Feature-label dual-mapping for missing label-specific features learning
Label-specific features learning can effectively exploit the unique features of each label, which alleviates the high dimensionality and improves the classification performance of multi-label. However, most existing label-specific features learning algorithms assume that label space is complete, ign...
Saved in:
| Published in | Soft computing (Berlin, Germany) Vol. 25; no. 14; pp. 9307 - 9323 |
|---|---|
| Main Authors | , , , |
| Format | Journal Article |
| Language | English |
| Published |
Berlin/Heidelberg
Springer Berlin Heidelberg
01.07.2021
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 1432-7643 1433-7479 |
| DOI | 10.1007/s00500-021-05884-1 |
Cover
| Abstract | Label-specific features learning can effectively exploit the unique features of each label, which alleviates the high dimensionality and improves the classification performance of multi-label. However, most existing label-specific features learning algorithms assume that label space is complete, ignoring the effect of missing labels on the classification accuracy. Some methods try to recover the missing labels first and then learn the mapping between the completed label matrix and the feature matrix. However, early intervention in the recovery of missing labels may affect the distribution of original labels to a certain extent. In this paper, feature-label dual-mapping for missing label-specific features learning is proposed. According to the information that the label depends on the feature, the dual-mapping weight of the complete feature space and the missing label space is jointly learned. Therefore, the proposed algorithm is to conduct latent missing labels recovery by feature-label dual-mapping to directly obtain target weight in this paper, avoiding the negative influence of early label recovery intervention. Compared with several state-of-the-art methods in 10 benchmark multi-label data sets, the results show that the proposed algorithm is reasonable and effective. |
|---|---|
| AbstractList | Label-specific features learning can effectively exploit the unique features of each label, which alleviates the high dimensionality and improves the classification performance of multi-label. However, most existing label-specific features learning algorithms assume that label space is complete, ignoring the effect of missing labels on the classification accuracy. Some methods try to recover the missing labels first and then learn the mapping between the completed label matrix and the feature matrix. However, early intervention in the recovery of missing labels may affect the distribution of original labels to a certain extent. In this paper, feature-label dual-mapping for missing label-specific features learning is proposed. According to the information that the label depends on the feature, the dual-mapping weight of the complete feature space and the missing label space is jointly learned. Therefore, the proposed algorithm is to conduct latent missing labels recovery by feature-label dual-mapping to directly obtain target weight in this paper, avoiding the negative influence of early label recovery intervention. Compared with several state-of-the-art methods in 10 benchmark multi-label data sets, the results show that the proposed algorithm is reasonable and effective. |
