Feature-label dual-mapping for missing label-specific features learning

Label-specific features learning can effectively exploit the unique features of each label, which alleviates the high dimensionality and improves the classification performance of multi-label. However, most existing label-specific features learning algorithms assume that label space is complete, ign...

Full description

Saved in:
Bibliographic Details
Published inSoft computing (Berlin, Germany) Vol. 25; no. 14; pp. 9307 - 9323
Main Authors Zhang, Lulu, Cheng, Yusheng, Wang, Yibin, Pei, Gensheng
Format Journal Article
LanguageEnglish
Published Berlin/Heidelberg Springer Berlin Heidelberg 01.07.2021
Subjects
Online AccessGet full text
ISSN1432-7643
1433-7479
DOI10.1007/s00500-021-05884-1

Cover

Abstract Label-specific features learning can effectively exploit the unique features of each label, which alleviates the high dimensionality and improves the classification performance of multi-label. However, most existing label-specific features learning algorithms assume that label space is complete, ignoring the effect of missing labels on the classification accuracy. Some methods try to recover the missing labels first and then learn the mapping between the completed label matrix and the feature matrix. However, early intervention in the recovery of missing labels may affect the distribution of original labels to a certain extent. In this paper, feature-label dual-mapping for missing label-specific features learning is proposed. According to the information that the label depends on the feature, the dual-mapping weight of the complete feature space and the missing label space is jointly learned. Therefore, the proposed algorithm is to conduct latent missing labels recovery by feature-label dual-mapping to directly obtain target weight in this paper, avoiding the negative influence of early label recovery intervention. Compared with several state-of-the-art methods in 10 benchmark multi-label data sets, the results show that the proposed algorithm is reasonable and effective.
AbstractList Label-specific features learning can effectively exploit the unique features of each label, which alleviates the high dimensionality and improves the classification performance of multi-label. However, most existing label-specific features learning algorithms assume that label space is complete, ignoring the effect of missing labels on the classification accuracy. Some methods try to recover the missing labels first and then learn the mapping between the completed label matrix and the feature matrix. However, early intervention in the recovery of missing labels may affect the distribution of original labels to a certain extent. In this paper, feature-label dual-mapping for missing label-specific features learning is proposed. According to the information that the label depends on the feature, the dual-mapping weight of the complete feature space and the missing label space is jointly learned. Therefore, the proposed algorithm is to conduct latent missing labels recovery by feature-label dual-mapping to directly obtain target weight in this paper, avoiding the negative influence of early label recovery intervention. Compared with several state-of-the-art methods in 10 benchmark multi-label data sets, the results show that the proposed algorithm is reasonable and effective.
