Prediction of China’s Energy Consumption Based on Robust Principal Component Analysis and PSO-LSSVM Optimized by the Tabu Search Algorithm
China’s energy consumption issues are closely associated with global climate issues, and the scale of energy consumption, peak energy consumption, and consumption investment are all the focus of national attention. In order to forecast the amount of energy consumption of China accurately, this artic...
Saved in:
| Published in | Energies (Basel) Vol. 12; no. 1; p. 196 |
|---|---|
| Main Authors | , , |
| Format | Journal Article |
| Language | English |
| Published |
Basel
MDPI AG
01.01.2019
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 1996-1073 1996-1073 |
| DOI | 10.3390/en12010196 |
Cover
| Abstract | China’s energy consumption issues are closely associated with global climate issues, and the scale of energy consumption, peak energy consumption, and consumption investment are all the focus of national attention. In order to forecast the amount of energy consumption of China accurately, this article selected GDP, population, industrial structure and energy consumption structure, energy intensity, total imports and exports, fixed asset investment, energy efficiency, urbanization, the level of consumption, and fixed investment in the energy industry as a preliminary set of factors; Secondly, we corrected the traditional principal component analysis (PCA) algorithm from the perspective of eliminating “bad points” and then judged a “bad spot” sample based on signal reconstruction ideas. Based on the above content, we put forward a robust principal component analysis (RPCA) algorithm and chose the first five principal components as main factors affecting energy consumption, including: GDP, population, industrial structure and energy consumption structure, urbanization; Then, we applied the Tabu search (TS) algorithm to the least square to support vector machine (LSSVM) optimized by the particle swarm optimization (PSO) algorithm to forecast China’s energy consumption. We collected data from 1996 to 2010 as a training set and from 2010 to 2016 as the test set. For easy comparison, the sample data was input into the LSSVM algorithm and the PSO-LSSVM algorithm at the same time. We used statistical indicators including goodness of fit determination coefficient (R2), the root means square error (RMSE), and the mean radial error (MRE) to compare the training results of the three forecasting models, which demonstrated that the proposed TS-PSO-LSSVM forecasting model had higher prediction accuracy, generalization ability, and higher training speed. Finally, the TS-PSO-LSSVM forecasting model was applied to forecast the energy consumption of China from 2017 to 2030. According to predictions, we found that China shows a gradual increase in energy consumption trends from 2017 to 2030 and will breakthrough 6000 million tons in 2030. However, the growth rate is gradually tightening and China’s energy consumption economy will transfer to a state of diminishing returns around 2026, which guides China to put more emphasis on the field of energy investment. |
|---|---|
