Energy-Saving Deployment Optimization and Resource Management for UAV-Assisted Wireless Sensor Networks With NOMA
Energy-saving techniques are vital for the battery-powered sensor devices (SDs), which affect their lifetime. In this paper, we propose an air-and-ground cooperative wireless sensor network (AGWSN), wherein several UAVs are deployed as aerial access points (AAPs) to assist the terrestrial access poi...
        Saved in:
      
    
          | Published in | IEEE transactions on vehicular technology Vol. 71; no. 6; pp. 6609 - 6623 | 
|---|---|
| Main Authors | , , , , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
        New York
          IEEE
    
        01.06.2022
     The Institute of Electrical and Electronics Engineers, Inc. (IEEE)  | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 0018-9545 1939-9359  | 
| DOI | 10.1109/TVT.2022.3159681 | 
Cover
| Abstract | Energy-saving techniques are vital for the battery-powered sensor devices (SDs), which affect their lifetime. In this paper, we propose an air-and-ground cooperative wireless sensor network (AGWSN), wherein several UAVs are deployed as aerial access points (AAPs) to assist the terrestrial access point (TAP) for data collecting. The positions of the AAPs can be modified to approach the cell-edge SDs, therefore reducing the energy of the SDs expended in uploading data. To fully exploit the potential of the AGWSN, we formulate a joint AAP position optimization, channel allocation, and power control problem to minimize the total power consumption of all SDs subject to their decoding threshold. To solve the formulated problem, we first analyze the optimal user pairing rule in each cell and based on the rule propose a maximum-weighted-independent-set inspired algorithm for the AAP position optimization. Then, we remodel the channel allocation problem as an interference minimization problem and devise a K-CUT based algorithm to solve it. We further propose a low-complex iterative algorithm to obtain the optimal transmission power for each SD. The performance of the proposed algorithms is evaluated via theoretical analysis and numerical simulation. Simulation results indicate that if the intracell and intercell interference are not well coordinated, the superiorities of the AGWSN cannot be developed, and its performance is even worse than the traditional terrestrial network (TTN). Cooperated with our algorithms, the AGWSN significantly outperforms the TTN in terms of total power consumption and probability of successful decoding. | 
    
|---|---|
| AbstractList | Energy-saving techniques are vital for the battery-powered sensor devices (SDs), which affect their lifetime. In this paper, we propose an air-and-ground cooperative wireless sensor network (AGWSN), wherein several UAVs are deployed as aerial access points (AAPs) to assist the terrestrial access point (TAP) for data collecting. The positions of the AAPs can be modified to approach the cell-edge SDs, therefore reducing the energy of the SDs expended in uploading data. To fully exploit the potential of the AGWSN, we formulate a joint AAP position optimization, channel allocation, and power control problem to minimize the total power consumption of all SDs subject to their decoding threshold. To solve the formulated problem, we first analyze the optimal user pairing rule in each cell and based on the rule propose a maximum-weighted-independent-set inspired algorithm for the AAP position optimization. Then, we remodel the channel allocation problem as an interference minimization problem and devise a K-CUT based algorithm to solve it. We further propose a low-complex iterative algorithm to obtain the optimal transmission power for each SD. The performance of the proposed algorithms is evaluated via theoretical analysis and numerical simulation. Simulation results indicate that if the intracell and intercell interference are not well coordinated, the superiorities of the AGWSN cannot be developed, and its performance is even worse than the traditional terrestrial network (TTN). Cooperated with our algorithms, the AGWSN significantly outperforms the TTN in terms of total power consumption and probability of successful decoding. | 
    
| Author | Zhang, Ruonan Yu, Fei Richard Wang, Chen Zhai, Daosen Cao, Haotong  | 
    
| Author_xml | – sequence: 1 givenname: Daosen orcidid: 0000-0002-0660-6404 surname: Zhai fullname: Zhai, Daosen email: zhaidaosen@nwpu.edu.cn organization: School of Electronics and Information, Northwestern Polytechnical University, Xi'an, Shaanxi, China – sequence: 2 givenname: Chen orcidid: 0000-0002-5052-211X surname: Wang fullname: Wang, Chen email: chen-@mail.nwpu.edu.cn organization: School of Electronics and Information, Northwestern Polytechnical University, Xi'an, Shaanxi, China – sequence: 3 givenname: Ruonan orcidid: 0000-0003-0030-6758 surname: Zhang fullname: Zhang, Ruonan email: rzhang@nwpu.edu.cn organization: School of Electronics and Information, Northwestern Polytechnical University, Xi'an, Shaanxi, China – sequence: 4 givenname: Haotong orcidid: 0000-0001-8916-8093 surname: Cao fullname: Cao, Haotong email: haotong.cao@polyu.edu.hk organization: Department of Computing, Hong Kong Polytechnic University, Hong Kong SAR, China – sequence: 5 givenname: Fei Richard orcidid: 0000-0003-1006-7594 surname: Yu fullname: Yu, Fei Richard email: richardyu@cunet.carleton.ca organization: Department of Systems and Computer Engineering, Carleton University, Ottawa, ON, Canada  | 
    
