A New Regularized Recursive Dynamic Factor Analysis With Variable Forgetting Factor and Subspace Dimension for Wireless Sensor Networks With Missing Data

The dynamic factor analysis (DFA) is an effective method for reducing the dimension of multivariate time series measurements in wireless sensor networks (WSNs) for prediction, monitoring, and anomaly detection. In large-scale systems, it is crucial to be able to track the time-varying loadings (or s...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on instrumentation and measurement Vol. 70; pp. 1 - 13
Main Authors Lin, Jian-Qiang, Wu, Ho-Chun, Chan, Shing-Chow
Format Journal Article
LanguageEnglish
Published New York IEEE 2021
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN0018-9456
1557-9662
DOI10.1109/TIM.2021.3083889

Cover

Abstract The dynamic factor analysis (DFA) is an effective method for reducing the dimension of multivariate time series measurements in wireless sensor networks (WSNs) for prediction, monitoring, and anomaly detection. In large-scale systems, it is crucial to be able to track the time-varying loadings (or subspace) and the underlying factor signals, identify their dimensions, and impute missing or outlier samples, which can arise from transmission loss, hardware failure, and other factors. This article proposes a new regularized recursive DFA algorithm with a variable forgetting factor (FF) and subspace dimension, which is computationally efficient and capable of missing data imputation. A novel multiple deflation (MD) and rank-one-modification-based approach is proposed to recursively estimate the eigenvalues and associated eigenvectors from the progressively extracted subspace via MD. This allows us to update efficiently the subspace dimension and loading (eigen) vectors. By modeling the factor signals as independent univariate autoregressive (AR) processes, one can utilize the forecast value for outlier detection and missing samples' imputation. Furthermore, variable FF and regularization schemes are proposed to improve the tracking capability and reduce the variance of the proposed recursive DFA algorithm. Experimental results using real WSN datasets show that the proposed algorithm achieves better tracking performance and accuracy than other conventional approaches, which may serve as a useful tool for prediction, monitoring, and anomaly detection in WSNs.
AbstractList The dynamic factor analysis (DFA) is an effective method for reducing the dimension of multivariate time series measurements in wireless sensor networks (WSNs) for prediction, monitoring, and anomaly detection. In large-scale systems, it is crucial to be able to track the time-varying loadings (or subspace) and the underlying factor signals, identify their dimensions, and impute missing or outlier samples, which can arise from transmission loss, hardware failure, and other factors. This article proposes a new regularized recursive DFA algorithm with a variable forgetting factor (FF) and subspace dimension, which is computationally efficient and capable of missing data imputation. A novel multiple deflation (MD) and rank-one-modification-based approach is proposed to recursively estimate the eigenvalues and associated eigenvectors from the progressively extracted subspace via MD. This allows us to update efficiently the subspace dimension and loading (eigen) vectors. By modeling the factor signals as independent univariate autoregressive (AR) processes, one can utilize the forecast value for outlier detection and missing samples' imputation. Furthermore, variable FF and regularization schemes are proposed to improve the tracking capability and reduce the variance of the proposed recursive DFA algorithm. Experimental results using real WSN datasets show that the proposed algorithm achieves better tracking performance and accuracy than other conventional approaches, which may serve as a useful tool for prediction, monitoring, and anomaly detection in WSNs.
