A hybrid genetic-particle swarm optimization algorithm for multi-constraint optimization problems

This paper presents a new hybrid genetic-particle swarm optimization (GPSO) algorithm for solving multi-constrained optimization problems. This algorithm is different from the traditional GPSO algorithm, which adopts genetic algorithm (GA) and particle swarm optimization (PSO) in series, and it comb...

Full description

Saved in:
Bibliographic Details
Published inSoft computing (Berlin, Germany) Vol. 26; no. 21; pp. 11695 - 11711
Main Authors Duan, Bosong, Guo, Chuangqiang, Liu, Hong
Format Journal Article
LanguageEnglish
Published Berlin/Heidelberg Springer Berlin Heidelberg 01.11.2022
Subjects
Online AccessGet full text
ISSN1432-7643
1433-7479
DOI10.1007/s00500-022-07489-8

Cover

Abstract This paper presents a new hybrid genetic-particle swarm optimization (GPSO) algorithm for solving multi-constrained optimization problems. This algorithm is different from the traditional GPSO algorithm, which adopts genetic algorithm (GA) and particle swarm optimization (PSO) in series, and it combines PSO and GA through parallel architecture, so as to make full use of the high efficiency of PSO and the global optimization ability of GA. The algorithm takes PSO as the main body and runs PSO at the initial stage of optimization, while GA does not participate in operation. When the global best value (gbest) does not change for successive generations, it is assumed that it falls into local optimum. At this time, GA is used to replace PSO for particle selection, crossover and mutation operations to update particles and help particles jump out of local optimum. In addition, the GPSO adopts adaptive inertia weight, adaptive mutation parameters and multi-point crossover operation between particles and personal best value (pbest) to improve the optimization ability of the algorithm. Finally, this paper uses a nonlinear constraint problem (Himmelblau’s nonlinear optimization problem) and three structural optimization problems (pressure vessel design problem, the welded beam design problem and the gear train design problem) as test functions and compares the proposed GPSO with the traditional GPSO, dingo optimization algorithm, whale optimization algorithm and grey wolf optimizer. The performance evaluation of the proposed algorithm is carried out by using the evaluation indexes such as best value, mean value, median value, worst value, standard deviation, operation time and convergence speed. The comparison results show that the proposed GPSO has obvious advantages in finding the optimal value, convergence speed and time overhead.
AbstractList This paper presents a new hybrid genetic-particle swarm optimization (GPSO) algorithm for solving multi-constrained optimization problems. This algorithm is different from the traditional GPSO algorithm, which adopts genetic algorithm (GA) and particle swarm optimization (PSO) in series, and it combines PSO and GA through parallel architecture, so as to make full use of the high efficiency of PSO and the global optimization ability of GA. The algorithm takes PSO as the main body and runs PSO at the initial stage of optimization, while GA does not participate in operation. When the global best value (gbest) does not change for successive generations, it is assumed that it falls into local optimum. At this time, GA is used to replace PSO for particle selection, crossover and mutation operations to update particles and help particles jump out of local optimum. In addition, the GPSO adopts adaptive inertia weight, adaptive mutation parameters and multi-point crossover operation between particles and personal best value (pbest) to improve the optimization ability of the algorithm. Finally, this paper uses a nonlinear constraint problem (Himmelblau’s nonlinear optimization problem) and three structural optimization problems (pressure vessel design problem, the welded beam design problem and the gear train design problem) as test functions and compares the proposed GPSO with the traditional GPSO, dingo optimization algorithm, whale optimization algorithm and grey wolf optimizer. The performance evaluation of the proposed algorithm is carried out by using the evaluation indexes such as best value, mean value, median value, worst value, standard deviation, operation time and convergence speed. The comparison results show that the proposed GPSO has obvious advantages in finding the optimal value, convergence speed and time overhead.