| Author | Zhang, Lulu Wang, Yibin Cheng, Yusheng Pei, Gensheng |
| Author_xml | – sequence: 1 givenname: Lulu surname: Zhang fullname: Zhang, Lulu organization: School of Computer and Information, Anqing Normal University – sequence: 2 givenname: Yusheng orcidid: 0000-0002-6562-1153 surname: Cheng fullname: Cheng, Yusheng email: chengyshaq@163.com organization: School of Computer and Information, Anqing Normal University, Key Laboratory of Data Science and Intelligence Application, Fujian Province University – sequence: 3 givenname: Yibin surname: Wang fullname: Wang, Yibin organization: School of Computer and Information, Anqing Normal University, Key Laboratory of Data Science and Intelligence Application, Fujian Province University – sequence: 4 givenname: Gensheng surname: Pei fullname: Pei, Gensheng organization: School of Computer and Information, Anqing Normal University |
| BookMark | eNp9kM1OwzAQhC1UJNrCC3DKCxjWf3FyRBUtlSpxgbNlu3blKnUiOz3w9rgNJw497Ug732pnFmgW--gQeibwQgDkawYQABgowSCahmNyh-aEM4Yll-3sqimWNWcPaJHzEYpTCjZHm7XT4zk53Gnjump_1h0-6WEI8VD5PlWnkPNFX9c4D84GH2zlJypXndMpFsMjuve6y-7pby7R9_r9a_WBd5-b7epthy1tyYiNaSTnhoIkWkrqqagda4hkNTdaOO5MTVpiPRHegGPMir0QQtctUF278vESNdNdm_qck_PKhlGPoY9j0qFTBNSlEDUVokpMdS1EkYLSf-iQwkmnn9sQm6BczPHgkjr25xRLxFvULzFodP0 |
| CitedBy_id | crossref_primary_10_1007_s13042_023_02044_9 crossref_primary_10_1007_s00500_023_07916_4 crossref_primary_10_1007_s10489_023_05203_1 crossref_primary_10_32604_jai_2024_049083 |
| Cites_doi | 10.1109/TPAMI.2014.2339815 10.1016/j.flowmeasinst.2017.01.007 10.1016/j.asoc.2019.105924 10.1016/j.knosys.2016.04.012 10.1016/j.patcog.2004.03.009 10.1109/TKDE.2017.2785795 10.1016/j.ins.2019.04.021 10.1007/s11704-017-7031-7 10.1109/TKDE.2013.39 10.1016/j.knosys.2018.08.018 10.1016/j.knosys.2018.07.003 10.1016/S0933-3657(01)00077-X 10.1016/j.artint.2008.08.002 10.1109/TKDE.2006.162 10.1145/1839490.1839495 10.1137/080716542 10.1016/j.neucom.2017.07.044 10.1007/s10994-008-5064-8 10.1109/TKDE.2016.2608339 10.1016/j.patcog.2006.12.019 10.1007/s10994-011-5256-5 10.1109/TKDE.2018.2833850 10.1145/2487575.2487610 10.1007/978-3-642-40988-2_37 10.1109/ICME.2015.7177400 10.1609/aaai.v28i1.8996 10.1609/aaai.v24i1.7699 10.1109/ICDM.2014.125 |
| ContentType | Journal Article |
| Copyright | The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2021 |
| Copyright_xml | – notice: The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2021 |
| DBID | AAYXX CITATION |
| DOI | 10.1007/s00500-021-05884-1 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Computer Science |
| EISSN | 1433-7479 |
| EndPage | 9323 |
| ExternalDocumentID | 10_1007_s00500_021_05884_1 |
| GrantInformation_xml | – fundername: Key Laboratory of Intelligent Computing & Signal Processing, Ministry of Education (Anhui University) grantid: 2020A003 – fundername: NO. D202005 grantid: Key Laboratory of Data Science and Intelligence Application, Fujian Province University – fundername: he National Natural Science Foundation of China grantid: 61702012 |