| BookMark | eNp9kM1LAzEQxYMoWKt3wUvA89Z87-ZYtH6AWtCqxyW7O1ujbbZNUqX-9UYrHjx4Gob33szjt4e2XecAoUNKBpQSfTJ5nAwYYWzAqdSqoFuoRzXXmeZSb6MeIbTItBRyF-2F8JJWITTtoeXIgZ-us3vzZt0Un8Fi1q3n4CIeL6Kd2w8TbeewcQ2-g9CtfA34xjgzhW9T23n8MHzMhiHYEKHBT9bDDELA9-BCEm8hvnf-NSQhPuPb8c1wH-20Zhbg4Gf20cP5aHJ6mV2PL65Oh9dZzTSNWWVoVbU5zRvgjBeK5AXnOSctF8K0ShumpGpFI2iTM9rIStSCKGlqxZqKtoz30fHm7sJ3yxWEWL6k-i69LJkqCNc5lyK5yMZV-y4ED2258HZu_LqkpPwCWyaw5RfY8gdsiqg_kdrGb0zRGzv7L3i0CVoA-P2TeiiZC_4JS2mH4w | 
    
| CODEN | ITVTAB | 
    
| CitedBy_id | crossref_primary_10_1109_TVT_2024_3388512 crossref_primary_10_1016_j_dcan_2023_09_003 crossref_primary_10_1007_s11276_023_03372_y crossref_primary_10_1109_TNSE_2024_3489554 crossref_primary_10_1007_s00500_023_09222_5 crossref_primary_10_1155_2022_2279362 crossref_primary_10_3390_en17184737 crossref_primary_10_1109_TCOMM_2023_3324029 crossref_primary_10_3390_s23125537 crossref_primary_10_1080_01468030_2024_2342269 crossref_primary_10_1109_TCOMM_2024_3406400 crossref_primary_10_3390_app13127140 crossref_primary_10_1016_j_asej_2024_102644 crossref_primary_10_3390_drones9020108 crossref_primary_10_1109_TMC_2024_3382668 crossref_primary_10_1109_TVT_2024_3387752 crossref_primary_10_1016_j_seta_2023_103183 crossref_primary_10_1109_TCE_2023_3325131 crossref_primary_10_3390_electronics11132071 crossref_primary_10_1002_dac_5805 crossref_primary_10_1016_j_future_2022_07_011 crossref_primary_10_1109_JIOT_2024_3408216 crossref_primary_10_1007_s11276_025_03909_3 crossref_primary_10_1109_ACCESS_2023_3313000 crossref_primary_10_1109_LWC_2023_3308990 crossref_primary_10_1186_s13677_023_00472_0 crossref_primary_10_1080_00051144_2023_2208462 crossref_primary_10_1109_TVT_2022_3177741 crossref_primary_10_1016_j_aej_2023_06_038 crossref_primary_10_1016_j_aeue_2023_154619 crossref_primary_10_1109_LWC_2022_3168138 crossref_primary_10_1155_2022_4542705  | 
    
| Cites_doi | 10.1109/JIOT.2018.2816597 10.23919/JCIN.2020.9055113 10.1109/ACCESS.2019.2935169 10.1109/MNET.2017.1600280 10.1109/TVT.2019.2939186 10.1109/JIOT.2018.2878834 10.1109/TII.2018.2852491 10.1109/JIOT.2020.2980035 10.1109/TCOMM.2020.3037345 10.1109/GLOBECOM42002.2020.9322263 10.1109/TVT.2019.2959808 10.1109/TVT.2018.2839562 10.1016/j.comnet.2020.107660 10.1109/TVT.2020.2989455 10.1109/JIOT.2019.2897119 10.1109/TWC.2019.2911939 10.1007/s11432-020-2955-6 10.1109/49.414651 10.1109/GLOBECOM42002.2020.9322351 10.1109/TCOMM.2018.2881120 10.1109/TCOMM.2020.2992720 10.1109/SSD.2018.8570695 10.1109/ICCSEA49143.2020.9132941 10.1109/MCOM.2015.7263349 10.1109/JIOT.2020.3005271 10.1109/JIOT.2017.2787800 10.1109/ICC40277.2020.9149102 10.1109/JIOT.2020.3015702 10.1109/TNET.2020.2970744 10.1109/ICOIN.2018.8343195 10.1109/JIOT.2019.2903165 10.1109/TVT.2020.3038387 10.1109/TWC.2020.3041339 10.1109/TVT.2021.3074991 10.1109/TCOMM.2020.2995373 10.1007/978-1-84628-970-5 10.1109/JIOT.2019.2914947 10.1109/VTCSpring.2013.6692652 10.1109/ACCESS.2020.3019080 10.1109/JIOT.2020.3004432 10.1109/JPROC.2019.2952892 10.1109/JIOT.2019.2951584  | 
    
