A New Regularized Recursive Dynamic Factor Analysis With Variable Forgetting Factor and Subspace Dimension for Wireless Sensor Networks With Missing Data
The dynamic factor analysis (DFA) is an effective method for reducing the dimension of multivariate time series measurements in wireless sensor networks (WSNs) for prediction, monitoring, and anomaly detection. In large-scale systems, it is crucial to be able to track the time-varying loadings (or s...
Saved in:
| Published in | IEEE transactions on instrumentation and measurement Vol. 70; pp. 1 - 13 |
|---|---|
| Main Authors | , , |
| Format | Journal Article |
| Language | English |
| Published |
New York
IEEE
2021
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Subjects | |
| Online Access | Get full text |
| ISSN | 0018-9456 1557-9662 |
| DOI | 10.1109/TIM.2021.3083889 |
Cover
| Abstract | The dynamic factor analysis (DFA) is an effective method for reducing the dimension of multivariate time series measurements in wireless sensor networks (WSNs) for prediction, monitoring, and anomaly detection. In large-scale systems, it is crucial to be able to track the time-varying loadings (or subspace) and the underlying factor signals, identify their dimensions, and impute missing or outlier samples, which can arise from transmission loss, hardware failure, and other factors. This article proposes a new regularized recursive DFA algorithm with a variable forgetting factor (FF) and subspace dimension, which is computationally efficient and capable of missing data imputation. A novel multiple deflation (MD) and rank-one-modification-based approach is proposed to recursively estimate the eigenvalues and associated eigenvectors from the progressively extracted subspace via MD. This allows us to update efficiently the subspace dimension and loading (eigen) vectors. By modeling the factor signals as independent univariate autoregressive (AR) processes, one can utilize the forecast value for outlier detection and missing samples' imputation. Furthermore, variable FF and regularization schemes are proposed to improve the tracking capability and reduce the variance of the proposed recursive DFA algorithm. Experimental results using real WSN datasets show that the proposed algorithm achieves better tracking performance and accuracy than other conventional approaches, which may serve as a useful tool for prediction, monitoring, and anomaly detection in WSNs. |
|---|---|
| AbstractList | The dynamic factor analysis (DFA) is an effective method for reducing the dimension of multivariate time series measurements in wireless sensor networks (WSNs) for prediction, monitoring, and anomaly detection. In large-scale systems, it is crucial to be able to track the time-varying loadings (or subspace) and the underlying factor signals, identify their dimensions, and impute missing or outlier samples, which can arise from transmission loss, hardware failure, and other factors. This article proposes a new regularized recursive DFA algorithm with a variable forgetting factor (FF) and subspace dimension, which is computationally efficient and capable of missing data