Author Wu, Ho-Chun
Lin, Jian-Qiang
Chan, Shing-Chow
Author_xml – sequence: 1
  givenname: Jian-Qiang
  orcidid: 0000-0002-2192-7855
  surname: Lin
  fullname: Lin, Jian-Qiang
  email: jqlin@eee.hku.hk
  organization: Department of Electrical and Electronic Engineering, The University of Hong Kong, Hong Kong
– sequence: 2
  givenname: Ho-Chun
  orcidid: 0000-0002-4555-3675
  surname: Wu
  fullname: Wu, Ho-Chun
  email: andrewhcwu@eee.hku.hk
  organization: Department of Electrical and Electronic Engineering, The University of Hong Kong, Hong Kong
– sequence: 3
  givenname: Shing-Chow
  orcidid: 0000-0001-7212-4182
  surname: Chan
  fullname: Chan, Shing-Chow
  email: scchan@eee.hku.hk
  organization: Department of Electrical and Electronic Engineering, The University of Hong Kong, Hong Kong
BookMark eNp9kU9P2zAYh60JpJWyO9IulnZO5z-JYx-rQqESMAkYHCPbeVNc0qTYDqj7Jvu2c9Vuhx042X79_B7p1e8EHXV9BwidUTKhlKjvD4ubCSOMTjiRXEr1CY1oUZSZEoIdoREhVGYqL8RndBLCihBSirwcod9TfAvv-A6WQ6u9-wV1utvBB_cG-Hzb6bWzeK5t7D2edrrdBhfwk4vP-DHh2rSA571fQoyuW_4FdVfj-8GEjbZJ4tbQBdd3uElfT85DCyHg-zRM71uI771_OThvXAg7z7mO-hQdN7oN8OVwjtHP-cXD7Cq7_nG5mE2vM8sUjZmxtOGlkITkyvBaUBClsSAk40JSXkopWKOFreucEWMaQ42EspTAZKGl4nyMvu29G9-_DhBiteoHn1YNFStymoukUIkSe8r6PgQPTWVd1DGtFb12bUVJtauhSjVUuxqqQw0pSP4Lbrxba7_9KPJ1H3EA8A9XeZ4Awf8AHYeWhw
CODEN IEIMAO
CitedBy_id crossref_primary_10_1016_j_cam_2023_115724
crossref_primary_10_1109_TNNLS_2023_3339786
crossref_primary_10_1109_TIM_2023_3309389
crossref_primary_10_1016_j_ast_2022_107754
crossref_primary_10_1016_j_ast_2023_108469
crossref_primary_10_3390_sym15061161
Cites_doi 10.1016/0038-092X(89)90131-X
10.1109/TIM.2017.2771979
10.1109/97.873571
10.1109/78.575696
10.1109/TIM.2018.2861999
10.1109/TASLP.2015.2464692
10.1109/TPWRS.2012.2232314
10.4108/ICST.SIMUTOOLS2008.3027
10.4236/wsn.2010.22016
10.1016/j.jmoneco.2008.05.010
10.1109/TAES.2018.2797780
10.1093/bioinformatics/btr597
10.1109/TIM.2015.2490838
10.1093/oxfordhb/9780195398649.001.0001
10.1109/78.365290
10.1016/j.solener.2008.08.007
10.1109/TIM.2012.2186654
10.1109/ICCChina.2019.8855852
10.1109/78.852018
10.1109/TIM.2016.2584238
10.1109/TITB.2008.2007421
10.1109/TIM.2018.2814082
10.1109/TIM.2007.913803
10.1109/ISCAS.2017.8050594
10.1109/TIM.2012.2200817
10.1016/j.jeconom.2008.08.010
10.1016/S1574-0706(05)01010-4
10.1787/jbcma-2013-5jz417f7b7nv
10.1007/978-3-030-31150-6_2
10.2307/2526135
10.1109/ACCESS.2021.3055947
10.1109/TIM.2010.2082390
10.1086/ma.19.3585337
10.1109/TIM.2019.2963731
10.1007/s10115-011-0474-5
10.1016/j.rser.2018.03.003
10.1109/LCN.2006.322172
10.1109/TSP.2004.823496
10.1109/TNN.2004.826129
10.1109/TIM.2015.2494630
10.1109/TSP.2002.808121
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021
DBID 97E
RIA
RIE
AAYXX
CITATION
7SP
7U5
8FD
L7M
DOI 10.1109/TIM.2021.3083889
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Electronics & Communications Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