| AbstractList | China’s energy consumption issues are closely associated with global climate issues, and the scale of energy consumption, peak energy consumption, and consumption investment are all the focus of national attention. In order to forecast the amount of energy consumption of China accurately, this article selected GDP, population, industrial structure and energy consumption structure, energy intensity, total imports and exports, fixed asset investment, energy efficiency, urbanization, the level of consumption, and fixed investment in the energy industry as a preliminary set of factors; Secondly, we corrected the traditional principal component analysis (PCA) algorithm from the perspective of eliminating “bad points” and then judged a “bad spot” sample based on signal reconstruction ideas. Based on the above content, we put forward a robust principal component analysis (RPCA) algorithm and chose the first five principal components as main factors affecting energy consumption, including: GDP, population, industrial structure and energy consumption structure, urbanization; Then, we applied the Tabu search (TS) algorithm to the least square to support vector machine (LSSVM) optimized by the particle swarm optimization (PSO) algorithm to forecast China’s energy consumption. We collected data from 1996 to 2010 as a training set and from 2010 to 2016 as the test set. For easy comparison, the sample data was input into the LSSVM algorithm and the PSO-LSSVM algorithm at the same time. We used statistical indicators including goodness of fit determination coefficient (R2), the root means square error (RMSE), and the mean radial error (MRE) to compare the training results of the three forecasting models, which demonstrated that the proposed TS-PSO-LSSVM forecasting model had higher prediction accuracy, generalization ability, and higher training speed. Finally, the TS-PSO-LSSVM forecasting model was applied to forecast the energy consumption of China from 2017 to 2030. According to predictions, we found that China shows a gradual increase in energy consumption trends from 2017 to 2030 and will breakthrough 6000 million tons in 2030. However, the growth rate is gradually tightening and China’s energy consumption economy will transfer to a state of diminishing returns around 2026, which guides China to put more emphasis on the field of energy investment. |
| Author | Zhang, Lihui Chai, Jianxue Ge, Riletu |
| Author_xml | – sequence: 1 givenname: Lihui surname: Zhang fullname: Zhang, Lihui – sequence: 2 givenname: Riletu surname: Ge fullname: Ge, Riletu – sequence: 3 givenname: Jianxue surname: Chai fullname: Chai, Jianxue |
| BookMark | eNp9kc9uEzEQxleoSJTSC09giRtowbPe3dTHEBWoFJSIFK7W-M8mjjb2YnuFllMfoC_A6_EkuA0ChBBzmZHnm58--XtcnDjvTFE8BfqSMU5fGQcVBQq8fVCcAudtCXTGTv6YHxXnMe5pLsaAMXZa3K6D0VYl6x3xHVnsrMPvN98iuXQmbCey8C6Oh-F-_xqj0SQPH7wcYyLrYJ2yA_ZZdRiyF5fI3GE_RRsJOk3Wm1W53Gw-vSerTDjYr_lcTiTtDLlGOZKNwaB2ZN5vfbBpd3hSPOywj-b8Zz8rPr65vF68K5ert1eL-bJUFYdUygo4QC0ryVtom86AyTUDWVVdp1Biy1umGbZK8ppiraGpua67igFqpWfsrLg6crXHvRiCPWCYhEcr7h982AoMyareCE6hRqUROtnVUAGqC9qgZKqRHNmMZtaLI2t0A05fsO9_AYGKu1zE71yy-tlRPQT_eTQxib0fQ_6zKLK7tm4auKiyih5VKvgYg-mEsgnvMkgBbf9v8PO_Tv7j4gc51K1t |
| CitedBy_id | crossref_primary_10_3390_en12122249 crossref_primary_10_3233_JIFS_239687 crossref_primary_10_3389_fmars_2024_1377215 crossref_primary_10_3390_en15020656 crossref_primary_10_1177_0144598719900964 crossref_primary_10_1007_s11356_023_25511_w crossref_primary_10_1007_s11356_024_32083_w |