Author Guo, Chuangqiang
Liu, Hong
Duan, Bosong
Author_xml – sequence: 1
  givenname: Bosong
  surname: Duan
  fullname: Duan, Bosong
  organization: State Key Laboratory of Robotics and System, Harbin Institute of Technology
– sequence: 2
  givenname: Chuangqiang
  surname: Guo
  fullname: Guo, Chuangqiang
  email: chuangqiang.guo@hit.edu.cn
  organization: State Key Laboratory of Robotics and System, Harbin Institute of Technology
– sequence: 3
  givenname: Hong
  surname: Liu
  fullname: Liu, Hong
  organization: State Key Laboratory of Robotics and System, Harbin Institute of Technology
BookMark eNp9kMtOwzAQRS1UJNrCD7DKDxjGj9T2sqp4SZXYwNpyErt1lcSR7QqVrydt2cCiqzsjzZmZe2do0ofeInRP4IEAiMcEUAJgoBSD4FJheYWmhDOGBRdqcqopFgvObtAspR0AJaJkU2SWxfZQRd8UG9vb7Gs8mDhKa4v0ZWJXhCH7zn-b7ENfmHYTos_brnAhFt2-zR7XoU85Gt_nv7NDDFVru3SLrp1pk7371Tn6fH76WL3i9fvL22q5xjVVJOO65FwaI8HxyjnqxraiVnLHgSwaWgGY0qlaKSMsYw1USi5Uw8BISkolGJsjet5bx5BStE4P0XcmHjQBfQxJn0PSY0j6FJKWIyT_QbXPp_-PltrLKDujabzTb2zUu7CP_WjxEvUD3HCAbQ
CitedBy_id crossref_primary_10_3390_app15073474
crossref_primary_10_3390_math10224169
crossref_primary_10_1016_j_apm_2024_115860
crossref_primary_10_1080_0305215X_2023_2260992
crossref_primary_10_1016_j_apm_2022_11_016
crossref_primary_10_4018_IJSIR_354885
crossref_primary_10_1016_j_engappai_2024_108891
crossref_primary_10_1093_comjnl_bxae088
crossref_primary_10_3390_electronics12204249
crossref_primary_10_3390_math11204287
crossref_primary_10_3390_su15032483
crossref_primary_10_1109_ACCESS_2024_3413157
crossref_primary_10_1016_j_ast_2023_108482
Cites_doi 10.1016/j.advengsoft.2013.12.007
10.1007/s12652-020-02288-1
10.1007/s10489-019-01409-4
10.1016/j.swevo.2017.12.004
10.1002/cpe.5370
10.1007/s00500-022-07068-x
10.3934/jimo.2014.10.777
10.3389/fnins.2019.00390
10.1016/j.advengsoft.2016.01.008
10.1155/2021/8902328
10.1007/s00521-022-06899-x
10.1080/03052150410001704854
10.1016/j.neucom.2019.10.096
10.1155/2021/9107547
10.1109/ACCESS.2021.3116066
10.1016/j.apenergy.2022.118851
10.1109/ACCESS.2021.3049175
10.1016/j.engappai.2006.03.003
10.1007/s00500-018-3335-2
10.1016/j.measurement.2021.110524
10.1016/j.jweia.2017.10.032
10.1016/j.est.2022.104343
10.1111/coin.12257
10.1016/j.seta.2022.102150
10.1016/S0166-3615(99)00046-9
10.1016/j.amc.2015.11.001
10.1007/s00500-020-05069-2
10.1109/TCBB.2017.2701367
10.1007/s10009-018-00506-y
10.1016/S1474-0346(02)00011-3
10.1007/s13369-022-06605-y
10.1016/j.cma.2006.06.010
10.1007/s00500-019-03756-3
10.1007/s00500-014-1345-2
10.1002/tee.23468
10.1109/CSCWD49262.2021.9437623
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2022. Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
Copyright_xml – notice: The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2022. Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
DBID AAYXX
CITATION
DOI 10.1007/s00500-022-07489-8
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
EISSN 1433-7479
EndPage 11711
ExternalDocumentID 10_1007_s00500_022_07489_8
GroupedDBID -5B
-5G
-BR
-EM
-Y2
-~C
.86
.VR
06D
0R~
0VY
1N0
1SB
203
29~
2J2
2JN
2JY
2KG
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
5VS
67Z
6NX
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTD
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACZOJ
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
BA0
BDATZ
BENPR
BGLVJ
BGNMA
BSONS
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
EBLON
EBS
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IHE
IJ-
IKXTQ
IWAJR
IXC
IXD
IXE
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K7-
KDC
KOV
LAS
LLZTM
M4Y
MA-
N2Q
NB0
NPVJJ
NQJWS
NU0
O9-
O93
O9J
OAM
P2P
P9P
PF0
PT4
PT5
QOS
R89
R9I
RIG
RNI
ROL
RPX
RSV
RZK
S16
S1Z
S27
S3B
SAP
SDH
SEG
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