| ContentType | Journal Article | 
    
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022 | 
    
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022 | 
    
| DBID | 97E RIA RIE AAYXX CITATION 7SP 8FD FR3 KR7 L7M  | 
    
| DOI | 10.1109/TVT.2022.3159681 | 
    
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Electronics & Communications Abstracts Technology Research Database Engineering Research Database Civil Engineering Abstracts Advanced Technologies Database with Aerospace  | 
    
| DatabaseTitle | CrossRef Civil Engineering Abstracts Engineering Research Database Technology Research Database Advanced Technologies Database with Aerospace Electronics & Communications Abstracts  | 
    
| DatabaseTitleList | Civil Engineering Abstracts  | 
    
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher  | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Engineering | 
    
| EISSN | 1939-9359 | 
    
| EndPage | 6623 | 
    
| ExternalDocumentID | 10_1109_TVT_2022_3159681 9736574  | 
    
| Genre | orig-research | 
    
| GrantInformation_xml | – fundername: Aeronautical Science Foundation of China grantid: 2020Z073053004 funderid: 10.13039/501100004750 – fundername: National Key Research and Development Program of China grantid: 2020YFB1807003 – fundername: Natural Science Fundamental Research Program of Shaanxi Province grantid: 2021JM-069 – fundername: National Natural Science Foundation of China grantid: 61901381; 62171385 funderid: 10.13039/501100001809 – fundername: Key Research Program and Industrial Innovation Chain Project of Shaanxi Province grantid: 2019ZDLGY07-10 – fundername: State Key Laboratory of Integrated Services Networks of Xidian University grantid: ISN21-06  | 
    
| GroupedDBID | -~X .DC 0R~ 29I 3EH 4.4 5GY 5VS 6IK 97E AAIKC AAJGR AAMNW AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACGFS ACIWK ACNCT AENEX AETIX AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD HZ~ H~9 IAAWW IBMZZ ICLAB IFIPE IFJZH IPLJI JAVBF LAI M43 MS~ O9- OCL P2P RIA RIE RNS RXW TAE TN5 VH1 AAYXX CITATION 7SP 8FD FR3 KR7 L7M  | 
    
| ID | FETCH-LOGICAL-c291t-ba1bbf717de3238607833730f344af69a2656f4d41d721d5b4c4065ac62db1f23 | 
    
| IEDL.DBID | RIE | 
    
| ISSN | 0018-9545 | 
    
| IngestDate | Mon Jun 30 10:13:24 EDT 2025 Wed Oct 01 02:27:05 EDT 2025 Thu Apr 24 23:04:48 EDT 2025 Wed Aug 27 02:23:55 EDT 2025  | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Issue | 6 | 
    
| Language | English | 
    
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037  | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-c291t-ba1bbf717de3238607833730f344af69a2656f4d41d721d5b4c4065ac62db1f23 | 
    
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14  | 
    
| ORCID | 0000-0002-5052-211X 0000-0003-1006-7594 0000-0003-0030-6758 0000-0001-8916-8093 0000-0002-0660-6404  | 
    
| PQID | 2680397354 | 
    
| PQPubID | 85454 | 
    
| PageCount | 15 | 
    
| ParticipantIDs | crossref_citationtrail_10_1109_TVT_2022_3159681 proquest_journals_2680397354 ieee_primary_9736574 crossref_primary_10_1109_TVT_2022_3159681  | 
    
| ProviderPackageCode | CITATION AAYXX  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 2022-06-01 | 
    