Electronics & Communications Abstracts
DatabaseTitleList
Solid State and Superconductivity Abstracts
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE/IET Electronic Library
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Physics
EISSN 1557-9662
EndPage 13
ExternalDocumentID 10_1109_TIM_2021_3083889
9443086
Genre orig-research
GrantInformation_xml – fundername: University of Hong Kong during the Ph.D. thesis of J. Q. Lin
  funderid: 10.13039/501100003803
GroupedDBID -~X
0R~
29I
4.4
5GY
5VS
6IK
85S
8WZ
97E
A6W
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACIWK
ACNCT
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
F5P
HZ~
H~9
IAAWW
IBMZZ
ICLAB
IDIHD
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
RIA
RIE
RNS
TN5
TWZ
VH1
VJK
AAYXX
CITATION
7SP
7U5
8FD
L7M
ID FETCH-LOGICAL-c291t-bc1f37680049b3d61e67bce6823681378862fa6cdd420bbfb1b8e778e285a8933
IEDL.DBID RIE
ISSN 0018-9456
IngestDate Mon Jun 30 10:22:42 EDT 2025
Thu Apr 24 23:07:41 EDT 2025
Wed Oct 01 03:46:28 EDT 2025
Wed Aug 27 02:50:50 EDT 2025
IsPeerReviewed true
IsScholarly true
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c291t-bc1f37680049b3d61e67bce6823681378862fa6cdd420bbfb1b8e778e285a8933
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-2192-7855
0000-0002-4555-3675
0000-0001-7212-4182
PQID 2541467889
PQPubID 85462
PageCount 13
ParticipantIDs proquest_journals_2541467889
crossref_citationtrail_10_1109_TIM_2021_3083889
crossref_primary_10_1109_TIM_2021_3083889
ieee_primary_9443086
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20210000
2021-00-00
20210101
PublicationDateYYYYMMDD 2021-01-01
PublicationDate_xml – year: 2021
  text: 20210000
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on instrumentation and measurement
PublicationTitleAbbrev TIM
PublicationYear 2021
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref35
ref13
ref34
ref12
ref37
ref15
ref36
borgne (ref40) 2007
ref14
ref31
ref30
ref33
ref11
ref32
sargent (ref8) 1977; 1
ref2
ref1
ref39
ref17
ref38
ref16
ref19
ref18
ref46
ref24
ref45
ref23
ramanathan (ref27) 2006
ref26
ref25
ref42
ref22
ref44
ref21
ref43
li (ref41) 2008
ref28
ref29
ref7
ref9
ref4
dhariwal (ref20) 2006
ref3
ref6
ref5
watson (ref10) 2004; 19
References_xml – ident: ref44
  doi: 10.1016/0038-092X(89)90131-X
– year: 2007
  ident: ref40
  article-title: Principal component aggregation for energy efficient information extraction in wireless sensor networks
  publication-title: Knowledge Discovery From Sensor Data
– ident: ref22
  doi: 10.1109/TIM.2017.2771979
– ident: ref38
  doi: 10.1109/97.873571
– ident: ref35
  doi: 10.1109/78.575696
– ident: ref23
  doi: 10.1109/TIM.2018.2861999
– ident: ref32
  doi: 10.1109/TASLP.2015.2464692
– ident: ref4
  doi: 10.1109/TPWRS.2012.2232314
– ident: ref43
  doi: 10.4108/ICST.SIMUTOOLS2008.3027
– ident: ref29