| GroupedDBID | -5B -5G -BR -EM -Y2 -~C .86 .VR 06D 0R~ 0VY 1N0 1SB 203 29~ 2J2 2JN 2JY 2KG 2LR 2P1 2VQ 2~H 30V 4.4 406 408 409 40D 40E 5VS 67Z 6NX 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTD ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACSNA ACZOJ ADHHG ADHIR ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFGCZ AFKRA AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARAPS ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN B-. BA0 BDATZ BENPR BGLVJ BGNMA BSONS CAG CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 EBLON EBS EIOEI EJD ESBYG FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I09 IHE IJ- IKXTQ IWAJR IXC IXD IXE IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ K7- KDC KOV LAS LLZTM M4Y MA- N2Q NB0 NPVJJ NQJWS NU0 O9- O93 O9J OAM P2P P9P PF0 PT4 PT5 QOS R89 R9I RIG RNI ROL RPX RSV RZK S16 S1Z S27 S3B SAP SDH SEG SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 TSG TSK TSV TUC U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR Z45 Z5O Z7R Z7X Z7Y Z7Z Z81 Z83 Z88 ZMTXR AAPKM AAYXX ABBRH ABDBE ABFSG ABRTQ ACSTC ADHKG ADKFA AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT PQGLB PUEGO |
| ID | FETCH-LOGICAL-c291t-bb8744b2071a772f256e3817364ba5e4eb6191cf15fb0e33c5d555a6902a6e753 |
| IEDL.DBID | U2A |
| ISSN | 1432-7643 |
| IngestDate | Thu Apr 24 22:55:56 EDT 2025 Wed Oct 01 03:00:15 EDT 2025 Fri Feb 21 02:48:01 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 14 |
| Keywords | Multi-label learning Feature-label dual-mapping Missing labels Label-specific features |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c291t-bb8744b2071a772f256e3817364ba5e4eb6191cf15fb0e33c5d555a6902a6e753 |
| ORCID | 0000-0002-6562-1153 |
| PageCount | 17 |
| ParticipantIDs | crossref_citationtrail_10_1007_s00500_021_05884_1 crossref_primary_10_1007_s00500_021_05884_1 springer_journals_10_1007_s00500_021_05884_1 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 20210700 |
| PublicationDateYYYYMMDD | 2021-07-01 |
| PublicationDate_xml | – month: 7 year: 2021 text: 20210700 |
| PublicationDecade | 2020 |
| PublicationPlace | Berlin/Heidelberg |
| PublicationPlace_xml | – name: Berlin/Heidelberg |
| PublicationSubtitle | A Fusion of Foundations, Methodologies and Applications |
| PublicationTitle | Soft computing (Berlin, Germany) |
| PublicationTitleAbbrev | Soft Comput |
| PublicationYear | 2021 |
| Publisher | Springer Berlin Heidelberg |
| Publisher_xml | – name: Springer Berlin Heidelberg |
| References | Weng, Lin, Wu, Li, Kang (CR23) 2018; 273 Song, Smola, Gretton, Bedo, Borgwardt (CR19) 2012; 13 Zhang, Zhou (CR33) 2010; 4 Huang, Li, Huang, Wu (CR11) 2016; 28 CR15 Zhang, Zhou (CR32) 2007; 40 Petković, Nikolić, Mitić, Kocić (CR16) 2017; 54 Zhang, Wu (CR30) 2015; 37 CR10 Zhang, Li, Liu, Geng (CR35) 2018; 12 Hüllermeier, Fürnkranz, Cheng, Brinker (CR13) 2008; 172 Zhu, Kwok, Zhou (CR37) 2017; 30 Xu, Yang, Yu, Yu, Yang, Tsang (CR27) 2016; 104 Cheng, Qian, Wang, Zhao (CR6) 2020; 86 Trung, Shahgoli, Zandi, Shariati, Wakil, Safa, Khorami (CR21) 2019; 70 Read, Pfahringer, Holmes, Frank (CR17) 2011; 85 He, Yang, Gao, Liu, Yin (CR9) 2019; 163 CR3 Wu, Zhang (CR24) 2014; 25 CR5 Demšar (CR7) 2006; 7 Zhang, Zhou (CR31) 2006; 18 CR29 Huang, Qin, Zheng, Cheng, Yuan, Zhang, Huang (CR12) 2019; 492 Shariati, Trung, Wakil, Mehrabi, Safa, Khorami (CR18) 2019; 31 CR28 CR26 CR25 Akbarnejad, Baghshah (CR1) 2018; 31 CR22 Fürnkranz, Hüllermeier, Mencía, Brinker (CR8) 2008; 73 CR20 Boutell, Luo, Shen, Brown (CR4) 2004; 37 Zhang, Li, Cao, Lin, Su, Dai, Li (CR36) 2018; 159 Beck, Teboulle (CR2) 2009; 2 Zhang, Zhou (CR34) 2013; 26 Kononenko (CR14) 2001; 23 ZF He (5884_CR9) 2019; 163 E Hüllermeier (5884_CR13) 2008; 172 D Petković (5884_CR16) 2017; 54 A Beck (5884_CR2) 2009; 2 5884_CR10 ML Zhang (5884_CR32) 2007; 40 5884_CR15 S Xu (5884_CR27) 2016; 104 5884_CR5 J Read (5884_CR17) 2011; 85 5884_CR3 W Weng (5884_CR23) 2018; 273 Y Zhu (5884_CR37) 2017; 30 J Huang (5884_CR11) 2016; 28 ML Zhang (5884_CR31) 2006; 18 J Demšar (5884_CR7) 2006; 7 ML Zhang (5884_CR34) 2013; 26 J Huang (5884_CR12) 2019; 492 ML Zhang (5884_CR35) 2018; 12 J Fürnkranz (5884_CR8) 2008; 73 5884_CR20 5884_CR22 AH Akbarnejad (5884_CR1) 2018; 31 L Wu (5884_CR24) 2014; 25 Y Zhang (5884_CR33) 2010; 4 5884_CR25 5884_CR26 I Kononenko (5884_CR14) 2001; 23 5884_CR28 5884_CR29 M Shariati (5884_CR18) 2019; 31 NT Trung (5884_CR21) 2019; 70 MR Boutell (5884_CR4) 2004; 37 L Song (5884_CR19) 2012; 13 ML Zhang (5884_CR30) 2015; 37 Y Cheng (5884_CR6) 2020; 86 J Zhang (5884_CR36) 2018; 159 |
| References_xml | – ident: CR22 – volume: 37 start-page: 107 issue: 1 year: 2015 end-page: 120 ident: CR30 article-title: Lift: Multi-label learning with label-specific features publication-title: IEEE Trans Pattern Anal Mach Intell doi: 10.1109/TPAMI.2014.2339815 – volume: 54 start-page: 172 year: 2017 end-page: 176 ident: CR16 article-title: Estimation of fractal representation of wind speed fluctuation by artificial neural network with different training algorothms publication-title: Flow Meas Instrum doi: 10.1016/j.flowmeasinst.2017.01.007 – volume: 86 start-page: 105924 year: 2020 ident: CR6 article-title: Missing multi-label learning with non-equilibrium based on classification margin publication-title: Appl Soft Comput doi: 10.1016/j.asoc.2019.105924 – volume: 104 start-page: 52 year: 2016 end-page: 61 ident: CR27 article-title: Multi-label learning with label-specific feature reduction publication-title: Knowl-Based Syst doi: 10.1016/j.knosys.2016.04.012 – volume: 37 start-page: 1757 issue: 9 year: 2004 end-page: 1771 ident: CR4 article-title: Learning multi-label scene classification publication-title: Pattern Recogn doi: 10.1016/j.patcog.2004.03.009 – volume: 70 start-page: 639 issue: 5 year: 2019 end-page: 647 ident: CR21 article-title: Moment-rotation prediction of precast beam-to-column connections using extreme learning machine publication-title: Struct Eng Mech – volume: 25 start-page: 1992 issue: 9 year: 2014 end-page: 2001 ident: CR24 article-title: Research of label-specific features on multi-label learning algorithm publication-title: J Softw – ident: CR10 – volume: 30 start-page: 1081 issue: 6 year: 2017 end-page: 1094 ident: CR37 