Computing a Nearest Correlation Matrix with Factor Structure
An n x n correlation matrix has k factor structure if its off-diagonal agrees with that of a rank k matrix. Such correlation matrices arise, for example, in factor models of collateralized debt obligations (CDOs) and multivariate time series. We analyze the properties of these matrices and, in parti...
Saved in:
| Published in | SIAM journal on matrix analysis and applications Vol. 31; no. 5; pp. 2603 - 2622 |
|---|---|
| Main Authors | , , |
| Format | Journal Article |
| Language | English |
| Published |
Philadelphia, PA
Society for Industrial and Applied Mathematics
01.01.2010
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 0895-4798 1095-7162 |
| DOI | 10.1137/090776718 |
Cover
| Abstract | An n x n correlation matrix has k factor structure if its off-diagonal agrees with that of a rank k matrix. Such correlation matrices arise, for example, in factor models of collateralized debt obligations (CDOs) and multivariate time series. We analyze the properties of these matrices and, in particular, obtain an explicit formula for the rank in the one factor case. Our main focus is on the nearness problem of finding the nearest k factor correlation matrix C(X) = diag(I - XX theta )+XX theta to a given symmetric matrix, subject to natural nonlinear constraints on the elements of the n x k matrix X, where distance is measured in the Frobenius norm. For a special one parameter case we obtain an explicit solution. For the general k factor case we obtain the gradient and Hessian of the objective function and derive an instructive result on the positive definiteness of the Hessian when k = 1. We investigate several numerical methods for solving the nearness problem: the alternating directions method; a principal factors method used by Anderson, Sidenius, and Basu in the CDO application, which we show is equivalent to the alternating projections method and lacks convergence results; the spectral projected gradient method of Birgin, Martinez, and Raydan; and Newton and sequential quadratic programming methods. The methods differ in whether or not they can take account of the nonlinear constraints and in their convergence properties. Our numerical experiments show that the performance of the methods depends strongly on the problem, but that the spectral projected gradient method is the clear winner. |
|---|---|
| AbstractList | An n x n correlation matrix has k factor structure if its off-diagonal agrees with that of a rank k matrix. Such correlation matrices arise, for example, in factor models of collateralized debt obligations (CDOs) and multivariate time series. We analyze the properties of these matrices and, in particular, obtain an explicit formula for the rank in the one factor case. Our main focus is on the nearness problem of finding the nearest k factor correlation matrix C(X) = diag(I - XX theta )+XX theta to a given symmetric matrix, subject to natural nonlinear constraints on the elements of the n x k matrix X, where distance is measured in the Frobenius norm. For a special one parameter case we obtain an explicit solution. For the general k factor case we obtain the gradient and Hessian of the objective function and derive an instructive result on the positive definiteness of the Hessian when k = 1. We investigate several numerical methods for solving the nearness problem: the alternating directions method; a principal factors method used by Anderson, Sidenius, and Basu in the CDO application, which we show is equivalent to the alternating projections method and lacks convergence results; the spectral projected gradient method of Birgin, Martinez, and Raydan; and Newton and sequential quadratic programming methods. The methods differ in whether or not they can take account of the nonlinear constraints and in their convergence properties. Our numerical experiments show that the performance of the methods depends strongly on the problem, but that the spectral projected gradient method is the clear winner. |