| Cites_doi | 10.5194/nhess-17-2181-2017 10.3390/ma10070715 10.1016/j.neucom.2018.03.001 10.1016/j.jngse.2015.03.013 10.1016/j.ijpe.2016.01.016 10.1016/j.ijsrc.2017.09.005 10.1016/j.physa.2018.04.014 10.3390/en11040697 10.1016/j.compag.2018.04.022 10.1016/j.apenergy.2014.03.093 10.1016/j.ijepes.2018.02.003 10.1016/j.enpol.2012.07.017 10.1016/j.enconman.2010.06.053 10.1007/s11269-014-0638-7 10.1016/j.eneco.2013.09.003 10.1016/j.ecolecon.2010.09.029 10.1016/j.techfore.2004.12.003 10.3390/en11040781 10.3390/en11061449 10.1016/j.cor.2014.08.006 10.1007/s11063-016-9523-0 10.1016/j.jcis.2015.09.024 10.1016/j.cam.2015.03.050 10.1007/s10732-014-9247-0 10.1016/S0925-2312(01)00702-0 10.1016/j.enpol.2006.02.013 10.1109/TIP.2018.2831915 10.1016/j.jprocont.2017.03.012 |
| ContentType | Journal Article |
| Copyright | 2019. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: 2019. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | AAYXX CITATION ABUWG AFKRA AZQEC BENPR CCPQU DWQXO PHGZM PHGZT PIMPY PKEHL PQEST PQQKQ PQUKI ADTOC UNPAY DOA |
| DOI | 10.3390/en12010196 |
| DatabaseName | CrossRef ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central ProQuest One ProQuest Central ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition Unpaywall for CDI: Periodical Content Unpaywall DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef Publicly Available Content Database ProQuest Central ProQuest One Academic Middle East (New) ProQuest One Academic UKI Edition ProQuest Central Essentials ProQuest Central Korea ProQuest One Academic Eastern Edition ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) |
| DatabaseTitleList | CrossRef Publicly Available Content Database |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository – sequence: 3 dbid: BENPR name: ProQuest Central url: http://www.proquest.com/pqcentral?accountid=15518 sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1996-1073 |
| ExternalDocumentID | oai_doaj_org_article_9014acda1fbf4121ac805ab3c5b9a370 10.3390/en12010196 10_3390_en12010196 |
| GeographicLocations | Beijing China China |
| GeographicLocations_xml | – name: China – name: Beijing China |
| GroupedDBID | 29G 2WC 5GY 5VS 7XC 8FE 8FG 8FH AADQD AAHBH AAYXX ABDBF ACUHS ADBBV ADMLS AENEX AFKRA AFZYC ALMA_UNASSIGNED_HOLDINGS BCNDV BENPR CCPQU CITATION CS3 DU5 EBS ESX FRP GROUPED_DOAJ GX1 I-F IAO KQ8 L6V L8X MODMG M~E OK1 OVT P2P PHGZM PHGZT PIMPY PROAC TR2 TUS ABUWG AZQEC DWQXO PKEHL PQEST PQQKQ PQUKI 2XV ADTOC C1A IPNFZ ITC RIG UNPAY |
| ID | FETCH-LOGICAL-c291t-b219114b2b96165fe1eeee71b22ffcaba6963d3a6cb940a4d1549d4f231adcd73 |
| IEDL.DBID | BENPR |
| ISSN | 1996-1073 |
| IngestDate | Fri Oct 03 12:48:57 EDT 2025 Sun Oct 26 03:57:10 EDT 2025 Mon Jun 30 11:17:50 EDT 2025 Thu Oct 16 04:35:36 EDT 2025 Thu Apr 24 23:00:21 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Language | English |
| License | cc-by |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c291t-b219114b2b96165fe1eeee71b22ffcaba6963d3a6cb940a4d1549d4f231adcd73 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| OpenAccessLink | https://www.proquest.com/docview/2316455182?pq-origsite=%requestingapplication%&accountid=15518 |
| PQID | 2316455182 |
| PQPubID | 2032402 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_9014acda1fbf4121ac805ab3c5b9a370 unpaywall_primary_10_3390_en12010196 proquest_journals_2316455182 crossref_citationtrail_10_3390_en12010196 crossref_primary_10_3390_en12010196 |