  doi: 10.4236/wsn.2010.22016
– ident: ref9
  doi: 10.1016/j.jmoneco.2008.05.010
– year: 2006
  ident: ref20
  publication-title: NAMOS Networked Aquatic Microbial Observing System
– ident: ref33
  doi: 10.1109/TAES.2018.2797780
– ident: ref34
  doi: 10.1093/bioinformatics/btr597
– ident: ref21
  doi: 10.1109/TIM.2015.2490838
– volume: 1
  start-page: 145
  year: 1977
  ident: ref8
  article-title: Business cycle modeling without pretending to have too much a priori economic theory
  publication-title: New Methods in Business Cycle Research
– ident: ref2
  doi: 10.1093/oxfordhb/9780195398649.001.0001
– ident: ref37
  doi: 10.1109/78.365290
– ident: ref46
  doi: 10.1016/j.solener.2008.08.007
– ident: ref6
  doi: 10.1109/TIM.2012.2186654
– ident: ref16
  doi: 10.1109/ICCChina.2019.8855852
– ident: ref26
  doi: 10.1109/78.852018
– ident: ref15
  doi: 10.1109/TIM.2016.2584238
– ident: ref30
  doi: 10.1109/TITB.2008.2007421
– ident: ref25
  doi: 10.1109/TIM.2018.2814082
– ident: ref18
  doi: 10.1109/TIM.2007.913803
– ident: ref31
  doi: 10.1109/ISCAS.2017.8050594
– year: 2006
  ident: ref27
  article-title: Rapid deployment with confidence: Calibration and fault detection in environmental sensor networks
– ident: ref24
  doi: 10.1109/TIM.2012.2200817
– ident: ref11
  doi: 10.1016/j.jeconom.2008.08.010
– ident: ref12
  doi: 10.1016/S1574-0706(05)01010-4
– ident: ref1
  doi: 10.1787/jbcma-2013-5jz417f7b7nv
– ident: ref3
  doi: 10.1007/978-3-030-31150-6_2
– ident: ref7
  doi: 10.2307/2526135
– ident: ref36
  doi: 10.1109/ACCESS.2021.3055947
– ident: ref17
  doi: 10.1109/TIM.2010.2082390
– volume: 19
  start-page: 216
  year: 2004
  ident: ref10
  article-title: Comment on Giannone, Reichlin, and Sala
  publication-title: NBER Macroeconomics Annual
  doi: 10.1086/ma.19.3585337
– start-page: 37
  year: 2008
  ident: ref41
  article-title: Intruder detection using a wireless sensor network with an intelligent mobile robot response
  publication-title: Proc IEEE Southeastcon
– ident: ref5
  doi: 10.1109/TIM.2019.2963731
– ident: ref28
  doi: 10.1007/s10115-011-0474-5
– ident: ref45
  doi: 10.1016/j.rser.2018.03.003
– ident: ref42
  doi: 10.1109/LCN.2006.322172
– ident: ref39
  doi: 10.1109/TSP.2004.823496
– ident: ref13
  doi: 10.1109/TNN.2004.826129
– ident: ref19
  doi: 10.1109/TIM.2015.2494630
– ident: ref14
  doi: 10.1109/TSP.2002.808121
SSID ssj0007647
Score 2.3747387
Snippet The dynamic factor analysis (DFA) is an effective method for reducing the dimension of multivariate time series measurements in wireless sensor networks (WSNs)...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1
SubjectTerms Algorithms
Anomalies
Anomaly detection
Autoregressive processes
Data analysis
Dynamic factor analysis (DFA)
Eigenvalues
Eigenvalues and eigenfunctions
Eigenvectors
Factor analysis
Fault detection
forgetting factor (FF)
Loading
