Computing a Nearest Correlation Matrix with Factor Structure

An n x n correlation matrix has k factor structure if its off-diagonal agrees with that of a rank k matrix. Such correlation matrices arise, for example, in factor models of collateralized debt obligations (CDOs) and multivariate time series. We analyze the properties of these matrices and, in parti...

Full description

Saved in:
Bibliographic Details
Published inSIAM journal on matrix analysis and applications Vol. 31; no. 5; pp. 2603 - 2622
Main Authors Borsdorf, Rüdiger, Higham, Nicholas J., Raydan, Marcos
Format Journal Article
LanguageEnglish
Published Philadelphia, PA Society for Industrial and Applied Mathematics 01.01.2010
Subjects
Online AccessGet full text
ISSN0895-4798
1095-7162
DOI10.1137/090776718

Cover

Abstract An n x n correlation matrix has k factor structure if its off-diagonal agrees with that of a rank k matrix. Such correlation matrices arise, for example, in factor models of collateralized debt obligations (CDOs) and multivariate time series. We analyze the properties of these matrices and, in particular, obtain an explicit formula for the rank in the one factor case. Our main focus is on the nearness problem of finding the nearest k factor correlation matrix C(X) = diag(I - XX theta )+XX theta to a given symmetric matrix, subject to natural nonlinear constraints on the elements of the n x k matrix X, where distance is measured in the Frobenius norm. For a special one parameter case we obtain an explicit solution. For the general k factor case we obtain the gradient and Hessian of the objective function and derive an instructive result on the positive definiteness of the Hessian when k = 1. We investigate several numerical methods for solving the nearness problem: the alternating directions method; a principal factors method used by Anderson, Sidenius, and Basu in the CDO application, which we show is equivalent to the alternating projections method and lacks convergence results; the spectral projected gradient method of Birgin, Martinez, and Raydan; and Newton and sequential quadratic programming methods. The methods differ in whether or not they can take account of the nonlinear constraints and in their convergence properties. Our numerical experiments show that the performance of the methods depends strongly on the problem, but that the spectral projected gradient method is the clear winner.
AbstractList An n x n correlation matrix has k factor structure if its off-diagonal agrees with that of a rank k matrix. Such correlation matrices arise, for example, in factor models of collateralized debt obligations (CDOs) and multivariate time series. We analyze the properties of these matrices and, in particular, obtain an explicit formula for the rank in the one factor case. Our main focus is on the nearness problem of finding the nearest k factor correlation matrix C(X) = diag(I - XX theta )+XX theta to a given symmetric matrix, subject to natural nonlinear constraints on the elements of the n x k matrix X, where distance is measured in the Frobenius norm. For a special one parameter case we obtain an explicit solution. For the general k factor case we obtain the gradient and Hessian of the objective function and derive an instructive result on the positive definiteness of the Hessian when k = 1. We investigate several numerical methods for solving the nearness problem: the alternating directions method; a principal factors method used by Anderson, Sidenius, and Basu in the CDO application, which we show is equivalent to the alternating projections method and lacks convergence results; the spectral projected gradient method of Birgin, Martinez, and Raydan; and Newton and sequential quadratic programming methods. The methods differ in whether or not they can take account of the nonlinear constraints and in their convergence properties. Our numerical experiments show that the performance of the methods depends strongly on the problem, but that the spectral projected gradient method is the clear winner.
Author Borsdorf, Rüdiger
Raydan, Marcos
Higham, Nicholas J.
Author_xml – sequence: 1
  givenname: Rüdiger
  surname: Borsdorf
  fullname: Borsdorf, Rüdiger
– sequence: 2
  givenname: Nicholas J.
  surname: Higham
  fullname: Higham, Nicholas J.