Author Zhang, Lulu
Wang, Yibin
Cheng, Yusheng
Pei, Gensheng
Author_xml – sequence: 1
  givenname: Lulu
  surname: Zhang
  fullname: Zhang, Lulu
  organization: School of Computer and Information, Anqing Normal University
– sequence: 2
  givenname: Yusheng
  orcidid: 0000-0002-6562-1153
  surname: Cheng
  fullname: Cheng, Yusheng
  email: chengyshaq@163.com
  organization: School of Computer and Information, Anqing Normal University, Key Laboratory of Data Science and Intelligence Application, Fujian Province University
– sequence: 3
  givenname: Yibin
  surname: Wang
  fullname: Wang, Yibin
  organization: School of Computer and Information, Anqing Normal University, Key Laboratory of Data Science and Intelligence Application, Fujian Province University
– sequence: 4
  givenname: Gensheng
  surname: Pei
  fullname: Pei, Gensheng
  organization: School of Computer and Information, Anqing Normal University
BookMark eNp9kM1OwzAQhC1UJNrCC3DKCxjWf3FyRBUtlSpxgbNlu3blKnUiOz3w9rgNJw497Ug732pnFmgW--gQeibwQgDkawYQABgowSCahmNyh-aEM4Yll-3sqimWNWcPaJHzEYpTCjZHm7XT4zk53Gnjump_1h0-6WEI8VD5PlWnkPNFX9c4D84GH2zlJypXndMpFsMjuve6y-7pby7R9_r9a_WBd5-b7epthy1tyYiNaSTnhoIkWkrqqagda4hkNTdaOO5MTVpiPRHegGPMir0QQtctUF278vESNdNdm_qck_PKhlGPoY9j0qFTBNSlEDUVokpMdS1EkYLSf-iQwkmnn9sQm6BczPHgkjr25xRLxFvULzFodP0
CitedBy_id crossref_primary_10_1007_s13042_023_02044_9
crossref_primary_10_1007_s00500_023_07916_4
crossref_primary_10_1007_s10489_023_05203_1
crossref_primary_10_32604_jai_2024_049083
Cites_doi 10.1109/TPAMI.2014.2339815
10.1016/j.flowmeasinst.2017.01.007
10.1016/j.asoc.2019.105924
10.1016/j.knosys.2016.04.012
10.1016/j.patcog.2004.03.009
10.1109/TKDE.2017.2785795
10.1016/j.ins.2019.04.021
10.1007/s11704-017-7031-7
10.1109/TKDE.2013.39
10.1016/j.knosys.2018.08.018
10.1016/j.knosys.2018.07.003
10.1016/S0933-3657(01)00077-X
10.1016/j.artint.2008.08.002
10.1109/TKDE.2006.162
10.1145/1839490.1839495
10.1137/080716542
10.1016/j.neucom.2017.07.044
10.1007/s10994-008-5064-8
10.1109/TKDE.2016.2608339
10.1016/j.patcog.2006.12.019
10.1007/s10994-011-5256-5
10.1109/TKDE.2018.2833850
10.1145/2487575.2487610
10.1007/978-3-642-40988-2_37
10.1109/ICME.2015.7177400
10.1609/aaai.v28i1.8996
10.1609/aaai.v24i1.7699
10.1109/ICDM.2014.125
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2021
Copyright_xml – notice: The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2021
DBID AAYXX
CITATION
DOI 10.1007/s00500-021-05884-1
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
EISSN 1433-7479
EndPage 9323
ExternalDocumentID 10_1007_s00500_021_05884_1
GrantInformation_xml – fundername: Key Laboratory of Intelligent Computing & Signal Processing, Ministry of Education (Anhui University)
  grantid: 2020A003
– fundername: NO. D202005
  grantid: Key Laboratory of Data Science and Intelligence Application, Fujian Province University
– fundername: he National Natural Science Foundation of China
  grantid: 61702012
GroupedDBID -5B
-5G
-BR
-EM
-Y2
-~C
.86
.VR
06D