imputation. A novel multiple deflation (MD) and rank-one-modification-based approach is proposed to recursively estimate the eigenvalues and associated eigenvectors from the progressively extracted subspace via MD. This allows us to update efficiently the subspace dimension and loading (eigen) vectors. By modeling the factor signals as independent univariate autoregressive (AR) processes, one can utilize the forecast value for outlier detection and missing samples' imputation. Furthermore, variable FF and regularization schemes are proposed to improve the tracking capability and reduce the variance of the proposed recursive DFA algorithm. Experimental results using real WSN datasets show that the proposed algorithm achieves better tracking performance and accuracy than other conventional approaches, which may serve as a useful tool for prediction, monitoring, and anomaly detection in WSNs. |
| Author | Wu, Ho-Chun Lin, Jian-Qiang Chan, Shing-Chow |
| Author_xml | – sequence: 1 givenname: Jian-Qiang orcidid: 0000-0002-2192-7855 surname: Lin fullname: Lin, Jian-Qiang email: jqlin@eee.hku.hk organization: Department of Electrical and Electronic Engineering, The University of Hong Kong, Hong Kong – sequence: 2 givenname: Ho-Chun orcidid: 0000-0002-4555-3675 surname: Wu fullname: Wu, Ho-Chun email: andrewhcwu@eee.hku.hk organization: Department of Electrical and Electronic Engineering, The University of Hong Kong, Hong Kong – sequence: 3 givenname: Shing-Chow orcidid: 0000-0001-7212-4182 surname: Chan fullname: Chan, Shing-Chow email: scchan@eee.hku.hk organization: Department of Electrical and Electronic Engineering, The University of Hong Kong, Hong Kong |
| BookMark | eNp9kU9P2zAYh60JpJWyO9IulnZO5z-JYx-rQqESMAkYHCPbeVNc0qTYDqj7Jvu2c9Vuhx042X79_B7p1e8EHXV9BwidUTKhlKjvD4ubCSOMTjiRXEr1CY1oUZSZEoIdoREhVGYqL8RndBLCihBSirwcod9TfAvv-A6WQ6u9-wV1utvBB_cG-Hzb6bWzeK5t7D2edrrdBhfwk4vP-DHh2rSA571fQoyuW_4FdVfj-8GEjbZJ4tbQBdd3uElfT85DCyHg-zRM71uI771_OThvXAg7z7mO-hQdN7oN8OVwjtHP-cXD7Cq7_nG5mE2vM8sUjZmxtOGlkITkyvBaUBClsSAk40JSXkopWKOFreucEWMaQ42EspTAZKGl4nyMvu29G9-_DhBiteoHn1YNFStymoukUIkSe8r6PgQPTWVd1DGtFb12bUVJtauhSjVUuxqqQw0pSP4Lbrxba7_9KPJ1H3EA8A9XeZ4Awf8AHYeWhw |
| CODEN | IEIMAO |
| CitedBy_id | crossref_primary_10_1016_j_cam_2023_115724 crossref_primary_10_1109_TNNLS_2023_3339786 crossref_primary_10_1109_TIM_2023_3309389 crossref_primary_10_1016_j_ast_2022_107754 crossref_primary_10_1016_j_ast_2023_108469 crossref_primary_10_3390_sym15061161 |
| Cites_doi | 10.1016/0038-092X(89)90131-X 10.1109/TIM.2017.2771979 10.1109/97.873571 10.1109/78.575696 10.1109/TIM.2018.2861999 10.1109/TASLP.2015.2464692 10.1109/TPWRS.2012.2232314 10.4108/ICST.SIMUTOOLS2008.3027 10.4236/wsn.2010.22016 10.1016/j.jmoneco.2008.05.010 10.1109/TAES.2018.2797780 10.1093/bioinformatics/btr597 10.1109/TIM.2015.2490838 10.1093/oxfordhb/9780195398649.001.0001 10.1109/78.365290 10.1016/j.solener.2008.08.007 10.1109/TIM.2012.2186654 10.1109/ICCChina.2019.8855852 10.1109/78.852018 10.1109/TIM.2016.2584238 10.1109/TITB.2008.2007421 10.1109/TIM.2018.2814082 10.1109/TIM.2007.913803 10.1109/ISCAS.2017.8050594 10.1109/TIM.2012.2200817 10.1016/j.jeconom.2008.08.010 10.1016/S1574-0706(05)01010-4 10.1787/jbcma-2013-5jz417f7b7nv 10.1007/978-3-030-31150-6_2 10.2307/2526135 10.1109/ACCESS.2021.3055947 10.1109/TIM.2010.2082390 10.1086/ma.19.3585337 10.1109/TIM.2019.2963731 10.1007/s10115-011-0474-5 10.1016/j.rser.2018.03.003 10.1109/LCN.2006.322172 10.1109/TSP.2004.823496 10.1109/TNN.2004.826129 10.1109/TIM.2015.2494630 10.1109/TSP.2002.808121 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021 |