| PublicationDateYYYYMMDD | 2022-06-01 | 
    
| PublicationDate_xml | – month: 06 year: 2022 text: 2022-06-01 day: 01  | 
    
| PublicationDecade | 2020 | 
    
| PublicationPlace | New York | 
    
| PublicationPlace_xml | – name: New York | 
    
| PublicationTitle | IEEE transactions on vehicular technology | 
    
| PublicationTitleAbbrev | TVT | 
    
| PublicationYear | 2022 | 
    
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE)  | 
    
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)  | 
    
| References | ref13 ref35 ref12 ref34 ref15 ref37 ref14 ref36 ref31 ref30 ref11 ref33 ref10 ref32 Bondy (ref42) 2008 ref2 ref1 ref17 ref39 ref16 ref38 ref19 ref18 (ref41) 2017 ref24 ref23 ref26 ref25 ref20 Hosein (ref40) 2013 ref22 ref44 ref21 ref43 ref28 ref27 ref29 ref8 ref7 ref9 ref4 ref3 ref6 ref5  | 
    
| References_xml | – ident: ref35 doi: 10.1109/JIOT.2018.2816597 – issue: TR 38.901 V14.0.0 year: 2017 ident: ref41 article-title: Study on channel model for frequencies from 0.5 to 100 GHz (release 14) – ident: ref14 doi: 10.23919/JCIN.2020.9055113 – ident: ref33 doi: 10.1109/ACCESS.2019.2935169 – ident: ref4 doi: 10.1109/MNET.2017.1600280 – ident: ref22 doi: 10.1109/TVT.2019.2939186 – ident: ref9 doi: 10.1109/JIOT.2018.2878834 – ident: ref2 doi: 10.1109/TII.2018.2852491 – ident: ref27 doi: 10.1109/JIOT.2020.2980035 – ident: ref36 doi: 10.1109/TCOMM.2020.3037345 – ident: ref16 doi: 10.1109/GLOBECOM42002.2020.9322263 – start-page: 332 volume-title: Proc. IEEE 24th Annu. Int. Symp. Pers., Indoor, Mobile Radio Commun. year: 2013 ident: ref40 article-title: Sparse code multiple access – ident: ref8 doi: 10.1109/TVT.2019.2959808 – ident: ref10 doi: 10.1109/TVT.2018.2839562 – ident: ref30 doi: 10.1016/j.comnet.2020.107660 – ident: ref17 doi: 10.1109/TVT.2020.2989455 – ident: ref6 doi: 10.1109/JIOT.2019.2897119 – ident: ref13 doi: 10.1109/TWC.2019.2911939 – ident: ref32 doi: 10.1007/s11432-020-2955-6 – ident: ref44 doi: 10.1109/49.414651 – ident: ref23 doi: 10.1109/GLOBECOM42002.2020.9322351 – ident: ref21 doi: 10.1109/TCOMM.2018.2881120 – ident: ref20 doi: 10.1109/TCOMM.2020.2992720 – ident: ref29 doi: 10.1109/SSD.2018.8570695 – ident: ref3 doi: 10.1109/ICCSEA49143.2020.9132941 – ident: ref38 doi: 10.1109/MCOM.2015.7263349 – ident: ref15 doi: 10.1109/JIOT.2020.3005271 – ident: ref1 doi: 10.1109/JIOT.2017.2787800 – ident: ref11 doi: 10.1109/ICC40277.2020.9149102 – ident: ref24 doi: 10.1109/JIOT.2020.3015702 – ident: ref12 doi: 10.1109/TNET.2020.2970744 – ident: ref5 doi: 10.1109/ICOIN.2018.8343195 – ident: ref19 doi: 10.1109/JIOT.2019.2903165 – ident: ref34 doi: 10.1109/TVT.2020.3038387 – ident: ref43 doi: 10.1109/TWC.2020.3041339 – ident: ref37 doi: 10.1109/TVT.2021.3074991 – ident: ref28 doi: 10.1109/TCOMM.2020.2995373 – volume-title: Graph Theory year: 2008 ident: ref42 doi: 10.1007/978-1-84628-970-5 – ident: ref18 doi: 10.1109/JIOT.2019.2914947 – ident: ref39 doi: 10.1109/VTCSpring.2013.6692652 – ident: ref25 doi: 10.1109/ACCESS.2020.3019080 – ident: ref26 doi: 10.1109/JIOT.2020.3004432 – ident: ref31 doi: 10.1109/JPROC.2019.2952892 – ident: ref7 doi: 10.1109/JIOT.2019.2951584  | 
    
| SSID | ssj0014491 | 
    
| Score | 2.5593543 | 
    
| Snippet | Energy-saving techniques are vital for the battery-powered sensor devices (SDs), which affect their lifetime. In this paper, we propose an air-and-ground... | 
    