Z5O
Z7R
Z7X
Z7Y
Z7Z
Z81
Z83
Z88
ZMTXR
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADHKG
ADKFA
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
PQGLB
PUEGO
ID FETCH-LOGICAL-c291t-c5448aa80f4bff2f544b2e84f4016d2b00a5f9c99a7e33d0b9869d30a82159733
IEDL.DBID AGYKE
ISSN 1432-7643
IngestDate Wed Oct 01 03:00:24 EDT 2025
Thu Apr 24 23:01:44 EDT 2025
Fri Feb 21 02:44:29 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 21
Keywords Genetic-particle swarm optimization algorithm
Multi-constraint optimization problem
Genetic algorithm
Particle swarm optimization
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c291t-c5448aa80f4bff2f544b2e84f4016d2b00a5f9c99a7e33d0b9869d30a82159733
PageCount 17
ParticipantIDs crossref_primary_10_1007_s00500_022_07489_8
crossref_citationtrail_10_1007_s00500_022_07489_8
springer_journals_10_1007_s00500_022_07489_8
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20221100
2022-11-00
PublicationDateYYYYMMDD 2022-11-01
PublicationDate_xml – month: 11
  year: 2022
  text: 20221100
PublicationDecade 2020
PublicationPlace Berlin/Heidelberg
PublicationPlace_xml – name: Berlin/Heidelberg
PublicationSubtitle A Fusion of Foundations, Methodologies and Applications
PublicationTitle Soft computing (Berlin, Germany)
PublicationTitleAbbrev Soft Comput
PublicationYear 2022
Publisher Springer Berlin Heidelberg
Publisher_xml – name: Springer Berlin Heidelberg
References Garg (CR16) 2016; 274
Rahman, Zakarya, Raza, Khan (CR28) 2020
Jamei, Karbasi, Mosharaf-Dehkordi, Adewale Olumegbon, Abualigah, Said, Asadi (CR22) 2022; 189
Garg (CR15) 2014; 10
Abd Elaziz, Almodfer, Ahmadianfar, Ibrahim, Mudhsh, Abualigah, Lu, Abd El-Latif, Yousri (CR2) 2022; 52
Al-qaness, Ewees, Fan, Abualigah, Elaziz (CR6) 2022; 314
Dimopoulos (CR12) 2006; 196
Al-Bahrani, Patra (CR4) 2018; 40
Alrufaiaat, Althahab (CR7) 2021; 12
CR30
Guan, Hong, Kang, Zeng, Sun, Lin (CR17) 2019; 13
Liu, Mu, Kou, Liu (CR24) 2015; 19
Aravinth, Senthilkumar, Mohanraj, Suresh (CR8) 2021
He, Wang (CR19) 2007; 20
Song, Chen, Wang (CR31) 2018; 172
Allawi, Al Manaseer, Al Shraideh (CR5) 2020; 22
Hernan, Adrian, Gustavo (CR21) 2021; 202
Su, Zhao, Wang (CR32) 2021; 2021
Turgut, Turgut, Abualigah (CR33) 2022; 34
Kharrich, Abualigah, Kamel, AbdEl-Sattar, Tostado-Véliz (CR23) 2022; 51
Abbassi, Ben Mehrez, Bensalem, Abbassi, Kchaou, Jemli, Abualigah, Altalhi (CR1) 2022
Coello (CR10) 2000; 41
Zhao, Zhou, Xiang (CR36) 2019; 49
Ekinci, Izci, Al Nasar, Abu Zitar, Abualigah (CR13) 2022
Gao, Li, Yang, Wang, Dong, Chiang (CR14) 2020; 380
Abdelhalim, Nakata, Alem, Eltawil (CR3) 2019; 23
Salaria, Menhas, Manzoor (CR29) 2021; 9
Chen, Li (CR9) 2021; 9
Coello, Montes (CR11) 2002; 16
Zhang (CR34) 2021; 16
Guo, Si, Xue, Mao, Wang, Wu (CR18) 2018; 15
Zhang, Zhang, Zhang, Huang (CR35) 2019; 23
Mir, Dayyani, Sutikno, Mohammadi Zanjireh, Razmjooy (CR25) 2020; 36
Mirjalili, Mirjalili, Lewis (CR27) 2014; 69
He, Prempain, Wu (CR20) 2004; 36
Mirjalili, Lewis (CR26) 2016; 95
CAC Coello (7489_CR11) 2002; 16
Y Liu (7489_CR24) 2015; 19
S Mirjalili (7489_CR27) 2014; 69
WY Zhang (7489_CR35) 2019; 23
IU Rahman (7489_CR28) 2020
HM Allawi (7489_CR5) 2020; 22
SB Su (7489_CR32) 2021; 2021
A Abbassi (7489_CR1) 2022
A Abdelhalim (7489_CR3) 2019; 23
WA Guo (7489_CR18) 2018; 15
SAK Alrufaiaat (7489_CR7) 2021; 12
CH Chen (7489_CR9) 2021; 9
ZK Gao (7489_CR14) 2020; 380
S Mirjalili (7489_CR26) 2016; 95
7489_CR30
MX Song (7489_CR31) 2018; 172
M Abd Elaziz (7489_CR2) 2022; 52
M Jamei (7489_CR22) 2022; 189
S He (7489_CR20) 2004; 36
JS Guan (7489_CR17) 2019; 13
UA Salaria (7489_CR29) 2021; 9
SS Aravinth (7489_CR8) 2021
MS Turgut (7489_CR33) 2022; 34
M Kharrich (7489_CR23) 2022; 51
PV Hernan (7489_CR21) 2021; 202
