: 9 start-page: 134081 year: 2021 ident: 7489_CR29 publication-title: IEEE Access doi: 10.1109/ACCESS.2021.3116066 – volume: 41 start-page: 113 year: 2000 ident: 7489_CR10 publication-title: Comput Ind doi: 10.1016/S0166-3615(99)00046-9 – volume: 15 start-page: 1904 issue: 6 year: 2018 ident: 7489_CR18 publication-title: IEEE ACM Trans Comput Biol Bioinform doi: 10.1109/TCBB.2017.2701367 – volume: 189 year: 2022 ident: 7489_CR22 publication-title: Measurement doi: 10.1016/j.measurement.2021.110524 – volume: 2021 start-page: 1 year: 2021 ident: 7489_CR32 publication-title: Wirel Commun Mob Comput doi: 10.1155/2021/8902328 – volume: 196 start-page: 803 issue: 4 year: 2006 ident: 7489_CR12 publication-title: Comput Methods Appl Mech Eng doi: 10.1016/j.cma.2006.06.010 – volume: 13 start-page: 390 year: 2019 ident: 7489_CR17 publication-title: Front Neurosci Switz doi: 10.3389/fnins.2019.00390 – volume: 19 start-page: 1311 issue: 5 year: 2015 ident: 7489_CR24 publication-title: Soft Comput doi: 10.1007/s00500-014-1345-2 – volume: 20 start-page: 89 issue: 1 year: 2007 ident: 7489_CR19 publication-title: Eng Appl Artif Intell doi: 10.1016/j.engappai.2006.03.003 – volume: 69 start-page: 46 year: 2014 ident: 7489_CR27 publication-title: Adv Eng Softw doi: 10.1016/j.advengsoft.2013.12.007 – volume: 274 start-page: 292 year: 2016 ident: 7489_CR16 publication-title: Appl Math Comput doi: 10.1016/j.amc.2015.11.001 – volume: 23 start-page: 12001 issue: 22 year: 2019 ident: 7489_CR3 publication-title: Soft Comput doi: 10.1007/s00500-019-03756-3 – volume: 52 start-page: 102150 year: 2022 ident: 7489_CR2 publication-title: Sustain Energy Technol Assess doi: 10.1016/j.seta.2022.102150 – volume: 95 start-page: 51 year: 2016 ident: 7489_CR26 publication-title: Adv Eng Softw doi: 10.1016/j.advengsoft.2016.01.008 – volume: 9 start-page: 7723 year: 2021 ident: 7489_CR9 publication-title: IEEE Access doi: 10.1109/ACCESS.2021.3049175 – volume: 10 start-page: 777 issue: 3 year: 2014 ident: 7489_CR15 publication-title: J Ind Manag Optim doi: 10.3934/jimo.2014.10.777 – volume: 49 start-page: 2862 issue: 8 year: 2019 ident: 7489_CR36 publication-title: Appl Intell doi: 10.1007/s10489-019-01409-4 – volume: 12 start-page: 1967 issue: 2 year: 2021 ident: 7489_CR7 publication-title: J Ambient Intell Hum Comput doi: 10.1007/s12652-020-02288-1 – volume: 23 start-page: 6979 issue: 16 year: 2019 ident: 7489_CR35 publication-title: Soft Comput doi: 10.1007/s00500-018-3335-2 – year: 2020 ident: 7489_CR28 publication-title: Soft Comput (Prepublish) doi: 10.1007/s00500-020-05069-2 – ident: 7489_CR30 doi: 10.1109/CSCWD49262.2021.9437623 – volume: 34 start-page: 8103 issue: 10 year: 2022 ident: 7489_CR33 publication-title: Neural Comput Appl doi: 10.1007/s00521-022-06899-x – volume: 40 start-page: 1 year: 2018 ident: 7489_CR4 publication-title: Swarm Evol Comput doi: 10.1016/j.swevo.2017.12.004 |
SSID | ssj0021753 |
Score | 2.419382 |
Snippet | This paper presents a new hybrid genetic-particle swarm optimization (GPSO) algorithm for solving multi-constrained optimization problems. This algorithm is... |
SourceID | crossref springer |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 11695 |
SubjectTerms | Artificial Intelligence Computational Intelligence Control Engineering Mathematical Logic and Foundations Mechatronics Optimization Robotics |
Title | A hybrid genetic-particle swarm optimization algorithm for multi-constraint optimization problems |
URI | https://link.springer.com/article/10.1007/s00500-022-07489-8 |
Volume | 26 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