0R~
0VY
1N0
1SB
203
29~
2J2
2JN
2JY
2KG
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
5VS
67Z
6NX
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTD
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACZOJ
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
BA0
BDATZ
BENPR
BGLVJ
BGNMA
BSONS
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
EBLON
EBS
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IHE
IJ-
IKXTQ
IWAJR
IXC
IXD
IXE
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K7-
KDC
KOV
LAS
LLZTM
M4Y
MA-
N2Q
NB0
NPVJJ
NQJWS
NU0
O9-
O93
O9J
OAM
P2P
P9P
PF0
PT4
PT5
QOS
R89
R9I
RIG
RNI
ROL
RPX
RSV
RZK
S16
S1Z
S27
S3B
SAP
SDH
SEG
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
Z5O
Z7R
Z7X
Z7Y
Z7Z
Z81
Z83
Z88
ZMTXR
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADHKG
ADKFA
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
PQGLB
PUEGO
ID FETCH-LOGICAL-c291t-bb8744b2071a772f256e3817364ba5e4eb6191cf15fb0e33c5d555a6902a6e753
IEDL.DBID U2A
ISSN 1432-7643
IngestDate Thu Apr 24 22:55:56 EDT 2025
Wed Oct 01 03:00:15 EDT 2025
Fri Feb 21 02:48:01 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 14
Keywords Multi-label learning
Feature-label dual-mapping
Missing labels
Label-specific features
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c291t-bb8744b2071a772f256e3817364ba5e4eb6191cf15fb0e33c5d555a6902a6e753
ORCID 0000-0002-6562-1153
PageCount 17
ParticipantIDs crossref_citationtrail_10_1007_s00500_021_05884_1
crossref_primary_10_1007_s00500_021_05884_1
springer_journals_10_1007_s00500_021_05884_1
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20210700
PublicationDateYYYYMMDD 2021-07-01
PublicationDate_xml – month: 7
  year: 2021
  text: 20210700
PublicationDecade 2020
PublicationPlace Berlin/Heidelberg
PublicationPlace_xml – name: Berlin/Heidelberg
PublicationSubtitle A Fusion of Foundations, Methodologies and Applications
PublicationTitle Soft computing (Berlin, Germany)
PublicationTitleAbbrev Soft Comput
PublicationYear 2021
Publisher Springer Berlin Heidelberg
Publisher_xml – name: Springer Berlin Heidelberg
References Weng, Lin, Wu, Li, Kang (CR23) 2018; 273
Song, Smola, Gretton, Bedo, Borgwardt (CR19) 2012; 13
Zhang, Zhou (CR33) 2010; 4
Huang, Li, Huang, Wu (CR11) 2016; 28
CR15
Zhang, Zhou (CR32) 2007; 40
Petković, Nikolić, Mitić, Kocić (CR16) 2017; 54
Zhang, Wu (CR30) 2015; 37
CR10
Zhang, Li, Liu, Geng (CR35) 2018; 12
Hüllermeier, Fürnkranz, Cheng, Brinker (CR13) 2008; 172
Zhu, Kwok, Zhou (CR37) 2017; 30
Xu, Yang, Yu, Yu, Yang, Tsang (CR27) 2016; 104
Cheng, Qian, Wang, Zhao (CR6) 2020; 86
Trung, Shahgoli, Zandi, Shariati, Wakil, Safa, Khorami (CR21) 2019; 70
Read, Pfahringer, Holmes, Frank (CR17) 2011; 85
He, Yang, Gao, Liu, Yin (CR9) 2019; 163
CR3
Wu, Zhang (CR24) 2014; 25
CR5
Demšar (CR7) 2006; 7
Zhang, Zhou (CR31) 2006; 18
CR29
Huang, Qin, Zheng, Cheng, Yuan, Zhang, Huang (CR12) 2019; 492
Shariati, Trung, Wakil, Mehrabi, Safa, Khorami (CR18) 2019; 31
CR28
CR26
CR25
Akbarnejad, Baghshah (CR1) 2018; 31
CR22
Fürnkranz, Hüllermeier, Mencía, Brinker (CR8) 2008; 73
CR20
Boutell, Luo, Shen, Brown (CR4) 2004; 37
Zhang, Li, Cao, Lin, Su, Dai, Li (CR36) 2018; 159