| DBID | 97E RIA RIE AAYXX CITATION 7SP 7U5 8FD L7M |
| DOI | 10.1109/TIM.2021.3083889 |
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Electronics & Communications Abstracts Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace |
| DatabaseTitle | CrossRef Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace Electronics & Communications Abstracts |
| DatabaseTitleList | Solid State and Superconductivity Abstracts |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE/IET Electronic Library url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Physics |
| EISSN | 1557-9662 |
| EndPage | 13 |
| ExternalDocumentID | 10_1109_TIM_2021_3083889 9443086 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: University of Hong Kong during the Ph.D. thesis of J. Q. Lin funderid: 10.13039/501100003803 |
| GroupedDBID | -~X 0R~ 29I 4.4 5GY 5VS 6IK 85S 8WZ 97E A6W AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACIWK ACNCT AENEX AETIX AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD F5P HZ~ H~9 IAAWW IBMZZ ICLAB IDIHD IFIPE IFJZH IPLJI JAVBF LAI M43 O9- OCL P2P RIA RIE RNS TN5 TWZ VH1 VJK AAYXX CITATION 7SP 7U5 8FD L7M |
| ID | FETCH-LOGICAL-c291t-bc1f37680049b3d61e67bce6823681378862fa6cdd420bbfb1b8e778e285a8933 |
| IEDL.DBID | RIE |
| ISSN | 0018-9456 |
| IngestDate | Mon Jun 30 10:22:42 EDT 2025 Thu Apr 24 23:07:41 EDT 2025 Wed Oct 01 03:46:28 EDT 2025 Wed Aug 27 02:50:50 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c291t-bc1f37680049b3d61e67bce6823681378862fa6cdd420bbfb1b8e778e285a8933 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-2192-7855 0000-0002-4555-3675 0000-0001-7212-4182 |
| PQID | 2541467889 |
| PQPubID | 85462 |
| PageCount | 13 |
| ParticipantIDs | proquest_journals_2541467889 crossref_citationtrail_10_1109_TIM_2021_3083889 crossref_primary_10_1109_TIM_2021_3083889 ieee_primary_9443086 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 20210000 2021-00-00 20210101 |
| PublicationDateYYYYMMDD | 2021-01-01 |
| PublicationDate_xml | – year: 2021 text: 20210000 |
| PublicationDecade | 2020 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York |
| PublicationTitle | IEEE transactions on instrumentation and measurement |
| PublicationTitleAbbrev | TIM |
| PublicationYear | 2021 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref35 ref13 ref34 ref12 ref37 ref15 ref36 borgne (ref40) 2007 ref14 ref31 ref30 ref33 ref11 ref32 sargent (ref8) 1977; 1 ref2 ref1 ref39 ref17 ref38 ref16 ref19 ref18 ref46 ref24 ref45 ref23 ramanathan (ref27) 2006 ref26 ref25 ref42 ref22 ref44 ref21 ref43 li (ref41) 2008 ref28 ref29 ref7 ref9 ref4 dhariwal (ref20) 2006 ref3 ref6 ref5 watson (ref10) 2004; 19 |