article-title: Multi-label learning with global and local label correlation publication-title: IEEE Trans Knowl Data Eng doi: 10.1109/TKDE.2017.2785795 – volume: 492 start-page: 124 year: 2019 end-page: 146 ident: CR12 article-title: Improving multi-label classification with missing labels by learning label-specific features publication-title: Inf Sci doi: 10.1016/j.ins.2019.04.021 – ident: CR29 – volume: 7 start-page: 1 year: 2006 end-page: 30 ident: CR7 article-title: Statistical comparisons of classifiers over multiple data sets publication-title: J Mach Learn Res – ident: CR25 – volume: 12 start-page: 191 issue: 2 year: 2018 end-page: 202 ident: CR35 article-title: Binary relevance for multi-label learning: an overview publication-title: Front Comp Sci doi: 10.1007/s11704-017-7031-7 – volume: 26 start-page: 1819 issue: 8 year: 2013 end-page: 1837 ident: CR34 article-title: A review on multi-label learning algorithms publication-title: IEEE Trans Knowl Data Eng doi: 10.1109/TKDE.2013.39 – volume: 163 start-page: 145 year: 2019 end-page: 158 ident: CR9 article-title: Joint multi-label classification and label correlations with missing labels and feature selection publication-title: Knowl-Based Syst doi: 10.1016/j.knosys.2018.08.018 – volume: 159 start-page: 148 year: 2018 end-page: 157 ident: CR36 article-title: Multi-label learning with label-specific features by resolving label correlations publication-title: Knowl-Based Syst doi: 10.1016/j.knosys.2018.07.003 – volume: 23 start-page: 89 issue: 1 year: 2001 end-page: 109 ident: CR14 article-title: Machine learning for medical diagnosis: history, state of the art and perspective publication-title: Artif Intell Med doi: 10.1016/S0933-3657(01)00077-X – volume: 31 start-page: 427 issue: 5 year: 2019 end-page: 435 ident: CR18 article-title: Estimation of moment and rotation of steel rack connections using extreme learning machine publication-title: Steel Compos Struct – ident: CR3 – ident: CR15 – volume: 172 start-page: 1897 issue: 16–17 year: 2008 end-page: 1916 ident: CR13 article-title: Label ranking by learning pairwise preferences publication-title: Artif Intell doi: 10.1016/j.artint.2008.08.002 – volume: 18 start-page: 1338 issue: 10 year: 2006 end-page: 1351 ident: CR31 article-title: Multilabel neural networks with applications to functional genomics and text categorization publication-title: IEEE Trans Knowl Data Eng doi: 10.1109/TKDE.2006.162 – volume: 4 start-page: 1 issue: 3 year: 2010 end-page: 21 ident: CR33 article-title: Multilabel dimensionality reduction via dependence maximization publication-title: ACM Trans Knowl Discov Data (TKDD) doi: 10.1145/1839490.1839495 – volume: 2 start-page: 183 issue: 1 year: 2009 end-page: 202 ident: CR2 article-title: A fast iterative shrinkage-thresholding algorithm for linear inverse problems publication-title: SIAM J Imag Sci doi: 10.1137/080716542 – volume: 13 start-page: 1393 year: 2012 end-page: 1434 ident: CR19 article-title: Feature selection via dependence maximization publication-title: J Mach Learn Res – volume: 273 start-page: 385 year: 2018 end-page: 394 ident: CR23 article-title: Multi-label