Beck, Teboulle (CR2) 2009; 2
Zhang, Zhou (CR34) 2013; 26
Kononenko (CR14) 2001; 23
ZF He (5884_CR9) 2019; 163
E Hüllermeier (5884_CR13) 2008; 172
D Petković (5884_CR16) 2017; 54
A Beck (5884_CR2) 2009; 2
5884_CR10
ML Zhang (5884_CR32) 2007; 40
5884_CR15
S Xu (5884_CR27) 2016; 104
5884_CR5
J Read (5884_CR17) 2011; 85
5884_CR3
W Weng (5884_CR23) 2018; 273
Y Zhu (5884_CR37) 2017; 30
J Huang (5884_CR11) 2016; 28
ML Zhang (5884_CR31) 2006; 18
J Demšar (5884_CR7) 2006; 7
ML Zhang (5884_CR34) 2013; 26
J Huang (5884_CR12) 2019; 492
ML Zhang (5884_CR35) 2018; 12
J Fürnkranz (5884_CR8) 2008; 73
5884_CR20
5884_CR22
AH Akbarnejad (5884_CR1) 2018; 31
L Wu (5884_CR24) 2014; 25
Y Zhang (5884_CR33) 2010; 4
5884_CR25
5884_CR26
I Kononenko (5884_CR14) 2001; 23
5884_CR28
5884_CR29
M Shariati (5884_CR18) 2019; 31
NT Trung (5884_CR21) 2019; 70
MR Boutell (5884_CR4) 2004; 37
L Song (5884_CR19) 2012; 13
ML Zhang (5884_CR30) 2015; 37
Y Cheng (5884_CR6) 2020; 86
J Zhang (5884_CR36) 2018; 159
References_xml – ident: CR22
– volume: 37
  start-page: 107
  issue: 1
  year: 2015
  end-page: 120
  ident: CR30
  article-title: Lift: Multi-label learning with label-specific features
  publication-title: IEEE Trans Pattern Anal Mach Intell
  doi: 10.1109/TPAMI.2014.2339815
– volume: 54
  start-page: 172
  year: 2017
  end-page: 176
  ident: CR16
  article-title: Estimation of fractal representation of wind speed fluctuation by artificial neural network with different training algorothms
  publication-title: Flow Meas Instrum
  doi: 10.1016/j.flowmeasinst.2017.01.007
– volume: 86
  start-page: 105924
  year: 2020
  ident: CR6
  article-title: Missing multi-label learning with non-equilibrium based on classification margin
  publication-title: Appl Soft Comput
  doi: 10.1016/j.asoc.2019.105924
– volume: 104
  start-page: 52
  year: 2016
  end-page: 61
  ident: CR27
  article-title: Multi-label learning with label-specific feature reduction
  publication-title: Knowl-Based Syst
  doi: 10.1016/j.knosys.2016.04.012
– volume: 37
  start-page: 1757
  issue: 9
  year: 2004
  end-page: 1771
  ident: CR4
  article-title: Learning multi-label scene classification
  publication-title: Pattern Recogn
  doi: 10.1016/j.patcog.2004.03.009
– volume: 70
  start-page: 639
  issue: 5
  year: 2019
  end-page: 647
  ident: CR21
  article-title: Moment-rotation prediction of precast beam-to-column connections using extreme learning machine
  publication-title: Struct Eng Mech
– volume: 25
  start-page: 1992
  issue: 9
  year: 2014
  end-page: 2001
  ident: CR24
  article-title: Research of label-specific features on multi-label learning algorithm
  publication-title: J Softw
– ident: CR10
– volume: 30
  start-page: 1081
  issue: 6
  year: 2017
  end-page: 1094
  ident: CR37
  article-title: Multi-label learning with global and local label correlation
  publication-title: IEEE Trans Knowl Data Eng
  doi: 10.1109/TKDE.2017.2785795
– volume: 492
  start-page: 124
  year: 2019
  end-page: 146
  ident: CR12
  article-title: Improving multi-label classification with missing labels by learning label-specific features
  publication-title: Inf Sci
  doi: 10.1016/j.ins.2019.04.021
– ident: CR29