| Author | Borsdorf, Rüdiger Raydan, Marcos Higham, Nicholas J. |
| Author_xml | – sequence: 1 givenname: Rüdiger surname: Borsdorf fullname: Borsdorf, Rüdiger – sequence: 2 givenname: Nicholas J. surname: Higham fullname: Higham, Nicholas J. – sequence: 3 givenname: Marcos surname: Raydan fullname: Raydan, Marcos |
| BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=23817807$$DView record in Pascal Francis |
| BookMark | eNpt0E1LAzEQBuAgFWyrB_9BLiIe1k72I8mCF1laFaoe1PMym81qZLupSRb137u1pQcRApPDM8PMOyGjznaakFMGl4wlYgY5CMEFkwdkzCDPIsF4PCJjkMM_Fbk8IhPv3wEYT3M2JleFXa37YLpXivRBo9M-0MI6p1sMxnb0HoMzX_TThDe6QBWso0_B9Sr0Th-TwwZbr092dUpeFvPn4jZaPt7cFdfLSMU5C1GV8IyjqnRTqTipNXChFCA0uajThFVaS15pCZUQaQOAaVrXKFQGNauHJ5MpOd_OXTv70Q8blivjlW5b7LTtfTncnPMkE2KQZzuJXmHbOOyU8eXamRW67zJOJBMSNu5i65Sz3jvd7AmDchNkuQ9ysLM_VpnwG05waNp_On4A7Kt2Qg |
| CODEN | SJMAEL |
| CitedBy_id | crossref_primary_10_2139_ssrn_2786947 crossref_primary_10_1137_140989078 crossref_primary_10_2139_ssrn_2678834 crossref_primary_10_1111_jbg_12004 crossref_primary_10_3390_math10101649 crossref_primary_10_1007_s10107_018_1327_8 crossref_primary_10_1016_j_csda_2013_10_004 crossref_primary_10_1093_imanum_dry069 crossref_primary_10_1007_s10589_010_9374_y crossref_primary_10_1137_15M1011020 crossref_primary_10_1155_2020_6046729 crossref_primary_10_1137_15M1052007 crossref_primary_10_1016_j_laa_2016_08_013 crossref_primary_10_1080_0954898X_2022_2049644 crossref_primary_10_3390_sym13122423 crossref_primary_10_1016_j_jedc_2015_10_001 crossref_primary_10_1080_00295639_2022_2153638 crossref_primary_10_1016_j_jbankfin_2016_07_002 crossref_primary_10_1007_s11075_020_01063_9 crossref_primary_10_1080_00295639_2023_2190861 crossref_primary_10_1016_j_compeleceng_2024_109201 crossref_primary_10_1080_10920277_2017_1317273 crossref_primary_10_1109_TCE_2023_3245821 crossref_primary_10_1080_10556788_2022_2142583 crossref_primary_10_1007_s10957_019_01606_8 crossref_primary_10_1016_j_laa_2024_04_035 |
| Cites_doi | 10.1145/502800.502803 10.1016/0167-7152(85)90032-X 10.1007/s10589-008-9231-4 10.1002/wilm.42820030215 10.1080/14697680400016182 10.3934/jimo.2007.3.701 10.1016/j.laa.2006.11.024 10.1137/050624509 10.1137/0801010 10.1111/j.2517-6161.1960.tb00381.x 10.18637/jss.v032.i04 10.1137/S1052623497330963 10.2307/2331211 10.1080/13504860600658976 10.1007/s10092-005-0107-z 10.1016/j.insmatheco.2007.08.006 10.1002/wilj.6 10.1016/j.jbankfin.2006.10.018 10.1029/2008WR007355 10.1093/imanum/drn085 10.1137/S1052623493250780 10.1016/S0378-4266(99)00053-9 10.1016/S0024-3795(02)00551-7 10.1016/j.laa.2009.01.004 10.1080/14697680802238467 10.1137/S003614450242889 10.1016/0167-7152(84)90001-4 10.1093/imanum/22.3.329 10.1137/0319022 10.1007/BF02289233 |
| ContentType | Journal Article |
| Copyright | 2015 INIST-CNRS |
| Copyright_xml | – notice: 2015 INIST-CNRS |
| DBID | AAYXX CITATION IQODW 7SC 8FD JQ2 L7M L~C L~D |
| DOI | 10.1137/090776718 |
| DatabaseName | CrossRef Pascal-Francis Computer and Information Systems Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
| DatabaseTitle | CrossRef Computer and Information Systems Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Advanced Technologies Database with Aerospace ProQuest Computer Science Collection Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Computer and Information Systems Abstracts |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Mathematics Statistics |
| EISSN | 1095-7162 |
| EndPage | 2622 |
| ExternalDocumentID | 23817807 10_1137_090776718 |