– sequence: 3
  givenname: Marcos
  surname: Raydan
  fullname: Raydan, Marcos
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=23817807$$DView record in Pascal Francis
BookMark eNpt0E1LAzEQBuAgFWyrB_9BLiIe1k72I8mCF1laFaoe1PMym81qZLupSRb137u1pQcRApPDM8PMOyGjznaakFMGl4wlYgY5CMEFkwdkzCDPIsF4PCJjkMM_Fbk8IhPv3wEYT3M2JleFXa37YLpXivRBo9M-0MI6p1sMxnb0HoMzX_TThDe6QBWso0_B9Sr0Th-TwwZbr092dUpeFvPn4jZaPt7cFdfLSMU5C1GV8IyjqnRTqTipNXChFCA0uajThFVaS15pCZUQaQOAaVrXKFQGNauHJ5MpOd_OXTv70Q8blivjlW5b7LTtfTncnPMkE2KQZzuJXmHbOOyU8eXamRW67zJOJBMSNu5i65Sz3jvd7AmDchNkuQ9ysLM_VpnwG05waNp_On4A7Kt2Qg
CODEN SJMAEL
CitedBy_id crossref_primary_10_2139_ssrn_2786947
crossref_primary_10_1137_140989078
crossref_primary_10_2139_ssrn_2678834
crossref_primary_10_1111_jbg_12004
crossref_primary_10_3390_math10101649
crossref_primary_10_1007_s10107_018_1327_8
crossref_primary_10_1016_j_csda_2013_10_004
crossref_primary_10_1093_imanum_dry069
crossref_primary_10_1007_s10589_010_9374_y
crossref_primary_10_1137_15M1011020
crossref_primary_10_1155_2020_6046729
crossref_primary_10_1137_15M1052007
crossref_primary_10_1016_j_laa_2016_08_013
crossref_primary_10_1080_0954898X_2022_2049644
crossref_primary_10_3390_sym13122423
crossref_primary_10_1016_j_jedc_2015_10_001
crossref_primary_10_1080_00295639_2022_2153638
crossref_primary_10_1016_j_jbankfin_2016_07_002
crossref_primary_10_1007_s11075_020_01063_9
crossref_primary_10_1080_00295639_2023_2190861
crossref_primary_10_1016_j_compeleceng_2024_109201
crossref_primary_10_1080_10920277_2017_1317273
crossref_primary_10_1109_TCE_2023_3245821
crossref_primary_10_1080_10556788_2022_2142583
crossref_primary_10_1007_s10957_019_01606_8
crossref_primary_10_1016_j_laa_2024_04_035
Cites_doi 10.1145/502800.502803
10.1016/0167-7152(85)90032-X
10.1007/s10589-008-9231-4
10.1002/wilm.42820030215
10.1080/14697680400016182
10.3934/jimo.2007.3.701
10.1016/j.laa.2006.11.024
10.1137/050624509
10.1137/0801010
10.1111/j.2517-6161.1960.tb00381.x
10.18637/jss.v032.i04
10.1137/S1052623497330963
10.2307/2331211
10.1080/13504860600658976
10.1007/s10092-005-0107-z
10.1016/j.insmatheco.2007.08.006
10.1002/wilj.6
10.1016/j.jbankfin.2006.10.018
10.1029/2008WR007355
10.1093/imanum/drn085
10.1137/S1052623493250780
10.1016/S0378-4266(99)00053-9
10.1016/S0024-3795(02)00551-7
10.1016/j.laa.2009.01.004
10.1080/14697680802238467
10.1137/S003614450242889
10.1016/0167-7152(84)90001-4
10.1093/imanum/22.3.329
10.1137/0319022
10.1007/BF02289233
ContentType Journal Article
Copyright 2015 INIST-CNRS
Copyright_xml – notice: 2015 INIST-CNRS
DBID AAYXX
CITATION
IQODW
7SC
8FD
JQ2
L7M
L~C
L~D
DOI 10.1137/090776718
DatabaseName CrossRef
Pascal-Francis
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
DatabaseTitleList Computer and Information Systems Abstracts
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
Statistics
EISSN 1095-7162
EndPage 2622
ExternalDocumentID 23817807
10_1137_090776718
GroupedDBID -~X
.4S
.DC
123
186
4.4
7WY
7X2
7XC
88I
8CJ
8FE
8FG
8FH
8FL
8G5
8V8
AALVN
AASXH
AAYXX
ABDBF
ABDPE
ABJCF
ABKAD
ABMZU
ABUWG
ACGFO
ACGOD
ACIWK
ACPRK
ACUHS
ADBBV
AEMOZ
AENEX
AFFNX
AFKRA
AFRAH
AHQJS
AKVCP
ALMA_UNASSIGNED_HOLDINGS
ANXRF
ARAPS
ARCSS
ATCPS
AZQEC
BBNVY
BENPR
BEZIV
BGLVJ
BHPHI
BPHCQ
CCPQU
CITATION
CS3
CZ9
D0L
D1I
D1J
D1K
DQ2
DU5
DWQXO
EAP
EBR
EBS
EBU
ECS
EDO
EJD
EMK
EST
ESX
FA8
FRNLG
GNUQQ
GUQSH
H13
HCIFZ
H~9
I-F
K1G
K6-
K60
K6V
K6~
K7-
KB.
KC.