– volume: 7
  start-page: 1
  year: 2006
  end-page: 30
  ident: CR7
  article-title: Statistical comparisons of classifiers over multiple data sets
  publication-title: J Mach Learn Res
– ident: CR25
– volume: 12
  start-page: 191
  issue: 2
  year: 2018
  end-page: 202
  ident: CR35
  article-title: Binary relevance for multi-label learning: an overview
  publication-title: Front Comp Sci
  doi: 10.1007/s11704-017-7031-7
– volume: 26
  start-page: 1819
  issue: 8
  year: 2013
  end-page: 1837
  ident: CR34
  article-title: A review on multi-label learning algorithms
  publication-title: IEEE Trans Knowl Data Eng
  doi: 10.1109/TKDE.2013.39
– volume: 163
  start-page: 145
  year: 2019
  end-page: 158
  ident: CR9
  article-title: Joint multi-label classification and label correlations with missing labels and feature selection
  publication-title: Knowl-Based Syst
  doi: 10.1016/j.knosys.2018.08.018
– volume: 159
  start-page: 148
  year: 2018
  end-page: 157
  ident: CR36
  article-title: Multi-label learning with label-specific features by resolving label correlations
  publication-title: Knowl-Based Syst
  doi: 10.1016/j.knosys.2018.07.003
– volume: 23
  start-page: 89
  issue: 1
  year: 2001
  end-page: 109
  ident: CR14
  article-title: Machine learning for medical diagnosis: history, state of the art and perspective
  publication-title: Artif Intell Med
  doi: 10.1016/S0933-3657(01)00077-X
– volume: 31
  start-page: 427
  issue: 5
  year: 2019
  end-page: 435
  ident: CR18
  article-title: Estimation of moment and rotation of steel rack connections using extreme learning machine
  publication-title: Steel Compos Struct
– ident: CR3
– ident: CR15
– volume: 172
  start-page: 1897
  issue: 16–17
  year: 2008
  end-page: 1916
  ident: CR13
  article-title: Label ranking by learning pairwise preferences
  publication-title: Artif Intell
  doi: 10.1016/j.artint.2008.08.002
– volume: 18
  start-page: 1338
  issue: 10
  year: 2006
  end-page: 1351
  ident: CR31
  article-title: Multilabel neural networks with applications to functional genomics and text categorization
  publication-title: IEEE Trans Knowl Data Eng
  doi: 10.1109/TKDE.2006.162
– volume: 4
  start-page: 1
  issue: 3
  year: 2010
  end-page: 21
  ident: CR33
  article-title: Multilabel dimensionality reduction via dependence maximization
  publication-title: ACM Trans Knowl Discov Data (TKDD)
  doi: 10.1145/1839490.1839495
– volume: 2
  start-page: 183
  issue: 1
  year: 2009
  end-page: 202
  ident: CR2
  article-title: A fast iterative shrinkage-thresholding algorithm for linear inverse problems
  publication-title: SIAM J Imag Sci
  doi: 10.1137/080716542
– volume: 13
  start-page: 1393
  year: 2012
  end-page: 1434
  ident: CR19
  article-title: Feature selection via dependence maximization
  publication-title: J Mach Learn Res
– volume: 273
  start-page: 385
  year: 2018
  end-page: 394
  ident: CR23
  article-title: Multi-label learning based on label-specific features and local pairwise label correlation
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2017.07.044
– volume: 73
  start-page: 133
  issue: 2
  year: 2008
  end-page: 153
  ident: CR8