| PublicationCentury | 2000 |
| PublicationDate | 2019-01-01 |
| PublicationDateYYYYMMDD | 2019-01-01 |
| PublicationDate_xml | – month: 01 year: 2019 text: 2019-01-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationPlace | Basel |
| PublicationPlace_xml | – name: Basel |
| PublicationTitle | Energies (Basel) |
| PublicationYear | 2019 |
| Publisher | MDPI AG |
| Publisher_xml | – name: MDPI AG |
| References | Erdogdu (ref_16) 2007; 35 Sadeghian (ref_19) 2018; 67 Omri (ref_4) 2013; 40 Escobar (ref_31) 2014; 20 Zhou (ref_6) 2013; 57 Cogoljevic (ref_12) 2018; 505 Xue (ref_23) 2018; 21 Roushangar (ref_21) 2017; 32 ref_35 Luong (ref_17) 2018; 27 Liu (ref_27) 2017; 45 Sehgal (ref_11) 2014; 10 Zhu (ref_14) 2009; 64 Peng (ref_30) 2015; 53 Zhang (ref_15) 2003; 50 Wen (ref_26) 2017; 17 Clarkson (ref_18) 2018; 100 Liang (ref_2) 2010; 5 Lin (ref_9) 2011; 88 ref_25 ref_24 Gorjaei (ref_28) 2015; 24 Huan (ref_22) 2018; 150 Wright (ref_34) 2011; 58 ref_1 Sicilia (ref_33) 2016; 291 ref_29 Ghaedi (ref_10) 2016; 461 Wu (ref_20) 2018; 314 Yi (ref_13) 2006; 73 Lee (ref_8) 2011; 52 Xu (ref_3) 2014; 127 Poumanyvong (ref_5) 2010; 70 Li (ref_32) 2016; 174 ref_7 |
| References_xml | – volume: 58 start-page: 11 year: 2011 ident: ref_34 article-title: Robust Principal Component Analysis? publication-title: J. ACM – volume: 17 start-page: 2181 year: 2017 ident: ref_26 article-title: Landslide displacement prediction using the GA-LSSVM model and time series analysis: A case study of Three Gorges Reservoir, China publication-title: Nat. Hazards Earth Syst. Sci. doi: 10.5194/nhess-17-2181-2017 – ident: ref_7 doi: 10.3390/ma10070715 – volume: 314 start-page: 120 year: 2018 ident: ref_20 article-title: Multi-component group sparse RPCA model for motion object detection under complex dynamic background publication-title: Neurocomputing doi: 10.1016/j.neucom.2018.03.001 – volume: 24 start-page: 228 year: 2015 ident: ref_28 article-title: A novel PSO-LSSVM model for predicting liquid rate of two phase flow through wellhead chokes publication-title: J. Nat. Gas Sci. Eng. doi: 10.1016/j.jngse.2015.03.013 – volume: 174 start-page: 93 year: 2016 ident: ref_32 article-title: An effective hybrid genetic algorithm and tabu search for flexible job shop scheduling problem publication-title: Int. J. Prod. Econ. doi: 10.1016/j.ijpe.2016.01.016 – volume: 32 start-page: 515 year: 2017 ident: ref_21 article-title: Predicting characteristics of dune bedforms using PSO-LSSVM publication-title: Int. J. Sediment Res. doi: 10.1016/j.ijsrc.2017.09.005 – volume: 5 start-page: 89 year: 2010 ident: ref_2 article-title: Effects of different stages of the energy consumption of urbanization factors publication-title: J. Shanghai Univ. Financ. Econ. – volume: 505 start-page: 941 year: 2018 ident: ref_12 article-title: Analyzing of consumer price index influence on inflation by multiple linear regression publication-title: Phys. A Stat. Mech. Appl. doi: 10.1016/j.physa.2018.04.014 – ident: ref_24 doi: 10.3390/en11040697 – volume: 150 start-page: 257 year: 2018 ident: ref_22 article-title: Prediction of dissolved oxygen in aquaculture based on EEMD and LSSVM optimized by the Bayesian evidence framework publication-title: Comput. Electron. Agric. doi: 10.1016/j.compag.2018.04.022 – volume: 127 start-page: 182 year: 2014 ident: ref_3 article-title: Factors that influence carbon emissions due to energy consumption in China: Decomposition analysis using LMDI publication-title: Appl. Energy doi: 10.1016/j.apenergy.2014.03.093 – volume: 100 start-page: 559 year: 2018 ident: ref_18 article-title: Application of Robust PCA with a structured outlier matrix to topology estimation in power grids publication-title: Int. J. Electr. Power Energy Syst. doi: 10.1016/j.ijepes.2018.02.003 – ident: ref_1 – ident: ref_35 – volume: 57 start-page: 43 year: 2013 ident: ref_6 article-title: Industrial structural transformation and carbon dioxide emissions in China publication-title: Energy Policy doi: 10.1016/j.enpol.2012.07.017 – volume: 52 start-page: 147 year: 2011 ident: ref_8 article-title: Forecasting energy consumption using a grey model improved by incorporating genetic programming publication-title: Energy Convers. Manag. doi: 10.1016/j.enconman.2010.06.053 – volume: 10 start-page: 2793 year: 2014 ident: ref_11 article-title: Wavelet Bootstrap Multiple Linear Regression Based Hybrid Modeling publication-title: Water Resour. Manag. doi: 10.1007/s11269-014-0638-7 – volume: 40 start-page: 657 year: 2013 ident: ref_4 article-title: CO2 emissions, energy consumption and economic growth nexus in MENA countries: Evidence from simultaneous equations models publication-title: Energy Econ. doi: 10.1016/j.eneco.2013.09.003 – volume: 70 start-page: 434 year: 2010 ident: ref_5 article-title: Does urbanization lead to less energy use and lower CO2 emissions? A cross-country analysis publication-title: Ecol. Econ. doi: 10.1016/j.ecolecon.2010.09.029 – volume: 73 start-page: 405 year: 2006 ident: ref_13 article-title: A scenario analysis of energy requirements and energy intensity for China’s rapidly developing society in the year 2020 publication-title: Technol. Forecast. Soc. Chang. doi: 10.1016/j.techfore.2004.12.003 – ident: ref_25 doi: 10.3390/en11040781 – ident: ref_29 doi: 10.3390/en11061449 – volume: 21 start-page: 501 year: 2018 ident: ref_23 article-title: Evaluation of concrete compressive strength based on an improved PSO-LSSVM model publication-title: Comput. Concr. – volume: 53 start-page: 154 year: 2015 ident: ref_30 article-title: A tabu search/path relinking algorithm to solve the job shop scheduling problem publication-title: Comput. Oper. Res. doi: 10.1016/j.cor.2014.08.006 – volume: 64 start-page: 935 year: 2009 ident: ref_14 article-title: Simulation on China’s Economy and Prediction on Energy Consumption and Carbon Emission under Optimal Growth Path publication-title: Acta Geogr. Sin. – volume: 45 start-page: 299 year: 2017 ident: ref_27 article-title: A Hybrid Heat Rate Forecasting Model Using Optimized LSSVM Based on Improved GSA publication-title: Neural Process. Lett. doi: 10.1007/s11063-016-9523-0 – volume: 461 start-page: 425 year: 2016 ident: ref_10 article-title: Application of least squares support vector regression and linear multiple regression for modeling removal of methyl orange onto tin oxide nanoparticles loaded on activated carbon and activated carbon prepared from Pistacia atlantica wood publication-title: J. Colloid Interface Sci. doi: 10.1016/j.jcis.2015.09.024 – volume: 291 start-page: 468 year: 2016 ident: ref_33 article-title: An optimization