learning based on label-specific features and local pairwise label correlation publication-title: Neurocomputing doi: 10.1016/j.neucom.2017.07.044 – volume: 73 start-page: 133 issue: 2 year: 2008 end-page: 153 ident: CR8 article-title: Multilabel classification via calibrated label ranking publication-title: Mach Learn doi: 10.1007/s10994-008-5064-8 – volume: 28 start-page: 3309 issue: 12 year: 2016 end-page: 3323 ident: CR11 article-title: Learning label-specific features and class-dependent labels for multi-label classification publication-title: IEEE Trans Knowl Data Eng doi: 10.1109/TKDE.2016.2608339 – ident: CR5 – volume: 40 start-page: 2038 issue: 7 year: 2007 end-page: 2048 ident: CR32 article-title: ML-KNN: a lazy learning approach to multi-label learning publication-title: Pattern Recogn doi: 10.1016/j.patcog.2006.12.019 – volume: 85 start-page: 333 issue: 3 year: 2011 end-page: 359 ident: CR17 article-title: Classifier chains for multi-label classification publication-title: Mach Learn doi: 10.1007/s10994-011-5256-5 – volume: 31 start-page: 229 issue: 2 year: 2018 end-page: 242 ident: CR1 article-title: An efficient semi-supervised multi-label classifier capable of handling missing labels publication-title: IEEE Trans Knowl Data Eng doi: 10.1109/TKDE.2018.2833850 – ident: CR28 – ident: CR26 – ident: CR20 – volume: 2 start-page: 183 issue: 1 year: 2009 ident: 5884_CR2 publication-title: SIAM J Imag Sci doi: 10.1137/080716542 – ident: 5884_CR25 – volume: 30 start-page: 1081 issue: 6 year: 2017 ident: 5884_CR37 publication-title: IEEE Trans Knowl Data Eng doi: 10.1109/TKDE.2017.2785795 – volume: 159 start-page: 148 year: 2018 ident: 5884_CR36 publication-title: Knowl-Based Syst doi: 10.1016/j.knosys.2018.07.003 – volume: 172 start-page: 1897 issue: 16–17 year: 2008 ident: 5884_CR13 publication-title: Artif Intell doi: 10.1016/j.artint.2008.08.002 – volume: 492 start-page: 124 year: 2019 ident: 5884_CR12 publication-title: Inf Sci doi: 10.1016/j.ins.2019.04.021 – volume: 13 start-page: 1393 year: 2012 ident: 5884_CR19 publication-title: J Mach Learn Res – volume: 54 start-page: 172 year: 2017 ident: 5884_CR16 publication-title: Flow Meas Instrum doi: 10.1016/j.flowmeasinst.2017.01.007 – volume: 4 start-page: 1 issue: 3 year: 2010 ident: 5884_CR33 publication-title: ACM Trans Knowl Discov Data (TKDD) doi: 10.1145/1839490.1839495 – volume: 23 start-page: 89 issue: 1 year: 2001 ident: 5884_CR14 publication-title: Artif Intell Med doi: 10.1016/S0933-3657(01)00077-X – ident: 5884_CR22 doi: 10.1145/2487575.2487610 – ident: 5884_CR28 doi: 10.1007/978-3-642-40988-2_37 – volume: 12 start-page: 191 issue: 2 year: 2018 ident: 5884_CR35 publication-title: Front Comp Sci doi: 10.1007/s11704-017-7031-7 – volume: 37 start-page: 107 issue: 1 year: 2015 ident: 5884_CR30 publication-title: IEEE Trans Pattern Anal Mach Intell doi: 10.1109/TPAMI.2014.2339815 – ident: 5884_CR10 doi: 10.1109/ICME.2015.7177400 – volume: 18 start-page: 1338 issue: 10 year: 2006 ident: 5884_CR31 publication-title: IEEE Trans Knowl Data Eng doi: 10.1109/TKDE.2006.162 – volume: 31 start-page: 427 issue: 5 year: 2019 ident: 5884_CR18 