  article-title: Multilabel classification via calibrated label ranking
  publication-title: Mach Learn
  doi: 10.1007/s10994-008-5064-8
– volume: 28
  start-page: 3309
  issue: 12
  year: 2016
  end-page: 3323
  ident: CR11
  article-title: Learning label-specific features and class-dependent labels for multi-label classification
  publication-title: IEEE Trans Knowl Data Eng
  doi: 10.1109/TKDE.2016.2608339
– ident: CR5
– volume: 40
  start-page: 2038
  issue: 7
  year: 2007
  end-page: 2048
  ident: CR32
  article-title: ML-KNN: a lazy learning approach to multi-label learning
  publication-title: Pattern Recogn
  doi: 10.1016/j.patcog.2006.12.019
– volume: 85
  start-page: 333
  issue: 3
  year: 2011
  end-page: 359
  ident: CR17
  article-title: Classifier chains for multi-label classification
  publication-title: Mach Learn
  doi: 10.1007/s10994-011-5256-5
– volume: 31
  start-page: 229
  issue: 2
  year: 2018
  end-page: 242
  ident: CR1
  article-title: An efficient semi-supervised multi-label classifier capable of handling missing labels
  publication-title: IEEE Trans Knowl Data Eng
  doi: 10.1109/TKDE.2018.2833850
– ident: CR28
– ident: CR26
– ident: CR20
– volume: 2
  start-page: 183
  issue: 1
  year: 2009
  ident: 5884_CR2
  publication-title: SIAM J Imag Sci
  doi: 10.1137/080716542
– ident: 5884_CR25
– volume: 30
  start-page: 1081
  issue: 6
  year: 2017
  ident: 5884_CR37
  publication-title: IEEE Trans Knowl Data Eng
  doi: 10.1109/TKDE.2017.2785795
– volume: 159
  start-page: 148
  year: 2018
  ident: 5884_CR36
  publication-title: Knowl-Based Syst
  doi: 10.1016/j.knosys.2018.07.003
– volume: 172
  start-page: 1897
  issue: 16–17
  year: 2008
  ident: 5884_CR13
  publication-title: Artif Intell
  doi: 10.1016/j.artint.2008.08.002
– volume: 492
  start-page: 124
  year: 2019
  ident: 5884_CR12
  publication-title: Inf Sci
  doi: 10.1016/j.ins.2019.04.021
– volume: 13
  start-page: 1393
  year: 2012
  ident: 5884_CR19
  publication-title: J Mach Learn Res
– volume: 54
  start-page: 172
  year: 2017
  ident: 5884_CR16
  publication-title: Flow Meas Instrum
  doi: 10.1016/j.flowmeasinst.2017.01.007
– volume: 4
  start-page: 1
  issue: 3
  year: 2010
  ident: 5884_CR33
  publication-title: ACM Trans Knowl Discov Data (TKDD)
  doi: 10.1145/1839490.1839495
– volume: 23
  start-page: 89
  issue: 1
  year: 2001
  ident: 5884_CR14
  publication-title: Artif Intell Med
  doi: 10.1016/S0933-3657(01)00077-X
– ident: 5884_CR22
  doi: 10.1145/2487575.2487610
– ident: 5884_CR28
  doi: 10.1007/978-3-642-40988-2_37
– volume: 12
  start-page: 191
  issue: 2
  year: 2018
  ident: 5884_CR35
  publication-title: Front Comp Sci
  doi: 10.1007/s11704-017-7031-7
– volume: 37
  start-page: 107
  issue: 1
  year: 2015
  ident: 5884_CR30
  publication-title: IEEE Trans Pattern Anal Mach Intell
  doi: 10.1109/TPAMI.2014.2339815
– ident: 5884_CR10
  doi: 10.1109/ICME.2015.7177400
– volume: 18
  start-page: 1338
  issue: 10
  year: 2006
  ident: 5884_CR31
  publication-title: IEEE Trans Knowl Data Eng
  doi: 10.1109/TKDE.2006.162
– volume: 31
  start-page: 427
  issue: 5
  year: 2019
  ident: 5884_CR18
  publication-title: Steel Compos Struct