LT Al-Bahrani (7489_CR4) 2018; 40
M Mir (7489_CR25) 2020; 36
ZM Zhang (7489_CR34) 2021; 16
CAC Coello (7489_CR10) 2000; 41
Q He (7489_CR19) 2007; 20
S Ekinci (7489_CR13) 2022
H Garg (7489_CR15) 2014; 10
MAA Al-qaness (7489_CR6) 2022; 314
H Garg (7489_CR16) 2016; 274
XR Zhao (7489_CR36) 2019; 49
GG Dimopoulos (7489_CR12) 2006; 196
References_xml – volume: 69
  start-page: 46
  year: 2014
  end-page: 61
  ident: CR27
  article-title: Grey wolf optimizer
  publication-title: Adv Eng Softw
  doi: 10.1016/j.advengsoft.2013.12.007
– volume: 12
  start-page: 1967
  issue: 2
  year: 2021
  end-page: 1980
  ident: CR7
  article-title: Robust decoding strategy of MIMO-STBC using one source Kurtosis based GPSO algorithm
  publication-title: J Ambient Intell Hum Comput
  doi: 10.1007/s12652-020-02288-1
– volume: 49
  start-page: 2862
  issue: 8
  year: 2019
  end-page: 2873
  ident: CR36
  article-title: A grouping particle swarm optimizer
  publication-title: Appl Intell
  doi: 10.1007/s10489-019-01409-4
– volume: 40
  start-page: 1
  year: 2018
  end-page: 23
  ident: CR4
  article-title: A novel orthogonal PSO algorithm based on orthogonal diagonalization
  publication-title: Swarm Evol Comput
  doi: 10.1016/j.swevo.2017.12.004
– year: 2021
  ident: CR8
  article-title: A hybrid swarm intelligence based optimization approach for solving minimum exposure problem in wireless sensor networks
  publication-title: Concurr Comput Pract E
  doi: 10.1002/cpe.5370
– year: 2022
  ident: CR13
  article-title: Logarithmic spiral search based arithmetic optimization algorithm with selective mechanism and its application to functional electrical stimulation system control
  publication-title: Soft Comput
  doi: 10.1007/s00500-022-07068-x
– volume: 10
  start-page: 777
  issue: 3
  year: 2014
  end-page: 794
  ident: CR15
  article-title: Solving structural engineering design optimization problems using an artificial bee colony algorithm
  publication-title: J Ind Manag Optim
  doi: 10.3934/jimo.2014.10.777
– volume: 13
  start-page: 390
  year: 2019
  ident: CR17
  article-title: Robust adaptive recurrent cerebellar model neural network for non-linear system based on GPSO
  publication-title: Front Neurosci Switz
  doi: 10.3389/fnins.2019.00390
– volume: 95
  start-page: 51
  year: 2016
  end-page: 67
  ident: CR26
  article-title: The whale optimization algorithm
  publication-title: Adv Eng Softw
  doi: 10.1016/j.advengsoft.2016.01.008
– ident: CR30
– volume: 2021
  start-page: 1
  year: 2021
  end-page: 16
  ident: CR32
  article-title: Parallel swarm intelligent motion planning with energy-balanced for multirobot in obstacle environment
  publication-title: Wirel Commun Mob Comput
  doi: 10.1155/2021/8902328
– volume: 34
  start-page: 8103
  issue: 10
  year: 2022
  end-page: 8135
  ident: CR33
  article-title: Chaotic quasi-oppositional arithmetic optimization algorithm for thermo-economic design of a shell and tube condenser running with different refrigerant mixture pairs
  publication-title: Neural Comput Appl
  doi: 10.1007/s00521-022-06899-x
– volume: 36
  start-page: 585
  issue: 5
  year: 2004
  end-page: 605
  ident: CR20
  article-title: An improved particle swarm optimizer for mechanical design optimization problems
  publication-title: Eng Optim
  doi: 10.1080/03052150410001704854
– volume: 380
  start-page: 225
  year: 2020
  end-page: 235
  ident: CR14
  article-title: A GPSO-optimized convolutional neural networks for EEG-based emotion recognition
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2019.10.096
– volume: 202
  start-page: 11
  year: 2021
  end-page: 19
  ident: CR21
  article-title: A bio-inspired method for engineering design optimization inspired by dingoes hunting strategies