| SourceID | proquest crossref ieee  | 
    
| SourceType | Aggregation Database Enrichment Source Index Database Publisher  | 
    
| StartPage | 6609 | 
    
| SubjectTerms | Algorithms Autonomous aerial vehicles Computer simulation Interference Iterative algorithms Iterative methods NOMA non-orthogonal multiple access Optimization Power consumption Power control Power management Resource management sensor networks Sensors unmanned aerial vehicle Unmanned aerial vehicles Wireless networks Wireless sensor networks  | 
    
| Title | Energy-Saving Deployment Optimization and Resource Management for UAV-Assisted Wireless Sensor Networks With NOMA | 
    
| URI | https://ieeexplore.ieee.org/document/9736574 https://www.proquest.com/docview/2680397354  | 
    
| Volume | 71 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 1939-9359 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0014491 issn: 0018-9545 databaseCode: RIE dateStart: 19670101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1JTxsxFH4CTvRQKIsalsoHLkg4Ga8zc4xaEEJKOJAgbiNvIyQgoWVy4dfzPEtYWqHeRvLYsvQ9v_c9-y0AR1xltky9oD4LgcpUJhRZkabCeFlaZX1W19IbjfX5VF7cqJsVOFnmwoQQ6uCz0I-f9Vu-n7tFvCob5KnQKpWrsJpmusnVWr4YSNl2x2N4gJEWdE-SST6YXE_QEeQc_VOV64y9M0F1T5W_FHFtXc42YNTtqwkquesvKtt3zx9KNv7vxjfha0szybCRi2-wEmZb8OVN8cFt-H1ap_3RKxPvFMivEFv_xnXIJaqRhzY_k5iZJ90dP3kNliFIdsl0eE0R3ygpnsQ42nvUm-QKPWMcHDcB5k84UN2S8eVouAPTs9PJz3PaNmCgjuesotYwi0iy1AeBpl3HJz-BKqEUUppS54YjGyyll8yjI-mVlQ75gTJOc29ZycUurM3ms_AdCLJItAq54g79M5YyY63LnGJGCpSShPdg0GFSuLY6eWyScV_UXkqSF4hiEVEsWhR7cLyc8dhU5vjk3-0IyvK_Fo8eHHSwF-3RfSq4zhIkaULJvX_P2of1uHYTL3YAa9WfRThEZlLZH7VIvgDjWd-w | 
    
| linkProvider | IEEE | 
    
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LbxMxEB6VcoAeyqOgpi3gAxcknKzt8T6OEW0VoEkPTareVn6tkNqmQDcXfn3H-whQEOK2ku3dlb7x-BvPC-Ct1LmtMq-4z0PgmGHCiRWlXBmPldXW500tveksnSzw04W-2ID361yYEEITfBaG8bHx5fsbt4pXZaMiU6nO8AE81Iio22yttc8AseuPJ2gLEzHonZJJMZqfz8kUlJIsVF2kufjtEGq6qvyhipvz5fgJTPs_a8NKLoer2g7dj3tFG__315_Cdkc02biVjGewEZbPYeuX8oM78O2oSfzjZybeKrDDEJv_xvewU1Ik112GJjNLz_pbfvYzXIYR3WWL8TknhKOseBYjaa9Ic7Izso1pcNaGmN_SQP2FzU6n4xewOD6af5jwrgUDd7IQNbdGWMJSZD4oOtzT6PRTpBQqhWiqtDCS-GCFHoUnU9Jri44YgjYuld6KSqqXsLm8WYZdYMQj6VwotHRkoYlMGGtd7rQwqEhOEjmAUY9J6br65LFNxlXZ2ClJURKKZUSx7FAcwLv1iq9tbY5_zN2JoKzndXgM4KCHvew2720p0zwhmqY07v191Rt4NJlPT8qTj7PP-_A4fqeNHjuAzfr7KrwinlLb14143gHBZ-L9 | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Energy-Saving+Deployment+Optimization+and+Resource+Management+for+UAV-Assisted+Wireless+Sensor+Networks+With+NOMA&rft.jtitle=IEEE+transactions+on+vehicular+technology&rft.au=Zhai%2C+Daosen&rft.au=Wang%2C+Chen&rft.au=Zhang%2C+Ruonan&rft.au=Cao%2C+Haotong&rft.date=2022-06-01&rft.issn=0018-9545&rft.eissn=1939-9359&rft.volume=71&rft.issue=6&rft.spage=6609&rft.epage=6623&rft_id=info:doi/10.1109%2FTVT.2022.3159681&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TVT_2022_3159681 | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0018-9545&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0018-9545&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0018-9545&client=summon |