algorithm for solving the rich vehicle routing problem based on Variable Neighborhood Search and Tabu Search metaheuristic publication-title: J. Comput. Appl. Math. doi: 10.1016/j.cam.2015.03.050 – volume: 20 start-page: 483 year: 2014 ident: ref_31 article-title: A hybrid Granular Tabu Search algorithm for the Multi-Depot Vehicle Routing Problem publication-title: J. Heuristics doi: 10.1007/s10732-014-9247-0 – volume: 88 start-page: 3816 year: 2011 ident: ref_9 article-title: Grey forecasting model for CO2 emissions: A Taiwan study publication-title: Adv. Mater. – volume: 50 start-page: 159 year: 2003 ident: ref_15 article-title: Time series forecasting using a hybrid ARIMA and neural network model publication-title: Neurocomputing doi: 10.1016/S0925-2312(01)00702-0 – volume: 35 start-page: 1129 year: 2007 ident: ref_16 article-title: Electricity demand analysis using cointegration and ARIMA modelling: A case study of Turkey publication-title: Energy Policy doi: 10.1016/j.enpol.2006.02.013 – volume: 27 start-page: 4314 year: 2018 ident: ref_17 article-title: Compressive Online Robust Principal Component Analysis via n-l1 Minimization publication-title: IEEE Trans. Image Process. doi: 10.1109/TIP.2018.2831915 – volume: 67 start-page: 94 year: 2018 ident: ref_19 article-title: Robust probabilistic principal component analysis based process modeling: Dealing with simultaneous contamination of both input and output data publication-title: J. Process. Control doi: 10.1016/j.jprocont.2017.03.012 |
| SSID | ssj0000331333 |
| Score | 2.2288973 |
| Snippet | China’s energy consumption issues are closely associated with global climate issues, and the scale of energy consumption, peak energy consumption, and... |
| SourceID | doaj unpaywall proquest crossref |
| SourceType | Open Website Open Access Repository Aggregation Database Enrichment Source Index Database |
| StartPage | 196 |
| SubjectTerms | Decomposition energy consumption forecasting improved PSO-LSSVM algorithm Job shops Natural gas Neural networks robust principal component analysis Tabu Search |
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NbtQwELZQL8AB8Su2FDQSvXCIGseONz62VasKAV2xLeotGv9BpW222s0KlRMPwAvwejwJYye7BAnBhSiHyLKTiWfsmfHY3zC2q712Krcm08piJrnjWVVqmaGSVhtuYnHcbfFOnZzL1xflxSDVV9wT1sEDdx23F8N8aB3yYILkBUdb5SUaYUujUYyTt55XeuBMpTlYCHK-RIdHKsiv3_MNj4FfHtH5BxooAfX_Zl3eXjXXePMZZ7OBojm-z-71FiLsd5Q9YLd885DdHeAGPmLfJosYX4l9CvMAKQf2j6_fl3CUTvLBYTpXmSYDOCA15YAe3s_NatnCpFtdpy_EqWDekNKBNTIJYONgMj3N3kynH97CKb3h6vILNTc3QIYinKFZQbdBGfZnH-eLy_bT1WN2fnx0dniS9WkVMlto3maGJinygkxBjOCqDJ57usbcFEUIFg0qGpROoLJGyxyliyhuTgayBNFZNxZP2FZD5D1lYIX03uZGlR5lpXNqWtEdgojxSOdG7NW6q2vbY47H1BezmnyPyJb6F1tG7OWm7nWHtPHHWgeRY5saER07FZDM1L3M1P-SmRHbWfO77ofssqbfUzLi0xUjtruRgb-Qsv0_SHnG7tDrdLeos8O22sXKPyczpzUvkkT_BPsA_P8 priority: 102 providerName: Directory of Open Access Journals – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3PbtMwGLdQdwAODAaIwkCW2IVD1jhx3Po0ddOmCcFW0RWNU-S_o6JLqjbZtJ14AF6A1-NJ-Oy4pSA0TYtySCw7sfXZ33__jNAWN1yzWMmIMyUiSjSJehmnkWBUcUmkK3bZFkfscETfn2anweE2D2mVYIqPPZP2GbJgn6QdknQIvLLOVNudi-BJcto2A4nvTPY1loEu3kJro6NB_4sPJYe2DSZpCrZ9xxTEBX-JQ-hfkUIerP8vDfN-XUzF1aWYTFaEzcE6yhfdbHJMvm3XldxW1_8gON59HI_Ro6CH4n4zcZ6ge6bYQA9X0Amfoh-DmYviOMrh0mJ_0vav7z_neN_vF8R7fvemZzl4F4ShxvDwqZT1vMKDxocPf3AMpyxAtOEF_gkWhcaD4XH0YTj8_BEfwxfOx9fQXF5hUEfxiZA1btKgcX9yVs7G1dfzZ2h0sH-ydxiFwxsilXBSRRJYIdhaMgFyE5ZZQwxcXSKTxFolpGCw9HUqmJKcxoJqhxWnqQV9U2ilu-lz1Cqgey8QVik1RsWSZUbQHo-haQ9ua1MX9dS6jd4tiJmrgGzuDtiY5GDhOMLnfwjfRm-XdacNnsd_a-26ObGs4TC4fUE5O8vDks5dAFooLYiVlpKECNWLMyFTlUku0m7cRpuLGZUHxjDPYXiMOhS8pI22lrPshq68vF21V-gBPPHGObSJWtWsNq9BXarkm7AmfgOMMhEh priority: 102 providerName: Unpaywall |