Missing data
Monitoring
Outliers (statistics)
Predictive models
Regularization
Signal processing
subspace dimension
Subspaces
Time measurement
Time series analysis
Tracking
Transmission loss
Wireless networks
Wireless sensor networks
wireless sensor networks (WSNs)
Title A New Regularized Recursive Dynamic Factor Analysis With Variable Forgetting Factor and Subspace Dimension for Wireless Sensor Networks With Missing Data
URI https://ieeexplore.ieee.org/document/9443086
https://www.proquest.com/docview/2541467889
Volume 70
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE/IET Electronic Library
  customDbUrl:
  eissn: 1557-9662
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0007647
  issn: 0018-9456
  databaseCode: RIE
  dateStart: 19630101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8QwEB5UEPTgW1xf5OBFsLt9ZNv0KOqiwnrwfSt5zKIoq2jXg__Ef-tM2i6iIt7SMhkCk8wrk_kAdsiih0iucpAbxEDqrgu0DGWgtDZa2oTMBqcG-mfp8ZU8ve3eTsDe-C0MIvriM2zz0N_luyc74lRZJ5cyIb6TMJmptHqrNda6WSqr_pgRHWDyCporyTDvXJ70KRCMozZNThQDun8xQR5T5Yci9talNw_9Zl1VUclDe1Satn3_1rLxvwtfgLnazRT71b5YhAkcLsHsl-aDSzDtiz_t6zJ87AvSdeLcw9K_3L-jo7HlNMIbisMKsl70PDCPaJqYiJv78k5cEzm_vRI9n1nnEuqGUA-dYK1EMTkxYQwBzssJ8pEFV9w-koYVF_STvs-qUvSaZ5-2AvM51KVegave0eXBcVBDNgQ2zqMyMDYakMpSHHiYxKURppmxmDKsuoq4d30aD3RqnZNxaMzAREZhlimMVVeT65SswtTwaYhrIMh4-9Y96JziGD5XiXUardGh1LprW9BppFjYup85w2o8Fj6uCfOC5F6w3Ita7i3YHc94rnp5_EG7zGIc09USbMFms1GK-rC_FjFDqZPRV_n677M2YIZ5V5mbTZgqX0a4Rb5Mabb9Jv4ESHzx9g
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9tAEB4BFQIOtIVWpNCyh14q4cSPtbM-RkAUCs6hDYWbtY-JiooCAqeH_JP-286s7QjRqurNtmbXK83svHZ2PoCPZNFDJFc5yA1iIHXqAi1DGSitjZY2IbPBqYFinI0u5efr9HoFjpZ3YRDRF59hlx_9Wb67s3NOlfVyKROadxVepFLKtL6ttdS7_UzWHTIj2sLkF7SHkmHem5wVFArGUZeGJ4oh3Z8YIY-q8ocq9vZl-BKKdmV1WcmP7rwyXbt41rTxf5f-CrYbR1MMasl4DSs424GtJ-0Hd2Ddl3_ax134NRCk7cQXD0z_cLNAR8-WEwk_UZzUoPVi6KF5RNvGRFzdVN_FNyLn21di6HPrXETdEuqZE6yXKCqnSRhFgDNzgrxkwTW3t6RjxVf6SO_juhi9mbMgYeB5TnSl38Dl8HRyPAoa0IbAxnlUBcZGU1JaikMPk7gswqxvLGYMrK4i7l6fxVOdWedkHBozNZFR2O8rjFWqyXlK3sLa7G6GeyDIfPvmPeic4ig-V4l1Gq3RodQ6tR3otVwsbdPRnIE1bksf2YR5SXwvme9lw_cOfFqOuK-7efyDdpfZuKRrONiBg1ZQyma7P5Yxg6mT2Vf5u7-POoSN0aS4KC_Oxuf7sMn_qfM4B7BWPczxPXk2lfngBfo3FL31Qw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+New+Regularized+Recursive+Dynamic+Factor+Analysis+With+Variable+Forgetting+Factor+and+Subspace+Dimension+for+Wireless+Sensor+Networks+With+Missing+Data&rft.jtitle=IEEE+transactions+on+instrumentation+and+measurement&rft.au=Lin%2C+Jian-Qiang&rft.au=Wu%2C+Ho-Chun&rft.au=Chan%2C+Shing-Chow&rft.date=2021&rft.pub=IEEE&rft.issn=0018-9456&rft.volume=70&rft.spage=1&rft.epage=13&rft_id=info:doi/10.1109%2FTIM.2021.3083889&rft.externalDocID=9443086
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0018-9456&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0018-9456&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0018-9456&client=summon