  publication-title: Math Probl Eng
  doi: 10.1155/2021/9107547
– volume: 9
  start-page: 134081
  year: 2021
  end-page: 134095
  ident: CR29
  article-title: Quasi oppositional population based global particle swarm optimizer with inertial weights (QPGPSO-W) for solving economic load dispatch problem
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2021.3116066
– volume: 314
  year: 2022
  ident: CR6
  article-title: Boosted ANFIS model using augmented marine predator algorithm with mutation operators for wind power forecasting
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2022.118851
– volume: 9
  start-page: 7723
  year: 2021
  end-page: 7731
  ident: CR9
  article-title: Process synthesis and design problems based on a global particle swarm optimization algorithm
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2021.3049175
– volume: 20
  start-page: 89
  issue: 1
  year: 2007
  end-page: 99
  ident: CR19
  article-title: An effective co-evolutionary particle swarm optimization for constrained engineering design problems
  publication-title: Eng Appl Artif Intell
  doi: 10.1016/j.engappai.2006.03.003
– volume: 23
  start-page: 6979
  issue: 16
  year: 2019
  end-page: 6994
  ident: CR35
  article-title: A novel method based on FTS with both GA-FCM and multifactor BPNN for stock forecasting
  publication-title: Soft Comput
  doi: 10.1007/s00500-018-3335-2
– volume: 189
  year: 2022
  ident: CR22
  article-title: Estimating the density of hybrid nanofluids for thermal energy application: application of non-parametric and evolutionary polynomial regression data-intelligent techniques
  publication-title: Measurement
  doi: 10.1016/j.measurement.2021.110524
– volume: 172
  start-page: 317
  year: 2018
  end-page: 324
  ident: CR31
  article-title: Three-dimensional wind turbine positioning using Gaussian particle swarm optimization with differential evolution
  publication-title: J Wind Eng Ind Aerodyn
  doi: 10.1016/j.jweia.2017.10.032
– volume: 51
  year: 2022
  ident: CR23
  article-title: An improved arithmetic optimization algorithm for design of a microgrid with energy storage system: Case study of El Kharga Oasis
  publication-title: Egypt J Energy Storage
  doi: 10.1016/j.est.2022.104343
– volume: 36
  start-page: 225
  issue: 1
  year: 2020
  end-page: 258
  ident: CR25
  article-title: Employing a Gaussian particle swarm optimization method for tuning multi input multi output-fuzzy system as an integrated controller of a micro-grid with stability analysis
  publication-title: Comput Intell-US
  doi: 10.1111/coin.12257
– volume: 52
  start-page: 102150
  year: 2022
  ident: CR2
  article-title: Static models for implementing photovoltaic panels characteristics under various environmental conditions using improved gradient-based optimizer
  publication-title: Sustain Energy Technol Assess
  doi: 10.1016/j.seta.2022.102150
– volume: 41
  start-page: 113
  year: 2000
  end-page: 127
  ident: CR10
  article-title: Use of a self -adaptive penalty approach for engineering optimization problems
  publication-title: Comput Ind
  doi: 10.1016/S0166-3615(99)00046-9
– volume: 274
  start-page: 292
  year: 2016
  end-page: 305
  ident: CR16
  article-title: A hybrid PSO-GA algorithm for constrained optimization problems
  publication-title: Appl Math Comput
  doi: 10.1016/j.amc.2015.11.001
– year: 2020
  ident: CR28
  article-title: An n-state switching PSO algorithm for scalable optimization
  publication-title: Soft Comput (Prepublish)
  doi: 10.1007/s00500-020-05069-2
– volume: 15
  start-page: 1904
  issue: 6
  year: 2018
  end-page: 1915
  ident: CR18