L6V
LK5
LK8
M0C
M0K
M1Q
M2O
M2P
M7P
M7R
M7S
P1Q
P2P
P62
PATMY
PDBOC
PHGZM
PHGZT
PQBIZ
PQBZA
PQGLB
PQQKQ
PROAC
PTHSS
PUEGO
PYCSY
RJG
RNS
RSI
TH9
TN5
TUS
YNT
ZKB
ZY4
IQODW
7SC
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c291t-b3656acbefbc23de067cc0a0f97d431bee86be80b774f00a44dda7c50d1dd1d83
ISSN 0895-4798
IngestDate Thu Sep 04 18:44:50 EDT 2025
Mon Jul 21 09:15:40 EDT 2025
Wed Oct 01 06:54:15 EDT 2025
Thu Apr 24 22:57:42 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 5
Keywords spectral projected gradient method
Optimization method
Numerical method
Multivariate analysis
Computing
Convergence
Projection method
90C30
Sequential method
65F30
Newton method
Gradient method
Alternating direction method
alternating projections method
Spectral method
Factor model
alternating directions method
Correlation matrix
Frobenius norm
Time series
Covariance matrix
Quadratic programming
factor structure
Constrained optimization
Numerical analysis
Symmetric matrix
Linear algebra
Problem solving
Newton's method
Objective function
positive semidefinite matrix
principal factors method
Performance
patterned covariance matrix
Language English
License CC BY 4.0
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c291t-b3656acbefbc23de067cc0a0f97d431bee86be80b774f00a44dda7c50d1dd1d83
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
PQID 907963577
PQPubID 23500
PageCount 20
ParticipantIDs proquest_miscellaneous_907963577
pascalfrancis_primary_23817807
crossref_primary_10_1137_090776718
crossref_citationtrail_10_1137_090776718
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2010-01-00
2010
20100101
PublicationDateYYYYMMDD 2010-01-01
PublicationDate_xml – month: 01
  year: 2010
  text: 2010-01-00
PublicationDecade 2010
PublicationPlace Philadelphia, PA
PublicationPlace_xml – name: Philadelphia, PA
PublicationTitle SIAM journal on matrix analysis and applications
PublicationYear 2010
Publisher Society for Industrial and Applied Mathematics
Publisher_xml – name: Society for Industrial and Applied Mathematics
References Roy S. N. (R39) 1960; 22
R40
R43
R20
R42
R44
R25
R47
R24
R46
Lawley D. N. (R27) 1962; 12
R49
R26
R2
R4
R5
R6
R8
Varadhan R. (R48) 2009; 32
R50
R51
R10
R32
R12
R14
R36
R35
R16
R38
R37
R18
Gregory J. (R15) 2004; 17
References_xml – ident: R5
  doi: 10.1145/502800.502803
– ident: R50
  doi: 10.1016/0167-7152(85)90032-X
– ident: R37
  doi: 10.1007/s10589-008-9231-4
– ident: R2
  doi: 10.1002/wilm.42820030215
– ident: R35
  doi: 10.1080/14697680400016182
– ident: R38
  doi: 10.3934/jimo.2007.3.701
– ident: R16
  doi: 10.1016/j.laa.2006.11.024
– ident: R36
  doi: 10.1137/050624509
– ident: R43
  doi: 10.1137/0801010
– volume: 22
  start-page: 348
  year: 1960
  ident: R39
  publication-title: J. Roy. Statist. Soc. Ser. B
  doi: 10.1111/j.2517-6161.1960.tb00381.x
– volume: 32
  start-page: 1
  year: 2009
  ident: R48
  publication-title: J. Statist. Software
  doi: 10.18637/jss.v032.i04
– ident: R4
  doi: 10.1137/S1052623497330963
– ident: R20
  doi: 10.2307/2331211
– ident: R32
  doi: 10.1080/13504860600658976
– volume: 12
  start-page: 209
  year: 1962
  ident: R27
  publication-title: J. Roy. Statist. Soc. Ser. D (The Statistician)
– ident: R46
  doi: 10.1007/s10092-005-0107-z
– ident: R47
  doi: 10.1016/j.insmatheco.2007.08.006
– ident: R12
  doi: 10.1002/wilj.6
– volume: 17
  start-page: 87
  year: 2004
  ident: R15
  publication-title: Risk
– ident: R14
  doi: 10.1016/j.jbankfin.2006.10.018
– ident: R49
  doi: 10.1029/2008WR007355
– ident: R6
  doi: 10.1093/imanum/drn085
– ident: R44
  doi: 10.1137/S1052623493250780
– ident: R8
  doi: 10.1016/S0378-4266(99)00053-9
– ident: R51
  doi: 10.1016/S0024-3795(02)00551-7
– ident: R40
  doi: 10.1016/j.laa.2009.01.004
– ident: R42
  doi: 10.1080/14697680802238467
– ident: R25
  doi: 10.1137/S003614450242889
– ident: R26
  doi: 10.1016/0167-7152(84)90001-4
– ident: R18
  doi: 10.1093/imanum/22.3.329
– ident: R10
  doi: 10.1137/0319022
– ident: R24
  doi: 10.1007/BF02289233
SSID ssj0016491
Score 2.0556614
Snippet An n x n correlation matrix has k factor structure if its off-diagonal agrees with that of a rank k matrix. Such correlation matrices arise, for example, in...
