Tensor-Based Channel Estimation for Dual-Polarized Massive MIMO Systems

The 3GPP suggests to combine dual polarized (DP) antenna arrays with the double directional (DD) channel model for downlink channel estimation. This combination strikes a good balance between high-capacity communications and parsimonious channel modeling, and also brings limited feedback schemes for...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on signal processing Vol. 66; no. 24; pp. 6390 - 6403
Main Authors Qian, Cheng, Fu, Xiao, Sidiropoulos, Nicholas D., Yang, Ye
Format Journal Article
LanguageEnglish
Published New York IEEE 15.12.2018
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN1053-587X
1941-0476
DOI10.1109/TSP.2018.2873506

Cover

More Information
Summary:The 3GPP suggests to combine dual polarized (DP) antenna arrays with the double directional (DD) channel model for downlink channel estimation. This combination strikes a good balance between high-capacity communications and parsimonious channel modeling, and also brings limited feedback schemes for downlink channel state information within reach-since such channel can be fully characterized by several key parameters. However, most existing channel estimation work under the DD model has not yet considered DP arrays, perhaps because of the complex array manifold and the resulting difficulty in algorithm design. In this paper, we first reveal that the DD channel with DP arrays at the transmitter and receiver can be naturally modeled as a low-rank tensor, and thus the key parameters of the channel can be effectively estimated via tensor decomposition algorithms. On the theory side, we show that the DD-DP parameters are identifiable under mild conditions, by leveraging identifiability of low-rank tensors. Furthermore, a compressed tensor decomposition algorithm is developed for alleviating the downlink training overhead. We show that, by using judiciously designed pilot structure, the channel parameters are still guaranteed to be identified via the compressed tensor decomposition formulation even when the size of the pilot sequence is much smaller than what is needed for conventional channel identification methods, such as linear least squares and matched filtering. Extensive simulations are employed to showcase the effectiveness of the proposed method.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:1053-587X
1941-0476
DOI:10.1109/TSP.2018.2873506