  article-title: A grouping particle swarm optimizer with personal-best-position guidance for large scale optimization
  publication-title: IEEE ACM Trans Comput Biol Bioinform
  doi: 10.1109/TCBB.2017.2701367
– volume: 22
  start-page: 183
  issue: 2
  year: 2020
  end-page: 194
  ident: CR5
  article-title: A greedy particle swarm optimization (GPSO) algorithm for testing real-world smart card applications
  publication-title: Int J Softw Tools Technol Transf
  doi: 10.1007/s10009-018-00506-y
– volume: 16
  start-page: 193
  year: 2002
  end-page: 203
  ident: CR11
  article-title: Constraint- handling in genetic algorithms through the use of dominance-based tournament selection
  publication-title: Adv Eng Inf
  doi: 10.1016/S1474-0346(02)00011-3
– year: 2022
  ident: CR1
  article-title: Improved arithmetic optimization algorithm for parameters extraction of photovoltaic solar cell single-diode model
  publication-title: Arab J Sci Eng
  doi: 10.1007/s13369-022-06605-y
– volume: 196
  start-page: 803
  issue: 4
  year: 2006
  end-page: 817
  ident: CR12
  article-title: Mixed-variable engineering optimization based on evolutionary and social metaphors
  publication-title: Comput Methods Appl Mech Eng
  doi: 10.1016/j.cma.2006.06.010
– volume: 23
  start-page: 12001
  issue: 22
  year: 2019
  end-page: 12015
  ident: CR3
  article-title: A hybrid evolutionary-simplex search method to solve nonlinear constrained optimization problems
  publication-title: Soft Comput
  doi: 10.1007/s00500-019-03756-3
– volume: 19
  start-page: 1311
  issue: 5
  year: 2015
  end-page: 1327
  ident: CR24
  article-title: Modified particle swarm optimization-based multilevel thresholding for image segmentation
  publication-title: Soft Comput
  doi: 10.1007/s00500-014-1345-2
– volume: 16
  start-page: 1647
  issue: 12
  year: 2021
  end-page: 1652
  ident: CR34
  article-title: Abnormal detection of pumping unit bearing based on extension theory
  publication-title: IEEJ Trans Electr Electron
  doi: 10.1002/tee.23468
– volume: 172
  start-page: 317
  year: 2018
  ident: 7489_CR31
  publication-title: J Wind Eng Ind Aerodyn
  doi: 10.1016/j.jweia.2017.10.032
– volume: 36
  start-page: 585
  issue: 5
  year: 2004
  ident: 7489_CR20
  publication-title: Eng Optim
  doi: 10.1080/03052150410001704854
– year: 2022
  ident: 7489_CR1
  publication-title: Arab J Sci Eng
  doi: 10.1007/s13369-022-06605-y
– volume: 16
  start-page: 1647
  issue: 12
  year: 2021
  ident: 7489_CR34
  publication-title: IEEJ Trans Electr Electron
  doi: 10.1002/tee.23468
– volume: 22
  start-page: 183
  issue: 2
  year: 2020
  ident: 7489_CR5
  publication-title: Int J Softw Tools Technol Transf
  doi: 10.1007/s10009-018-00506-y
– volume: 16
  start-page: 193
  year: 2002
  ident: 7489_CR11
  publication-title: Adv Eng Inf
  doi: 10.1016/S1474-0346(02)00011-3
– volume: 314
  year: 2022
  ident: 7489_CR6
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2022.118851
– volume: 380
  start-page: 225
  year: 2020
  ident: 7489_CR14
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2019.10.096
– volume: 36
  start-page: 225
  issue: 1
  year: 2020
  ident: 7489_CR25
  publication-title: Comput Intell-US
  doi: 10.1111/coin.12257
– year: 2022
  ident: 7489_CR13
  publication-title: Soft Comput
  doi: 10.1007/s00500-022-07068-x
– volume: 51
  year: 2022
  ident: 7489_CR23
  publication-title: Egypt J Energy Storage
  doi: 10.1016/j.est.2022.104343
– volume: 202
  start-page: 11
  year: 2021
  ident: 7489_CR21
  publication-title: Math Probl Eng
  doi: 10.1155/2021/9107547
– year: 2021
  ident: 7489_CR8
  publication-title: Concurr Comput Pract E
  doi: 10.1002/cpe.5370
– volume: 9
  start-page: 134081
  year: 2021
  ident: 7489_CR29