SourceID proquest
pascalfrancis
crossref
SourceType Aggregation Database
Index Database
Enrichment Source
StartPage 2603
SubjectTerms Algebra
Correlation
Exact sciences and technology
Inference from stochastic processes; time series analysis
k factors
Linear and multilinear algebra, matrix theory
Mathematical analysis
Mathematical models
Mathematics
Matrices
Matrix methods
Nonlinearity
Numerical analysis
Numerical analysis. Scientific computation
Numerical linear algebra
Numerical methods in probability and statistics
Probability and statistics
Sciences and techniques of general use
Spectra
Statistics
Title Computing a Nearest Correlation Matrix with Factor Structure
URI https://www.proquest.com/docview/907963577
Volume 31
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVEBS
  databaseName: EBSCOhost Academic Search Ultimate
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  eissn: 1095-7162
  dateEnd: 20110731
  omitProxy: true
  ssIdentifier: ssj0016491
  issn: 0895-4798
  databaseCode: ABDBF
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  providerName: EBSCOhost
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 1095-7162
  dateEnd: 20241105
  omitProxy: true
  ssIdentifier: ssj0016491
  issn: 0895-4798
  databaseCode: BENPR
  dateStart: 19880101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Technology Collection
  customDbUrl:
  eissn: 1095-7162
  dateEnd: 20241105
  omitProxy: true
  ssIdentifier: ssj0016491
  issn: 0895-4798
  databaseCode: 8FG
  dateStart: 19880101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/technologycollection1
  providerName: ProQuest
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3ri9NAEF9q78uJiJ7K1UcJ4gehRNI8N-CX2GsvJ6Q9cinUT2Wz2YCg6WFbEPGPdya72dt6Bz6ghLIs2zAznZ3nbwh5wwJG64pXNmfcsX0vrG1aRa49rrjLMLHlxNiNnM3DdOl_XAWrXu-n2V2yK9_xH3f2lfwPV2EN-Ipdsv_AWX0oLMB34C88gcPw_CseTxbZ5bLAeFMymk8TIGaBkSccg9EO08mSIr9YgZNepKNZMikWOViA-XKCpQ6mVXoF_vwNhkQz-oq4_d9HrAMsaQFdjUy39uEX-dXZIp-1fNoj4Ksu9U0vztMkU7KG_vP2JgGVJ5_OkrnqFOKbg8iDqj5tY45GQakxYQRfprOdMw06a8YcaRxgKI-a6lddAp_NBLfUpaHjGfeyG8oG5ts6v0UNcOIWmEgp8wNc7d_uO12FiNZKRBGK4MjFaE6fHH2Yzi9znYUKfTlxsXtthUw1Rkyo7ucO7JkH12wLf61azkS5db23NkvxiDxUzoaVSMl5THqiOSH3DaKdkGP0NiRY9xPyXguUlVhKoCxDoCwpUBYKlCUFytIC9ZQsZ9NiktpqvIbN3Xi8s0sPbHnGS1GX3PUqAXYL5w5z6jiqwKwshaBhKahTgodQOw7z_apiEQ-calzBh3rPSL_ZNOKUWHXIqMt5ieuIdlnWnvDbLC8eFNQD8rYj0por7HkcgfJl3fqgXrTW9ByQ13rrtQRcuWvT8IDSemfH0gGxOtKvQV9iEow1YrPfruGIGDEYo-d_OuMFOZalIhhve0n6u2978Qos0F05JPfo7HyoxOUXOX2A0g
linkProvider ProQuest
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=COMPUTING+A+NEAREST+CORRELATION+MATRIX+WITH+FACTOR+STRUCTURE&rft.jtitle=SIAM+journal+on+matrix+analysis+and+applications&rft.au=BORSDORF%2C+Rudiger&rft.au=HIGHAM%2C+Nicholas+J&rft.au=RAYDAN%2C+Marcos&rft.date=2010&rft.pub=Society+for+Industrial+and+Applied+Mathematics&rft.issn=0895-4798&rft.volume=31&rft.issue=5&rft.spage=2603&rft.epage=2622&rft_id=info:doi/10.1137%2F090776718&rft.externalDBID=n%2Fa&rft.externalDocID=23817807
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0895-4798&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0895-4798&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0895-4798&client=summon