publication-title: Steel Compos Struct – ident: 5884_CR3 doi: 10.1609/aaai.v28i1.8996 – ident: 5884_CR20 doi: 10.1609/aaai.v24i1.7699 – volume: 28 start-page: 3309 issue: 12 year: 2016 ident: 5884_CR11 publication-title: IEEE Trans Knowl Data Eng doi: 10.1109/TKDE.2016.2608339 – volume: 26 start-page: 1819 issue: 8 year: 2013 ident: 5884_CR34 publication-title: IEEE Trans Knowl Data Eng doi: 10.1109/TKDE.2013.39 – volume: 73 start-page: 133 issue: 2 year: 2008 ident: 5884_CR8 publication-title: Mach Learn doi: 10.1007/s10994-008-5064-8 – ident: 5884_CR5 – volume: 273 start-page: 385 year: 2018 ident: 5884_CR23 publication-title: Neurocomputing doi: 10.1016/j.neucom.2017.07.044 – volume: 25 start-page: 1992 issue: 9 year: 2014 ident: 5884_CR24 publication-title: J Softw – volume: 104 start-page: 52 year: 2016 ident: 5884_CR27 publication-title: Knowl-Based Syst doi: 10.1016/j.knosys.2016.04.012 – volume: 70 start-page: 639 issue: 5 year: 2019 ident: 5884_CR21 publication-title: Struct Eng Mech – volume: 37 start-page: 1757 issue: 9 year: 2004 ident: 5884_CR4 publication-title: Pattern Recogn doi: 10.1016/j.patcog.2004.03.009 – volume: 40 start-page: 2038 issue: 7 year: 2007 ident: 5884_CR32 publication-title: Pattern Recogn doi: 10.1016/j.patcog.2006.12.019 – volume: 85 start-page: 333 issue: 3 year: 2011 ident: 5884_CR17 publication-title: Mach Learn doi: 10.1007/s10994-011-5256-5 – volume: 86 start-page: 105924 year: 2020 ident: 5884_CR6 publication-title: Appl Soft Comput doi: 10.1016/j.asoc.2019.105924 – ident: 5884_CR15 – volume: 163 start-page: 145 year: 2019 ident: 5884_CR9 publication-title: Knowl-Based Syst doi: 10.1016/j.knosys.2018.08.018 – volume: 7 start-page: 1 year: 2006 ident: 5884_CR7 publication-title: J Mach Learn Res – ident: 5884_CR26 doi: 10.1109/ICDM.2014.125 – ident: 5884_CR29 – volume: 31 start-page: 229 issue: 2 year: 2018 ident: 5884_CR1 publication-title: IEEE Trans Knowl Data Eng doi: 10.1109/TKDE.2018.2833850 |
| SSID | ssj0021753 |
| Score | 2.3020039 |
| Snippet | Label-specific features learning can effectively exploit the unique features of each label, which alleviates the high dimensionality and improves the... |
| SourceID | crossref springer |
| SourceType | Enrichment Source Index Database Publisher |
| StartPage | 9307 |
| SubjectTerms | Artificial Intelligence Computational Intelligence Control Data Analytics and Machine Learning Engineering Mathematical Logic and Foundations Mechatronics Robotics |
| Title | Feature-label dual-mapping for missing label-specific features learning |
| URI | https://link.springer.com/article/10.1007/s00500-021-05884-1 |
| Volume | 25 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVLSH databaseName: SpringerLink Journals customDbUrl: mediaType: online eissn: 1433-7479 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0021753 issn: 1432-7643 databaseCode: AFBBN dateStart: 19970401 isFulltext: true providerName: Library Specific Holdings – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 1433-7479 dateEnd: 20241102 omitProxy: true ssIdentifier: ssj0021753 issn: 1432-7643 databaseCode: BENPR dateStart: 