| Title | Prediction of China’s Energy Consumption Based on Robust Principal Component Analysis and PSO-LSSVM Optimized by the Tabu Search Algorithm |
| URI | https://www.proquest.com/docview/2316455182 https://www.mdpi.com/1996-1073/12/1/196/pdf?version=1548655150 https://doaj.org/article/9014acda1fbf4121ac805ab3c5b9a370 |
| UnpaywallVersion | publishedVersion |
| Volume | 12 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 1996-1073 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000331333 issn: 1996-1073 databaseCode: KQ8 dateStart: 20080101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 1996-1073 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000331333 issn: 1996-1073 databaseCode: DOA dateStart: 20080101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVEBS databaseName: EBSCOhost Academic Search Ultimate customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn eissn: 1996-1073 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000331333 issn: 1996-1073 databaseCode: ABDBF dateStart: 20100401 isFulltext: true titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn providerName: EBSCOhost – providerCode: PRVEBS databaseName: Inspec with Full Text customDbUrl: eissn: 1996-1073 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000331333 issn: 1996-1073 databaseCode: ADMLS dateStart: 20100401 isFulltext: true titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text providerName: EBSCOhost – providerCode: PRVFQY databaseName: GFMER Free Medical Journals customDbUrl: eissn: 1996-1073 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000331333 issn: 1996-1073 databaseCode: GX1 dateStart: 20080101 isFulltext: true titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php providerName: Geneva Foundation for Medical Education and Research – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 1996-1073 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000331333 issn: 1996-1073 databaseCode: M~E dateStart: 20080101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 1996-1073 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000331333 issn: 1996-1073 databaseCode: BENPR dateStart: 20080301 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Technology Collection customDbUrl: eissn: 1996-1073 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000331333 issn: 1996-1073 databaseCode: 8FG dateStart: 20080301 isFulltext: true titleUrlDefault: https://search.proquest.com/technologycollection1 providerName: ProQuest |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1fa9swEBdt-rDtYewvzdYGwfqyB1PLkh3roZSkJC1jS03TjOzJ6I_dDVI7TRxK97QPsC-wr9dPsjv_STMYNcYYcZaF7nQ63Um_I-RAJtIGrtGODIxyBLPMCX0pHBUIIzXTWIy7LUbB2UR8mvrTLTJqzsLgtspGJ5aK2uYGfeSHYIcEAuHDvOP5jYNZozC62qTQUHVqBXtUQoxtkx0PkbFaZKc_GEUXa6-LyzksyniFU8phvX-YZAwDwgxR-zdmphLA_x-r88kqm6u7WzWbbUxAwxfkeW050l7F6pdkK8lekWcbeIKvye9ogXEX7Guap7TMjX3_68-SDsoTfvSkPG9ZKgnah-nLUni5yPVqWdCo8rrDH1BF5BlMRrRBLKEqszQanzufx-OvX-g51HD94yd8ru8oGJD0UukVrTYu097sCrqt-H79hkyGg8uTM6dOt-AYT7LC0aC8YHWkPWAQC_w0YQlcXaY9L02N0iqAwWq5CoyWwlXCIrqbFSlwRllju_wtaWXQvF1CDRdJYlwd-IkSoXTh0xDuNOUYp7S2TT42XR2bGoscU2LMYliTIFviB7a0yYc17bxC4PgvVR85tqZA1OyyIF9cxfUgjDFkrIxVLNWpAPlQJnR9pbnxtVS867bJXsPvuB7Ky_hB8NrkYC0DjzTl3eO1vCdPgVBWbpw90ioWq2QfDJtCd8h2ODzt1DLbKd0D8DydMiibjKLet78I3_7Y |