| References_xml | – ident: ref44 doi: 10.1016/0038-092X(89)90131-X – year: 2007 ident: ref40 article-title: Principal component aggregation for energy efficient information extraction in wireless sensor networks publication-title: Knowledge Discovery From Sensor Data – ident: ref22 doi: 10.1109/TIM.2017.2771979 – ident: ref38 doi: 10.1109/97.873571 – ident: ref35 doi: 10.1109/78.575696 – ident: ref23 doi: 10.1109/TIM.2018.2861999 – ident: ref32 doi: 10.1109/TASLP.2015.2464692 – ident: ref4 doi: 10.1109/TPWRS.2012.2232314 – ident: ref43 doi: 10.4108/ICST.SIMUTOOLS2008.3027 – ident: ref29 doi: 10.4236/wsn.2010.22016 – ident: ref9 doi: 10.1016/j.jmoneco.2008.05.010 – year: 2006 ident: ref20 publication-title: NAMOS Networked Aquatic Microbial Observing System – ident: ref33 doi: 10.1109/TAES.2018.2797780 – ident: ref34 doi: 10.1093/bioinformatics/btr597 – ident: ref21 doi: 10.1109/TIM.2015.2490838 – volume: 1 start-page: 145 year: 1977 ident: ref8 article-title: Business cycle modeling without pretending to have too much a priori economic theory publication-title: New Methods in Business Cycle Research – ident: ref2 doi: 10.1093/oxfordhb/9780195398649.001.0001 – ident: ref37 doi: 10.1109/78.365290 – ident: ref46 doi: 10.1016/j.solener.2008.08.007 – ident: ref6 doi: 10.1109/TIM.2012.2186654 – ident: ref16 doi: 10.1109/ICCChina.2019.8855852 – ident: ref26 doi: 10.1109/78.852018 – ident: ref15 doi: 10.1109/TIM.2016.2584238 – ident: ref30 doi: 10.1109/TITB.2008.2007421 – ident: ref25 doi: 10.1109/TIM.2018.2814082 – ident: ref18 doi: 10.1109/TIM.2007.913803 – ident: ref31 doi: 10.1109/ISCAS.2017.8050594 – year: 2006 ident: ref27 article-title: Rapid deployment with confidence: Calibration and fault detection in environmental sensor networks – ident: ref24 doi: 10.1109/TIM.2012.2200817 – ident: ref11 doi: 10.1016/j.jeconom.2008.08.010 – ident: ref12 doi: 10.1016/S1574-0706(05)01010-4 – ident: ref1 doi: 10.1787/jbcma-2013-5jz417f7b7nv – ident: ref3 doi: 10.1007/978-3-030-31150-6_2 – ident: ref7 doi: 10.2307/2526135 – ident: ref36 doi: 10.1109/ACCESS.2021.3055947 – ident: ref17 doi: 10.1109/TIM.2010.2082390 – volume: 19 start-page: 216 year: 2004 ident: ref10 article-title: Comment on Giannone, Reichlin, and Sala publication-title: NBER Macroeconomics Annual doi: 10.1086/ma.19.3585337 – start-page: 37 year: 2008 ident: ref41 article-title: Intruder detection using a wireless sensor network with an intelligent mobile robot response publication-title: Proc IEEE Southeastcon – ident: ref5 doi: 10.1109/TIM.2019.2963731 – ident: ref28 doi: 10.1007/s10115-011-0474-5 – ident: ref45 doi: 10.1016/j.rser.2018.03.003 – ident: ref42 doi: 10.1109/LCN.2006.322172 – ident: ref39 doi: 10.1109/TSP.2004.823496 – ident: ref13 doi: 10.1109/TNN.2004.826129 – ident: ref19 doi: 10.1109/TIM.2015.2494630 – ident: ref14 doi: 10.1109/TSP.2002.808121 |
| SSID | ssj0007647 |
| Score | 2.3747387 |
| Snippet | The dynamic factor analysis (DFA) is an effective method for reducing the dimension of multivariate time series measurements in wireless sensor networks (WSNs)... |
| SourceID | proquest crossref ieee |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 1 |
