Toward a Comprehensive Evaluation on the Online Methods for Monitoring Transformer Turn-to-Turn Faults

Transformer winding turn-to-turn fault is the prominent cause of transformer total failure, so detecting the winding fault in real time to stop the failure development in advance is imperative. However, existing techniques entailing periodic offline inspections fail to continuously monitor transform...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on industrial electronics (1982) Vol. 71; no. 2; pp. 1997 - 2007
Main Authors Ouyang, Xi, Zhou, Quan, Shang, Hujun, Zheng, Yuping, Pan, Shuyan, Luo, Jun
Format Journal Article
LanguageEnglish
Published New York IEEE 01.02.2024
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN0278-0046
1557-9948
DOI10.1109/TIE.2022.3213918

Cover

More Information
Summary:Transformer winding turn-to-turn fault is the prominent cause of transformer total failure, so detecting the winding fault in real time to stop the failure development in advance is imperative. However, existing techniques entailing periodic offline inspections fail to continuously monitor transformer winding states while causing extra costs due to the outage during inspections. This has driven researchers to consider effective continuous online monitoring methods from several technical perspectives, including typically port voltage current analysis, online frequency response analysis, and vibration analysis. Since these methods are conventionally evaluated with qualitative comparisons focusing only on feasibility, quantitative assessments indispensable for the targeted improvement of the methods and the most suitable method decision in specific scenarios are still missing. To this end, we conduct a comprehensive evaluation on the three methods by leveraging both experiment and theoretical analysis. Specifically, a customized experiment platform has been designed to support data acquisition under different operating conditions. As conventional feature mining algorithms cannot process the monitoring data produced by different methods in a uniform manner, a feature extraction algorithm leveraging image mining is proposed to extract data features after mapping the test data into a high-dimensional image. This novel algorithm allows us to fully assess several fundamental aspects (i.e., sensitivity, repeatability, and antiinterference capability) of these monitoring methods.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:0278-0046
1557-9948
DOI:10.1109/TIE.2022.3213918