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2021.3116066
– volume: 41
  start-page: 113
  year: 2000
  ident: 7489_CR10
  publication-title: Comput Ind
  doi: 10.1016/S0166-3615(99)00046-9
– volume: 15
  start-page: 1904
  issue: 6
  year: 2018
  ident: 7489_CR18
  publication-title: IEEE ACM Trans Comput Biol Bioinform
  doi: 10.1109/TCBB.2017.2701367
– volume: 189
  year: 2022
  ident: 7489_CR22
  publication-title: Measurement
  doi: 10.1016/j.measurement.2021.110524
– volume: 2021
  start-page: 1
  year: 2021
  ident: 7489_CR32
  publication-title: Wirel Commun Mob Comput
  doi: 10.1155/2021/8902328
– volume: 196
  start-page: 803
  issue: 4
  year: 2006
  ident: 7489_CR12
  publication-title: Comput Methods Appl Mech Eng
  doi: 10.1016/j.cma.2006.06.010
– volume: 13
  start-page: 390
  year: 2019
  ident: 7489_CR17
  publication-title: Front Neurosci Switz
  doi: 10.3389/fnins.2019.00390
– volume: 19
  start-page: 1311
  issue: 5
  year: 2015
  ident: 7489_CR24
  publication-title: Soft Comput
  doi: 10.1007/s00500-014-1345-2
– volume: 20
  start-page: 89
  issue: 1
  year: 2007
  ident: 7489_CR19
  publication-title: Eng Appl Artif Intell
  doi: 10.1016/j.engappai.2006.03.003
– volume: 69
  start-page: 46
  year: 2014
  ident: 7489_CR27
  publication-title: Adv Eng Softw
  doi: 10.1016/j.advengsoft.2013.12.007
– volume: 274
  start-page: 292
  year: 2016
  ident: 7489_CR16
  publication-title: Appl Math Comput
  doi: 10.1016/j.amc.2015.11.001
– volume: 23
  start-page: 12001
  issue: 22
  year: 2019
  ident: 7489_CR3
  publication-title: Soft Comput
  doi: 10.1007/s00500-019-03756-3
– volume: 52
  start-page: 102150
  year: 2022
  ident: 7489_CR2
  publication-title: Sustain Energy Technol Assess
  doi: 10.1016/j.seta.2022.102150
– volume: 95
  start-page: 51
  year: 2016
  ident: 7489_CR26
  publication-title: Adv Eng Softw
  doi: 10.1016/j.advengsoft.2016.01.008
– volume: 9
  start-page: 7723
  year: 2021
  ident: 7489_CR9
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2021.3049175
– volume: 10
  start-page: 777
  issue: 3
  year: 2014
  ident: 7489_CR15
  publication-title: J Ind Manag Optim
  doi: 10.3934/jimo.2014.10.777
– volume: 49
  start-page: 2862
  issue: 8
  year: 2019
  ident: 7489_CR36
  publication-title: Appl Intell
  doi: 10.1007/s10489-019-01409-4
– volume: 12
  start-page: 1967
  issue: 2
  year: 2021
  ident: 7489_CR7
  publication-title: J Ambient Intell Hum Comput
  doi: 10.1007/s12652-020-02288-1
– volume: 23
  start-page: 6979
  issue: 16
  year: 2019
  ident: 7489_CR35
  publication-title: Soft Comput
  doi: 10.1007/s00500-018-3335-2
– year: 2020
  ident: 7489_CR28
  publication-title: Soft Comput (Prepublish)
  doi: 10.1007/s00500-020-05069-2
– ident: 7489_CR30
  doi: 10.1109/CSCWD49262.2021.9437623
– volume: 34
  start-page: 8103
  issue: 10
  year: 2022
  ident: 7489_CR33
  publication-title: Neural Comput Appl
  doi: 10.1007/s00521-022-06899-x
– volume: 40
  start-page: 1
  year: 2018
  ident: 7489_CR4
  publication-title: Swarm Evol Comput
  doi: 10.1016/j.swevo.2017.12.004
SSID ssj0021753
Score 2.419382
Snippet This paper presents a new hybrid genetic-particle swarm optimization (GPSO) algorithm for solving multi-constrained optimization problems. This algorithm is...
SourceID crossref
springer
SourceType Enrichment Source
Index Database
Publisher
StartPage 11695
SubjectTerms Artificial Intelligence
Computational Intelligence
Control
Engineering
Mathematical Logic and Foundations
Mechatronics
Optimization
Robotics
Title A hybrid genetic-particle swarm optimization algorithm for multi-constraint optimization problems
URI https://link.springer.com/article/10.1007/s00500-022-07489-8
Volume 26
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVLSH
  databaseName: SpringerLink Journals
  customDbUrl:
  mediaType: online
  eissn: 1433-7479
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0021753
  issn: 1432-7643
  databaseCode: AFBBN
  dateStart: 19970401
  isFulltext: true
  providerName: Library Specific Holdings
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 1433-7479
  dateEnd: 20241004
  omitProxy: true
  ssIdentifier: ssj0021753
  issn: 1432-7643
  databaseCode: BENPR
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: SpringerLINK - Czech Republic Consortium
  customDbUrl:
  eissn: 1433-7479
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0021753
  issn: 1432-7643
  databaseCode: AGYKE
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://link.springer.com
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: SpringerLink Journals (ICM)
  customDbUrl:
  eissn: 1433-7479
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0021753
  issn: 1432-7643
  databaseCode: U2A
  dateStart: 19970404
  isFulltext: true
  titleUrlDefault: http://www.springerlink.com/journals/
  providerName: Springer Nature
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PS8MwFH64edGD06n4c-TgTSNZ03bJscqmKIqIAz2VtE2cuB-yVUT_el-6dDgRYadSeCkheUm-17zvewBH6BayKXRAZWr_Vik_oIKHioYtpn3FNWJ6S06-uQ0vu_7VY_DoSGGTMtu9vJIsduoZ2c1KlTBqs8-ZlUyhogLLgQ1QqrAcXTxdt2eBllOfRCiA6BGPXEeW-fsr8wfS_G1occh0atAtuzfNLXk9fc-T0_Trl3Ljov1fhzWHOkk0dZMNWNLDOtTKig7ELfA6rP6QJ9wEFZHep2V0EfQyS3akb87RyORDjQdkhPvNwBE5ieo_j8YveW9AEAeTIlGRphZ92iIU-bytK2Mz2YJup_1wfkldSQaaerKZ0zTAcE4pwYyfGOMZfE08LXyDYVqYebiGVWBkKqVqac4zlkgRyowzJRBayBbn21AdjoZ6B0iWaBYaBFBac9-wRBiWek0TKJOZjCdiF5rlvMSp0yu3Pe7HM6XlYkRjHNG4GNEY2xzP2rxN1Tr-tT4pZyp2K3fyj_neYub7sOLZyS54iwdQzcfv-hABTJ40nL_i86x9e3ffgErXi74BEZDpEg
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3JTsMwEB1BOQAHyip2fOAGRk6cpPaxQpSy9UQlOEVOYlNEN7WpEHw949SpKEJIHCONLcuesZ_jeW8ATtEtpCd0SGVq_1apIKSCR4pGNaYDxTViektOfmhFzXZw-xQ-OVLYuMx2L58ki516RnazUiWM2uxzZiVTqFiEpcATIqjAUv36-e5qdtFy6pMIBRA94pHryDK_9zJ_IM2_hhaHTKMK7XJ409ySt4tJnlyknz-UG_87_nVYc6iT1KdusgELur8J1bKiA3EBvgmr3-QJt0DVSefDMroIepklO9KhczQyflejHhngftNzRE6iui-D0Wve6RHEwaRIVKSpRZ-2CEU-b-vK2Iy3od24erxsUleSgaa-9HKahnidU0owEyTG-AY_E1-LwOA1Lcp8jGEVGplKqWqa84wlUkQy40wJhBayxvkOVPqDvt4FkiWaRQYBlNY8MCwRhqW-Z0JlMpPxROyBV65LnDq9cjvibjxTWi5mNMYZjYsZjbHN2azNcKrW8af1eblSsYvc8R_m-_8zP4Hl5uPDfXx_07o7gBXfLnzBYTyESj6a6CMEM3ly7Hz3C2ZV6YA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bS8MwFA46QfTBy1S8mwffNCxt0i55HOqYt-GDg72VtE2csHVjq4j_3pMuLRvIwMfCSSgnJz3fafJ9B6FrCAvpCR0Qmdi_VYoHRLBQkbBJNVdMA6a35OTXbtjp8ad-0F9g8Re33csjyTmnwao0ZXljkppGRXyzsiWU2Jvo1MqnELGONjjkalt-9fxWVXI5HUoABYAjIfk62szfcyynpuVz0SLdtPfQjsOJuDVf2H20prM62i17MGC3Jetoe0FQ8ACpFh78WA4Whriw9EQycaGBZ99qOsJj-EKMHPUSq-HHePqZD0YYkCsurhaSxOJF2zYiX7Z1jWdmh6jXfni_6xDXRIEkvvRykgRQgCklqOGxMb6Bx9jXghsorMLUh12nAiMTKVVTM5bSWIpQpowqAWBANhk7QrVsnOljhNNY09AA5NGacUNjYWjieyZQJjUpi8UJ8kr_RYlTGLdvPIwqbeTC5xH4PCp8HsGYm2rMZK6vsdL6tlyWyO212Qrz0_-ZX6HNt_t29PLYfT5DW76NjIJ0eI5q-fRLXwD6yOPLIsB-Ae0P0Mc
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+hybrid+genetic-particle+swarm+optimization+algorithm+for+multi-constraint+optimization+problems&rft.jtitle=Soft+computing+%28Berlin%2C+Germany%29&rft.au=Duan%2C+Bosong&rft.au=Guo%2C+Chuangqiang&rft.au=Liu%2C+Hong&rft.date=2022-11-01&rft.pub=Springer+Berlin+Heidelberg&rft.issn=1432-7643&rft.eissn=1433-7479&rft.volume=26&rft.issue=21&rft.spage=11695&rft.epage=11711&rft_id=info:doi/10.1007%2Fs00500-022-07489-8&rft.externalDocID=10_1007_s00500_022_07489_8
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1432-7643&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1432-7643&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1432-7643&client=summon