– ident: 5884_CR3
  doi: 10.1609/aaai.v28i1.8996
– ident: 5884_CR20
  doi: 10.1609/aaai.v24i1.7699
– volume: 28
  start-page: 3309
  issue: 12
  year: 2016
  ident: 5884_CR11
  publication-title: IEEE Trans Knowl Data Eng
  doi: 10.1109/TKDE.2016.2608339
– volume: 26
  start-page: 1819
  issue: 8
  year: 2013
  ident: 5884_CR34
  publication-title: IEEE Trans Knowl Data Eng
  doi: 10.1109/TKDE.2013.39
– volume: 73
  start-page: 133
  issue: 2
  year: 2008
  ident: 5884_CR8
  publication-title: Mach Learn
  doi: 10.1007/s10994-008-5064-8
– ident: 5884_CR5
– volume: 273
  start-page: 385
  year: 2018
  ident: 5884_CR23
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2017.07.044
– volume: 25
  start-page: 1992
  issue: 9
  year: 2014
  ident: 5884_CR24
  publication-title: J Softw
– volume: 104
  start-page: 52
  year: 2016
  ident: 5884_CR27
  publication-title: Knowl-Based Syst
  doi: 10.1016/j.knosys.2016.04.012
– volume: 70
  start-page: 639
  issue: 5
  year: 2019
  ident: 5884_CR21
  publication-title: Struct Eng Mech
– volume: 37
  start-page: 1757
  issue: 9
  year: 2004
  ident: 5884_CR4
  publication-title: Pattern Recogn
  doi: 10.1016/j.patcog.2004.03.009
– volume: 40
  start-page: 2038
  issue: 7
  year: 2007
  ident: 5884_CR32
  publication-title: Pattern Recogn
  doi: 10.1016/j.patcog.2006.12.019
– volume: 85
  start-page: 333
  issue: 3
  year: 2011
  ident: 5884_CR17
  publication-title: Mach Learn
  doi: 10.1007/s10994-011-5256-5
– volume: 86
  start-page: 105924
  year: 2020
  ident: 5884_CR6
  publication-title: Appl Soft Comput
  doi: 10.1016/j.asoc.2019.105924
– ident: 5884_CR15
– volume: 163
  start-page: 145
  year: 2019
  ident: 5884_CR9
  publication-title: Knowl-Based Syst
  doi: 10.1016/j.knosys.2018.08.018
– volume: 7
  start-page: 1
  year: 2006
  ident: 5884_CR7
  publication-title: J Mach Learn Res
– ident: 5884_CR26
  doi: 10.1109/ICDM.2014.125
– ident: 5884_CR29
– volume: 31
  start-page: 229
  issue: 2
  year: 2018
  ident: 5884_CR1
  publication-title: IEEE Trans Knowl Data Eng
  doi: 10.1109/TKDE.2018.2833850
SSID ssj0021753
Score 2.3020039
Snippet Label-specific features learning can effectively exploit the unique features of each label, which alleviates the high dimensionality and improves the...
SourceID crossref
springer
SourceType Enrichment Source
Index Database
Publisher
StartPage 9307
SubjectTerms Artificial Intelligence
Computational Intelligence
Control
Data Analytics and Machine Learning
Engineering
Mathematical Logic and Foundations
Mechatronics
Robotics
Title Feature-label dual-mapping for missing label-specific features learning
URI https://link.springer.com/article/10.1007/s00500-021-05884-1
Volume 25
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVLSH
  databaseName: SpringerLink Journals
  customDbUrl:
  mediaType: online
  eissn: 1433-7479
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0021753
  issn: 1432-7643
  databaseCode: AFBBN
  dateStart: 19970401
  isFulltext: true
  providerName: Library Specific Holdings
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 1433-7479
  dateEnd: 20241102
  omitProxy: true
  ssIdentifier: ssj0021753