journalDatabaseRights | – providerCode: PRVLSH databaseName: SpringerLink Journals customDbUrl: mediaType: online eissn: 1433-7479 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0021753 issn: 1432-7643 databaseCode: AFBBN dateStart: 19970401 isFulltext: true providerName: Library Specific Holdings – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 1433-7479 dateEnd: 20241004 omitProxy: true ssIdentifier: ssj0021753 issn: 1432-7643 databaseCode: BENPR dateStart: 20090101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVAVX databaseName: SpringerLINK - Czech Republic Consortium customDbUrl: eissn: 1433-7479 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0021753 issn: 1432-7643 databaseCode: AGYKE dateStart: 19970101 isFulltext: true titleUrlDefault: http://link.springer.com providerName: Springer Nature – providerCode: PRVAVX databaseName: SpringerLink Journals (ICM) customDbUrl: eissn: 1433-7479 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0021753 issn: 1432-7643 databaseCode: U2A dateStart: 19970404 isFulltext: true titleUrlDefault: http://www.springerlink.com/journals/ providerName: Springer Nature |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PS8MwFH64edGD06n4c-TgTSNZ03bJscqmKIqIAz2VtE2cuB-yVUT_el-6dDgRYadSeCkheUm-17zvewBH6BayKXRAZWr_Vik_oIKHioYtpn3FNWJ6S06-uQ0vu_7VY_DoSGGTMtu9vJIsduoZ2c1KlTBqs8-ZlUyhogLLgQ1QqrAcXTxdt2eBllOfRCiA6BGPXEeW-fsr8wfS_G1occh0atAtuzfNLXk9fc-T0_Trl3Ljov1fhzWHOkk0dZMNWNLDOtTKig7ELfA6rP6QJ9wEFZHep2V0EfQyS3akb87RyORDjQdkhPvNwBE5ieo_j8YveW9AEAeTIlGRphZ92iIU-bytK2Mz2YJup_1wfkldSQaaerKZ0zTAcE4pwYyfGOMZfE08LXyDYVqYebiGVWBkKqVqac4zlkgRyowzJRBayBbn21AdjoZ6B0iWaBYaBFBac9-wRBiWek0TKJOZjCdiF5rlvMSp0yu3Pe7HM6XlYkRjHNG4GNEY2xzP2rxN1Tr-tT4pZyp2K3fyj_neYub7sOLZyS54iwdQzcfv-hABTJ40nL_i86x9e3ffgErXi74BEZDpEg |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3JTsMwEB1BOQAHyip2fOAGRk6cpPaxQpSy9UQlOEVOYlNEN7WpEHw949SpKEJIHCONLcuesZ_jeW8ATtEtpCd0SGVq_1apIKSCR4pGNaYDxTViektOfmhFzXZw-xQ-OVLYuMx2L58ki516RnazUiWM2uxzZiVTqFiEpcATIqjAUv36-e5qdtFy6pMIBRA94pHryDK_9zJ_IM2_hhaHTKMK7XJ409ySt4tJnlyknz-UG_87_nVYc6iT1KdusgELur8J1bKiA3EBvgmr3-QJt0DVSefDMroIepklO9KhczQyflejHhngftNzRE6iui-D0Wve6RHEwaRIVKSpRZ-2CEU-b-vK2Iy3od24erxsUleSgaa-9HKahnidU0owEyTG-AY_E1-LwOA1Lcp8jGEVGplKqWqa84wlUkQy40wJhBayxvkOVPqDvt4FkiWaRQYBlNY8MCwRhqW-Z0JlMpPxROyBV65LnDq9cjvibjxTWi5mNMYZjYsZjbHN2azNcKrW8af1eblSsYvc8R_m-_8zP4Hl5uPDfXx_07o7gBXfLnzBYTyESj6a6CMEM3ly7Hz3C2ZV6YA |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bS8MwFA46QfTBy1S8mwffNCxt0i55HOqYt-GDg72VtE2csHVjq4j_3pMuLRvIwMfCSSgnJz3fafJ9B6FrCAvpCR0Qmdi_VYoHRLBQkbBJNVdMA6a35OTXbtjp8ad-0F9g8Re33csjyTmnwao0ZXljkppGRXyzsiWU2Jvo1MqnELGONjjkalt-9fxWVXI5HUoABYAjIfk62szfcyynpuVz0SLdtPfQjsOJuDVf2H20prM62i17MGC3Jetoe0FQ8ACpFh78WA4Whriw9EQycaGBZ99qOsJj-EKMHPUSq-HHePqZD0YYkCsurhaSxOJF2zYiX7Z1jWdmh6jXfni_6xDXRIEkvvRykgRQgCklqOGxMb6Bx9jXghsorMLUh12nAiMTKVVTM5bSWIpQpowqAWBANhk7QrVsnOljhNNY09AA5NGacUNjYWjieyZQJjUpi8UJ8kr_RYlTGLdvPIwqbeTC5xH4PCp8HsGYm2rMZK6vsdL6tlyWyO212Qrz0_-ZX6HNt_t29PLYfT5DW76NjIJ0eI5q-fRLXwD6yOPLIsB-Ae0P0Mc |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+hybrid+genetic-particle+swarm+optimization+algorithm+for+multi-constraint+optimization+problems&rft.jtitle=Soft+computing+%28Berlin%2C+Germany%29&rft.au=Duan%2C+Bosong&rft.au=Guo%2C+Chuangqiang&rft.au=Liu%2C+Hong&rft.date=2022-11-01&rft.pub=Springer+Berlin+Heidelberg&rft.issn=1432-7643&rft.eissn=1433-7479&rft.volume=26&rft.issue=21&rft.spage=11695&rft.epage=11711&rft_id=info:doi/10.1007%2Fs00500-022-07489-8&rft.externalDocID=10_1007_s00500_022_07489_8 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1432-7643&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1432-7643&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1432-7643&client=summon |