| GroupedDBID | -~X .4S .DC 123 186 4.4 7WY 7X2 7XC 88I 8CJ 8FE 8FG 8FH 8FL 8G5 8V8 AALVN AASXH AAYXX ABDBF ABDPE ABJCF ABKAD ABMZU ABUWG ACGFO ACGOD ACIWK ACPRK ACUHS ADBBV AEMOZ AENEX AFFNX AFKRA AFRAH AHQJS AKVCP ALMA_UNASSIGNED_HOLDINGS ANXRF ARAPS ARCSS ATCPS AZQEC BBNVY BENPR BEZIV BGLVJ BHPHI BPHCQ CCPQU CITATION CS3 CZ9 D0L D1I D1J D1K DQ2 DU5 DWQXO EAP EBR EBS EBU ECS EDO EJD EMK EST ESX FA8 FRNLG GNUQQ GUQSH H13 HCIFZ H~9 I-F K1G K6- K60 K6V K6~ K7- KB. KC. L6V LK5 LK8 M0C M0K M1Q M2O M2P M7P M7R M7S P1Q P2P P62 PATMY PDBOC PHGZM PHGZT PQBIZ PQBZA PQGLB PQQKQ PROAC PTHSS PUEGO PYCSY RJG RNS RSI TH9 TN5 TUS YNT ZKB ZY4 IQODW 7SC 8FD JQ2 L7M L~C L~D |
| ID | FETCH-LOGICAL-c291t-b3656acbefbc23de067cc0a0f97d431bee86be80b774f00a44dda7c50d1dd1d83 |
| ISSN | 0895-4798 |
| IngestDate | Thu Sep 04 18:44:50 EDT 2025 Mon Jul 21 09:15:40 EDT 2025 Wed Oct 01 06:54:15 EDT 2025 Thu Apr 24 22:57:42 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 5 |
| Keywords | spectral projected gradient method Optimization method Numerical method Multivariate analysis Computing Convergence Projection method 90C30 Sequential method 65F30 Newton method Gradient method Alternating direction method alternating projections method Spectral method Factor model alternating directions method Correlation matrix Frobenius norm Time series Covariance matrix Quadratic programming factor structure Constrained optimization Numerical analysis Symmetric matrix Linear algebra Problem solving Newton's method Objective function positive semidefinite matrix principal factors method Performance patterned covariance matrix |
| Language | English |
| License | CC BY 4.0 |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c291t-b3656acbefbc23de067cc0a0f97d431bee86be80b774f00a44dda7c50d1dd1d83 |
| Notes | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 |
| PQID | 907963577 |
| PQPubID | 23500 |
| PageCount | 20 |
| ParticipantIDs | proquest_miscellaneous_907963577 pascalfrancis_primary_23817807 crossref_primary_10_1137_090776718 crossref_citationtrail_10_1137_090776718 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2010-01-00 2010 20100101 |
| PublicationDateYYYYMMDD | 2010-01-01 |
| PublicationDate_xml | – month: 01 year: 2010 text: 2010-01-00 |
| PublicationDecade | 2010 |
| PublicationPlace | Philadelphia, PA |
| PublicationPlace_xml | – name: Philadelphia, PA |
| PublicationTitle | SIAM journal on matrix analysis and applications |
| PublicationYear | 2010 |
| Publisher | Society for Industrial and Applied Mathematics |
| Publisher_xml | – name: Society for Industrial and Applied Mathematics |
| References | Roy S. N. (R39) 1960; 22 R40 R43 R20 R42 R44 R25 R47 R24 R46 Lawley D. N. (R27) 1962; 12 R49 R26 R2 R4 R5 R6 R8 Varadhan R. (R48) 2009; 32 R50 R51 R10 R32 R12 R14 R36 R35 R16 R38 R37 R18 Gregory J. (R15) 2004; 17 |
| References_xml | – ident: R5 doi: 10.1145/502800.502803 – ident: R50 doi: 10.1016/0167-7152(85)90032-X – ident: R37 doi: 10.1007/s10589-008-9231-4 – ident: R2 doi: 10.1002/wilm.42820030215 – ident: R35 doi: 10.1080/14697680400016182 – ident: R38 doi: 10.3934/jimo.2007.3.701 – ident: R16 doi: 10.1016/j.laa.2006.11.024 – ident: R36 doi: 10.1137/050624509 – ident: R43 doi: 10.1137/0801010 – volume: 22 start-page: 348 year: 1960 ident: R39 publication-title: J. Roy. Statist. Soc. Ser. B doi: 10.1111/j.2517-6161.1960.tb00381.x – volume: 32 start-page: 1 year: 2009 ident: R48 publication-title: J. Statist. Software doi: 10.18637/jss.v032.i04 – ident: R4 doi: 10.1137/S1052623497330963 – ident: R20 doi: 10.2307/2331211 – ident: R32 doi: 10.1080/13504860600658976 – volume: 12 start-page: 209 year: 1962 ident: R27 publication-title: J. Roy. Statist. Soc. Ser. D (The Statistician) – ident: R46 doi: 10.1007/s10092-005-0107-z – ident: R47 doi: 10.1016/j.insmatheco.2007.08.006 – ident: R12 doi: 10.1002/wilj.6 – volume: 17 start-page: 87 year: 2004 ident: R15 publication-title: Risk – ident: R14 doi: 10.1016/j.jbankfin.2006.10.018 – ident: R49 doi: 10.1029/2008WR007355 – ident: R6 doi: 10.1093/imanum/drn085 – ident: R44 doi: 10.1137/S1052623493250780 – ident: R8 doi: 10.1016/S0378-4266(99)00053-9 – ident: R51 doi: 10.1016/S0024-3795(02)00551-7 – ident: R40 doi: 10.1016/j.laa.2009.01.004 – ident: R42 doi: 10.1080/14697680802238467 – ident: R25 doi: 10.1137/S003614450242889 – ident: R26 doi: 10.1016/0167-7152(84)90001-4 – ident: R18 doi: 10.1093/imanum/22.3.329 – ident: R10 doi: 10.1137/0319022 – ident: R24 doi: 10.1007/BF02289233 |