| linkProvider | ProQuest |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NbhMxELZKeygcEL8iUMAS5cBh1fXau4kPFWpKqpSmadSkqLfFf1uQ0t2QbFSFEw_AC_AyPAxPwsz-pEFCvXW1h5Vley3PeDzj8XxDyLZ00ka-0Z6MjPIEs8xrhVJ4KhJGaqaxGG9b9KPumfh4Hp6vkd91LAxeq6xlYiGobWbwjHwH9JBIIHxY8H7yzcOsUehdrVNoqCq1gt0tIMaqwI4jt7gCE262e_gB6P02CA46o_2uV2UZ8EwgWe5pWLNgFOgAxsWiMHHMwdNkOgiSxCitIuBRy1VktBS-EhZBzaxIYEDKGtvk0O8dsiG4kGD8bbQ7_cHp8pTH5xyMQF7ionIu_R2XMnRAM8wSsLITFgkD_tFyN-fpRC2u1Hi8suEdPCD3K02V7pWs9ZCsufQRubeCX_iY_BxM0c-DtKVZQotc3H9-_JrRThFRSPeL-M5CKNE2bJeWwsdppueznA7KU374A4qkLIXNj9YIKVSllg6GJ15vOPx0TE-gh8uv36G5XlBQWOlI6TktL0rTvfEFkCn_cvmEnN3KxD8l6ykM7xmhhgvnjK-j0CnRkj40bcGbJBz9otY2yLt6qmNTYZ9jCo5xDDYQkiW-JkuDvFnWnZSIH_-t1UaKLWsgSndRkE0v4mrRx-iiVsYqluhEsIAp0_JDpbkJtVS86TfIVk3vuBIds_ia0Rtke8kDNwzl-c29vCab3dFxL-4d9o9ekLvQSJZHSFtkPZ_O3UtQqnL9quJcSj7f9mL5C2saOIE |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NbhMxELZKkaAcEL8iUMAS5cBhlfXau4kPCPUvtLS0EWlRb4t_W6R0NyQbVeHEA_ACvAqPw5Mwsz9pkFBvXe1hZdnekWc8Hns83xCyJp20SWh0IBOjAsEsC7qxFIFKhJGaaSzG2xYHyc6x-HASnyyR300sDF6rbHRiqahtbvCMvA12SCIQPixq-_paRH-r9270LcAMUuhpbdJpVCKy52YXsH2bvN3dAl6_jqLe9tHmTlBnGAhMJFkRaJivsCHQEdDEktg75uDpMB1F3hulVQLyablKjJYiVMIioJkVHohR1tgOh35vkJsdRHHHKPXe-_n5Tsg5bP94hYjKuQzbLmPoemaYH2BhDSxTBfxj396eZiM1u1DD4cJS17tH7tY2Kl2vhOo-WXLZA3JnAbnwIfnZH6OHB7lKc0_LLNx_fvya0O0ylpBulpGdpTqiG7BQWgofn3I9nRS0X53vwx9QGeUZLHu0wUahKrO0PzgM9geDzx_pIfRw_vU7NNczCqYqPVJ6Sqsr0nR9eApMKc7OH5Hjaxn2x2Q5A_KeEGq4cM6EOomdEl0ZQtMuvN5z9Iha2yJvmqFOTY16jsk3hinsfpAt6SVbWuTVvO6owvr4b60N5Ni8BuJzlwX5-DStp3uKzmllrGJee8Eipkw3jJXmJtZS8U7YIqsNv9NaaUzSSxFvkbW5DFxBytOre3lJbsEUSfd3D_aekRVoI6uzo1WyXIyn7jlYU4V-UYotJV-ue578Be_iNhs |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3PbtMwGLdQdwAODAaIwkCW2IVD1jhx3Po0ddOmCcFW0RWNU-S_o6JLqjbZtJ14AF6A1-NJ-Oy4pSA0TYtySCw7sfXZ33__jNAWN1yzWMmIMyUiSjSJehmnkWBUcUmkK3bZFkfscETfn2anweE2D2mVYIqPPZP2GbJgn6QdknQIvLLOVNudi-BJcto2A4nvTPY1loEu3kJro6NB_4sPJYe2DSZpCrZ9xxTEBX-JQ-hfkUIerP8vDfN-XUzF1aWYTFaEzcE6yhfdbHJMvm3XldxW1_8gON59HI_Ro6CH4n4zcZ6ge6bYQA9X0Amfoh-DmYviOMrh0mJ_0vav7z_neN_vF8R7fvemZzl4F4ShxvDwqZT1vMKDxocPf3AMpyxAtOEF_gkWhcaD4XH0YTj8_BEfwxfOx9fQXF5hUEfxiZA1btKgcX9yVs7G1dfzZ2h0sH-ydxiFwxsilXBSRRJYIdhaMgFyE5ZZQwxcXSKTxFolpGCw9HUqmJKcxoJqhxWnqQV9U2ilu-lz1Cqgey8QVik1RsWSZUbQHo-haQ9ua1MX9dS6jd4tiJmrgGzuDtiY5GDhOMLnfwjfRm-XdacNnsd_a-26ObGs4TC4fUE5O8vDks5dAFooLYiVlpKECNWLMyFTlUku0m7cRpuLGZUHxjDPYXiMOhS8pI22lrPshq68vF21V-gBPPHGObSJWtWsNq9BXarkm7AmfgOMMhEh |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Prediction+of+China%E2%80%99s+Energy+Consumption+Based+on+Robust+Principal+Component+Analysis+and+PSO-LSSVM+Optimized+by+the+Tabu+Search+Algorithm&rft.jtitle=Energies+%28Basel%29&rft.au=Zhang%2C+Lihui&rft.au=Ge%2C+Riletu&rft.au=Chai%2C+Jianxue&rft.date=2019-01-01&rft.pub=MDPI+AG&rft.eissn=1996-1073&rft.volume=12&rft.issue=1&rft.spage=196&rft_id=info:doi/10.3390%2Fen12010196&rft.externalDBID=HAS_PDF_LINK |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1996-1073&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1996-1073&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1996-1073&client=summon |