| SubjectTerms | Algorithms Anomalies Anomaly detection Autoregressive processes Data analysis Dynamic factor analysis (DFA) Eigenvalues Eigenvalues and eigenfunctions Eigenvectors Factor analysis Fault detection forgetting factor (FF) Loading Missing data Monitoring Outliers (statistics) Predictive models Regularization Signal processing subspace dimension Subspaces Time measurement Time series analysis Tracking Transmission loss Wireless networks Wireless sensor networks wireless sensor networks (WSNs) |
| Title | A New Regularized Recursive Dynamic Factor Analysis With Variable Forgetting Factor and Subspace Dimension for Wireless Sensor Networks With Missing Data |
| URI | https://ieeexplore.ieee.org/document/9443086 https://www.proquest.com/docview/2541467889 |
| Volume | 70 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE/IET Electronic Library customDbUrl: eissn: 1557-9662 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0007647 issn: 0018-9456 databaseCode: RIE dateStart: 19630101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8QwEB5UEPTgW1xf5OBFsLt9ZNv0KOqiwnrwfSt5zKIoq2jXg__Ef-tM2i6iIt7SMhkCk8wrk_kAdsiih0iucpAbxEDqrgu0DGWgtDZa2oTMBqcG-mfp8ZU8ve3eTsDe-C0MIvriM2zz0N_luyc74lRZJ5cyIb6TMJmptHqrNda6WSqr_pgRHWDyCporyTDvXJ70KRCMozZNThQDun8xQR5T5Yci9talNw_9Zl1VUclDe1Satn3_1rLxvwtfgLnazRT71b5YhAkcLsHsl-aDSzDtiz_t6zJ87AvSdeLcw9K_3L-jo7HlNMIbisMKsl70PDCPaJqYiJv78k5cEzm_vRI9n1nnEuqGUA-dYK1EMTkxYQwBzssJ8pEFV9w-koYVF_STvs-qUvSaZ5-2AvM51KVegave0eXBcVBDNgQ2zqMyMDYakMpSHHiYxKURppmxmDKsuoq4d30aD3RqnZNxaMzAREZhlimMVVeT65SswtTwaYhrIMh4-9Y96JziGD5XiXUardGh1LprW9BppFjYup85w2o8Fj6uCfOC5F6w3Ita7i3YHc94rnp5_EG7zGIc09USbMFms1GK-rC_FjFDqZPRV_n677M2YIZ5V5mbTZgqX0a4Rb5Mabb9Jv4ESHzx9g |
| linkProvider | IEEE |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9tAEB4BFQIOtIVWpNCyh14q4cSPtbM-RkAUCs6hDYWbtY-JiooCAqeH_JP-286s7QjRqurNtmbXK83svHZ2PoCPZNFDJFc5yA1iIHXqAi1DGSitjZY2IbPBqYFinI0u5efr9HoFjpZ3YRDRF59hlx_9Wb67s3NOlfVyKROadxVepFLKtL6ttdS7_UzWHTIj2sLkF7SHkmHem5wVFArGUZeGJ4oh3Z8YIY-q8ocq9vZl-BKKdmV1WcmP7rwyXbt41rTxf5f-CrYbR1MMasl4DSs424GtJ-0Hd2Ddl3_ax134NRCk7cQXD0z_cLNAR8-WEwk_UZzUoPVi6KF5RNvGRFzdVN_FNyLn21di6HPrXETdEuqZE6yXKCqnSRhFgDNzgrxkwTW3t6RjxVf6SO_juhi9mbMgYeB5TnSl38Dl8HRyPAoa0IbAxnlUBcZGU1JaikMPk7gswqxvLGYMrK4i7l6fxVOdWedkHBozNZFR2O8rjFWqyXlK3sLa7G6GeyDIfPvmPeic4ig-V4l1Gq3RodQ6tR3otVwsbdPRnIE1bksf2YR5SXwvme9lw_cOfFqOuK-7efyDdpfZuKRrONiBg1ZQyma7P5Yxg6mT2Vf5u7-POoSN0aS4KC_Oxuf7sMn_qfM4B7BWPczxPXk2lfngBfo3FL31Qw |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+New+Regularized+Recursive+Dynamic+Factor+Analysis+With+Variable+Forgetting+Factor+and+Subspace+Dimension+for+Wireless+Sensor+Networks+With+Missing+Data&rft.jtitle=IEEE+transactions+on+instrumentation+and+measurement&rft.au=Lin%2C+Jian-Qiang&rft.au=Wu%2C+Ho-Chun&rft.au=Chan%2C+Shing-Chow&rft.date=2021&rft.pub=IEEE&rft.issn=0018-9456&rft.volume=70&rft.spage=1&rft.epage=13&rft_id=info:doi/10.1109%2FTIM.2021.3083889&rft.externalDocID=9443086 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0018-9456&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0018-9456&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0018-9456&client=summon |