| SSID | ssj0016491 |
| Score | 2.0556614 |
| Snippet | An n x n correlation matrix has k factor structure if its off-diagonal agrees with that of a rank k matrix. Such correlation matrices arise, for example, in... |
| SourceID | proquest pascalfrancis crossref |
| SourceType | Aggregation Database Index Database Enrichment Source |
| StartPage | 2603 |
| SubjectTerms | Algebra Correlation Exact sciences and technology Inference from stochastic processes; time series analysis k factors Linear and multilinear algebra, matrix theory Mathematical analysis Mathematical models Mathematics Matrices Matrix methods Nonlinearity Numerical analysis Numerical analysis. Scientific computation Numerical linear algebra Numerical methods in probability and statistics Probability and statistics Sciences and techniques of general use Spectra Statistics |
| Title | Computing a Nearest Correlation Matrix with Factor Structure |
| URI | https://www.proquest.com/docview/907963577 |
| Volume | 31 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVEBS databaseName: EBSCOhost Academic Search Ultimate customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn eissn: 1095-7162 dateEnd: 20110731 omitProxy: true ssIdentifier: ssj0016491 issn: 0895-4798 databaseCode: ABDBF dateStart: 19970101 isFulltext: true titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn providerName: EBSCOhost – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 1095-7162 dateEnd: 20241105 omitProxy: true ssIdentifier: ssj0016491 issn: 0895-4798 databaseCode: BENPR dateStart: 19880101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Technology Collection customDbUrl: eissn: 1095-7162 dateEnd: 20241105 omitProxy: true ssIdentifier: ssj0016491 issn: 0895-4798 databaseCode: 8FG dateStart: 19880101 isFulltext: true titleUrlDefault: https://search.proquest.com/technologycollection1 providerName: ProQuest |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3ri9NAEF9q78uJiJ7K1UcJ4gehRNI8N-CX2GsvJ6Q9cinUT2Wz2YCg6WFbEPGPdya72dt6Bz6ghLIs2zAznZ3nbwh5wwJG64pXNmfcsX0vrG1aRa49rrjLMLHlxNiNnM3DdOl_XAWrXu-n2V2yK9_xH3f2lfwPV2EN-Ipdsv_AWX0oLMB34C88gcPw_CseTxbZ5bLAeFMymk8TIGaBkSccg9EO08mSIr9YgZNepKNZMikWOViA-XKCpQ6mVXoF_vwNhkQz-oq4_d9HrAMsaQFdjUy39uEX-dXZIp-1fNoj4Ksu9U0vztMkU7KG_vP2JgGVJ5_OkrnqFOKbg8iDqj5tY45GQakxYQRfprOdMw06a8YcaRxgKI-a6lddAp_NBLfUpaHjGfeyG8oG5ts6v0UNcOIWmEgp8wNc7d_uO12FiNZKRBGK4MjFaE6fHH2Yzi9znYUKfTlxsXtthUw1Rkyo7ucO7JkH12wLf61azkS5db23NkvxiDxUzoaVSMl5THqiOSH3DaKdkGP0NiRY9xPyXguUlVhKoCxDoCwpUBYKlCUFytIC9ZQsZ9NiktpqvIbN3Xi8s0sPbHnGS1GX3PUqAXYL5w5z6jiqwKwshaBhKahTgodQOw7z_apiEQ-calzBh3rPSL_ZNOKUWHXIqMt5ieuIdlnWnvDbLC8eFNQD8rYj0por7HkcgfJl3fqgXrTW9ByQ13rrtQRcuWvT8IDSemfH0gGxOtKvQV9iEow1YrPfruGIGDEYo-d_OuMFOZalIhhve0n6u2978Qos0F05JPfo7HyoxOUXOX2A0g |
| linkProvider | ProQuest |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=COMPUTING+A+NEAREST+CORRELATION+MATRIX+WITH+FACTOR+STRUCTURE&rft.jtitle=SIAM+journal+on+matrix+analysis+and+applications&rft.au=BORSDORF%2C+Rudiger&rft.au=HIGHAM%2C+Nicholas+J&rft.au=RAYDAN%2C+Marcos&rft.date=2010&rft.pub=Society+for+Industrial+and+Applied+Mathematics&rft.issn=0895-4798&rft.volume=31&rft.issue=5&rft.spage=2603&rft.epage=2622&rft_id=info:doi/10.1137%2F090776718&rft.externalDBID=n%2Fa&rft.externalDocID=23817807 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0895-4798&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0895-4798&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0895-4798&client=summon |