20090101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVAVX databaseName: SpringerLINK - Czech Republic Consortium customDbUrl: eissn: 1433-7479 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0021753 issn: 1432-7643 databaseCode: AGYKE dateStart: 19970101 isFulltext: true titleUrlDefault: http://link.springer.com providerName: Springer Nature – providerCode: PRVAVX databaseName: SpringerLink Journals (ICM) customDbUrl: eissn: 1433-7479 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0021753 issn: 1432-7643 databaseCode: U2A dateStart: 19970404 isFulltext: true titleUrlDefault: http://www.springerlink.com/journals/ providerName: Springer Nature |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8MwDLbQdoEDjwHiOeXADSL1lU49bmgPgdiJSeNUJa27yyho6_4_dpZWTEKTOPWQOAc7iT839meABx0mSikdSdVLcgpQvESaIkNpCIp4SANoaRffpvFkFr3M1dwVha3rbPf6SdLe1E2xG1OVeJJTCjyurpQU87QV03nRLp4F_SbMctyTBAQIO5LDdaUyf6-x645230KtixmdwrHDhqK_NeYZHGDZgZO674Jwx7ADR79IBM9hzChus0JJ9sSl4Noq-amZdmEhCJEKMiT_DxB2WHJlJWcHiWIrtRaub8TiAmaj4fvzRLr2CDILEr-SxjB1vQkIJGjCyAWBF2S-vTCOjFYYoaHgyM8KXxXGwzDMVM5moXA40DGSki6hVX6VeAWCghparIeJl5HL1orEfKVVGGhyckXuX4NfaynNHHc4t7BYpg3rsdVsSppNrWZTknlsZL63zBl7Zz_Vyk_dKVrvmX7zv-m3cBhYo3Oa7R20qtUG7wlMVKYL7f5oMJjyd_zxOuzavfQDfQHAMQ |
| linkProvider | Springer Nature |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LTwIxEJ4YOKgHUdT4tgdvWrKvQvZIDA_lcYIET01buhxENLBc_PVOu92NGEPCuZ2mmU53vtnOfAPwIMKYMSYiyhrxFAMUL6YyUZpKhCKexgFtaRcHw3p3HL1O2MQVha3ybPf8SdJ-qYtiN0NV4lGTUuCZ6kqKMU85wgAlKEG52XnrtYpAy7FPIhRA9Igu1xXL_L_KpkPafA21TqZdgXG-vSy35L22TmVNff9hbtx1_8dw5FAnaWZmcgJ7elGFSt7RgbgLXoXDX_SEp9Ax-HC91BQtRc-JqdqiH8IQOswIYl2CJmL-NBA7TE3Npsk7IkkmtSKuI8XsDMbt1ui5S13jBaqC2E-plIYUXwYIPwSi7wRhkTZMfmE9koLpSEsMu3yV-CyRng5DxabmwDHQDkRdo_LPobT4XOgLIBgu4WINHXsKwYBgKOYzwcJAoPtMpv4l-Ln2uXKs5KY5xpwXfMpWbxz1xq3eOMo8FjJfGSfH1tlP-Xlwdz9XW6Zf7Tb9Hva7o0Gf91-GvWs4COzxmmTeGyily7W-RciSyjtnoT8kutz3 |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8MwDI7QkBAceAwQb3LgBtH6yqYeJ2CM18SBSbtFSevuspVp6_4_dppWm4QmcW6cg53Inxt_nxm702EspdSRkJ04xQLFi4XJEhAGoYgH-AGs7OLnoN0fRm8jOVph8dtu9-pJsuQ0kEpTXrRmadaqiW8kW-IJai_wiGkpsP7ZjkgoAU_0MOjWJZfToURQgDgSk6-jzfy9x3pqWn8Xtemmd8j2HU7k3TKwR2wL8iY7qGYwcHclm2xvRVDwmL0QolvOQWBsYcKJZyWmmiQYxhzRKceg0r8Bbj8LYllSpxDPSqsFdzMkxids2Hv-fuwLNypBJEHsF8IYkrE3AQIGjXg5QyADpL0XtiOjJURgsFDyk8yXmfEgDBOZUoiwNA50G9BJp6yR_-RwxjgWOLhZB2IvwfStJZr5Ussw0JjwstQ_Z37lJZU4HXEaZzFRtQKy9axCzyrrWYU297XNrFTR2Lj6oXK-cjdqsWH5xf-W37Kdr6ee-ngdvF-y3cDGn7pvr1ijmC_hGjFGYW7sMfoFKiLESQ |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Feature-label+dual-mapping+for+missing+label-specific+features+learning&rft.jtitle=Soft+computing+%28Berlin%2C+Germany%29&rft.au=Zhang%2C+Lulu&rft.au=Cheng%2C+Yusheng&rft.au=Wang%2C+Yibin&rft.au=Pei%2C+Gensheng&rft.date=2021-07-01&rft.issn=1432-7643&rft.eissn=1433-7479&rft.volume=25&rft.issue=14&rft.spage=9307&rft.epage=9323&rft_id=info:doi/10.1007%2Fs00500-021-05884-1&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s00500_021_05884_1 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1432-7643&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1432-7643&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1432-7643&client=summon |