  issn: 1432-7643
  databaseCode: BENPR
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: SpringerLINK - Czech Republic Consortium
  customDbUrl:
  eissn: 1433-7479
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0021753
  issn: 1432-7643
  databaseCode: AGYKE
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://link.springer.com
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: SpringerLink Journals (ICM)
  customDbUrl:
  eissn: 1433-7479
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0021753
  issn: 1432-7643
  databaseCode: U2A
  dateStart: 19970404
  isFulltext: true
  titleUrlDefault: http://www.springerlink.com/journals/
  providerName: Springer Nature
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8MwDLbQdoEDjwHiOeXADSL1lU49bmgPgdiJSeNUJa27yyho6_4_dpZWTEKTOPWQOAc7iT839meABx0mSikdSdVLcgpQvESaIkNpCIp4SANoaRffpvFkFr3M1dwVha3rbPf6SdLe1E2xG1OVeJJTCjyurpQU87QV03nRLp4F_SbMctyTBAQIO5LDdaUyf6-x645230KtixmdwrHDhqK_NeYZHGDZgZO674Jwx7ADR79IBM9hzChus0JJ9sSl4Noq-amZdmEhCJEKMiT_DxB2WHJlJWcHiWIrtRaub8TiAmaj4fvzRLr2CDILEr-SxjB1vQkIJGjCyAWBF2S-vTCOjFYYoaHgyM8KXxXGwzDMVM5moXA40DGSki6hVX6VeAWCghparIeJl5HL1orEfKVVGGhyckXuX4NfaynNHHc4t7BYpg3rsdVsSppNrWZTknlsZL63zBl7Zz_Vyk_dKVrvmX7zv-m3cBhYo3Oa7R20qtUG7wlMVKYL7f5oMJjyd_zxOuzavfQDfQHAMQ
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LTwIxEJ4YOKgHUdT4tgdvWrKvQvZIDA_lcYIET01buhxENLBc_PVOu92NGEPCuZ2mmU53vtnOfAPwIMKYMSYiyhrxFAMUL6YyUZpKhCKexgFtaRcHw3p3HL1O2MQVha3ybPf8SdJ-qYtiN0NV4lGTUuCZ6kqKMU85wgAlKEG52XnrtYpAy7FPIhRA9Igu1xXL_L_KpkPafA21TqZdgXG-vSy35L22TmVNff9hbtx1_8dw5FAnaWZmcgJ7elGFSt7RgbgLXoXDX_SEp9Ax-HC91BQtRc-JqdqiH8IQOswIYl2CJmL-NBA7TE3Npsk7IkkmtSKuI8XsDMbt1ui5S13jBaqC2E-plIYUXwYIPwSi7wRhkTZMfmE9koLpSEsMu3yV-CyRng5DxabmwDHQDkRdo_LPobT4XOgLIBgu4WINHXsKwYBgKOYzwcJAoPtMpv4l-Ln2uXKs5KY5xpwXfMpWbxz1xq3eOMo8FjJfGSfH1tlP-Xlwdz9XW6Zf7Tb9Hva7o0Gf91-GvWs4COzxmmTeGyily7W-RciSyjtnoT8kutz3
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8MwDI7QkBAceAwQb3LgBtH6yqYeJ2CM18SBSbtFSevuspVp6_4_dppWm4QmcW6cg53Inxt_nxm702EspdSRkJ04xQLFi4XJEhAGoYgH-AGs7OLnoN0fRm8jOVph8dtu9-pJsuQ0kEpTXrRmadaqiW8kW-IJai_wiGkpsP7ZjkgoAU_0MOjWJZfToURQgDgSk6-jzfy9x3pqWn8Xtemmd8j2HU7k3TKwR2wL8iY7qGYwcHclm2xvRVDwmL0QolvOQWBsYcKJZyWmmiQYxhzRKceg0r8Bbj8LYllSpxDPSqsFdzMkxids2Hv-fuwLNypBJEHsF8IYkrE3AQIGjXg5QyADpL0XtiOjJURgsFDyk8yXmfEgDBOZUoiwNA50G9BJp6yR_-RwxjgWOLhZB2IvwfStJZr5Ussw0JjwstQ_Z37lJZU4HXEaZzFRtQKy9axCzyrrWYU297XNrFTR2Lj6oXK-cjdqsWH5xf-W37Kdr6ee-ngdvF-y3cDGn7pvr1ijmC_hGjFGYW7sMfoFKiLESQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Feature-label+dual-mapping+for+missing+label-specific+features+learning&rft.jtitle=Soft+computing+%28Berlin%2C+Germany%29&rft.au=Zhang%2C+Lulu&rft.au=Cheng%2C+Yusheng&rft.au=Wang%2C+Yibin&rft.au=Pei%2C+Gensheng&rft.date=2021-07-01&rft.issn=1432-7643&rft.eissn=1433-7479&rft.volume=25&rft.issue=14&rft.spage=9307&rft.epage=9323&rft_id=info:doi/10.1007%2Fs00500-021-05884-1&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s00500_021_05884_1
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1432-7643&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1432-7643&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1432-7643&client=summon