Prediction of China’s Energy Consumption Based on Robust Principal Component Analysis and PSO-LSSVM Optimized by the Tabu Search Algorithm

China’s energy consumption issues are closely associated with global climate issues, and the scale of energy consumption, peak energy consumption, and consumption investment are all the focus of national attention. In order to forecast the amount of energy consumption of China accurately, this artic...

Full description

Saved in:
Bibliographic Details
Published inEnergies (Basel) Vol. 12; no. 1; p. 196
Main Authors Zhang, Lihui, Ge, Riletu, Chai, Jianxue
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 01.01.2019
Subjects
Online AccessGet full text
ISSN1996-1073
1996-1073
DOI10.3390/en12010196

Cover

Abstract China’s energy consumption issues are closely associated with global climate issues, and the scale of energy consumption, peak energy consumption, and consumption investment are all the focus of national attention. In order to forecast the amount of energy consumption of China accurately, this article selected GDP, population, industrial structure and energy consumption structure, energy intensity, total imports and exports, fixed asset investment, energy efficiency, urbanization, the level of consumption, and fixed investment in the energy industry as a preliminary set of factors; Secondly, we corrected the traditional principal component analysis (PCA) algorithm from the perspective of eliminating “bad points” and then judged a “bad spot” sample based on signal reconstruction ideas. Based on the above content, we put forward a robust principal component analysis (RPCA) algorithm and chose the first five principal components as main factors affecting energy consumption, including: GDP, population, industrial structure and energy consumption structure, urbanization; Then, we applied the Tabu search (TS) algorithm to the least square to support vector machine (LSSVM) optimized by the particle swarm optimization (PSO) algorithm to forecast China’s energy consumption. We collected data from 1996 to 2010 as a training set and from 2010 to 2016 as the test set. For easy comparison, the sample data was input into the LSSVM algorithm and the PSO-LSSVM algorithm at the same time. We used statistical indicators including goodness of fit determination coefficient (R2), the root means square error (RMSE), and the mean radial error (MRE) to compare the training results of the three forecasting models, which demonstrated that the proposed TS-PSO-LSSVM forecasting model had higher prediction accuracy, generalization ability, and higher training speed. Finally, the TS-PSO-LSSVM forecasting model was applied to forecast the energy consumption of China from 2017 to 2030. According to predictions, we found that China shows a gradual increase in energy consumption trends from 2017 to 2030 and will breakthrough 6000 million tons in 2030. However, the growth rate is gradually tightening and China’s energy consumption economy will transfer to a state of diminishing returns around 2026, which guides China to put more emphasis on the field of energy investment.
AbstractList China’s energy consumption issues are closely associated with global climate issues, and the scale of energy consumption, peak energy consumption, and consumption investment are all the focus of national attention. In order to forecast the amount of energy consumption of China accurately, this article selected GDP, population, industrial structure and energy consumption structure, energy intensity, total imports and exports, fixed asset investment, energy efficiency, urbanization, the level of consumption, and fixed investment in the energy industry as a preliminary set of factors; Secondly, we corrected the traditional principal component analysis (PCA) algorithm from the perspective of eliminating “bad points” and then judged a “bad spot” sample based on signal reconstruction ideas. Based on the above content, we put forward a robust principal component analysis (RPCA) algorithm and chose the first five principal components as main factors affecting energy consumption, including: GDP, population, industrial structure and energy consumption structure, urbanization; Then, we applied the Tabu search (TS) algorithm to the least square to support vector machine (LSSVM) optimized by the particle swarm optimization (PSO) algorithm to forecast China’s energy consumption. We collected data from 1996 to 2010 as a training set and from 2010 to 2016 as the test set. For easy comparison, the sample data was input into the LSSVM algorithm and the PSO-LSSVM algorithm at the same time. We used statistical indicators including goodness of fit determination coefficient (R2), the root means square error (RMSE), and the mean radial error (MRE) to compare the training results of the three forecasting models, which demonstrated that the proposed TS-PSO-LSSVM forecasting model had higher prediction accuracy, generalization ability, and higher training speed. Finally, the TS-PSO-LSSVM forecasting model was applied to forecast the energy consumption of China from 2017 to 2030. According to predictions, we found that China shows a gradual increase in energy consumption trends from 2017 to 2030 and will breakthrough 6000 million tons in 2030. However, the growth rate is gradually tightening and China’s energy consumption economy will transfer to a state of diminishing returns around 2026, which guides China to put more emphasis on the field of energy investment.
Author Zhang, Lihui
Chai, Jianxue
Ge, Riletu
Author_xml – sequence: 1
  givenname: Lihui
  surname: Zhang
  fullname: Zhang, Lihui
– sequence: 2
  givenname: Riletu
  surname: Ge
  fullname: Ge, Riletu
– sequence: 3
  givenname: Jianxue
  surname: Chai
  fullname: Chai, Jianxue
BookMark eNp9kc9uEzEQxleoSJTSC09giRtowbPe3dTHEBWoFJSIFK7W-M8mjjb2YnuFllMfoC_A6_EkuA0ChBBzmZHnm58--XtcnDjvTFE8BfqSMU5fGQcVBQq8fVCcAudtCXTGTv6YHxXnMe5pLsaAMXZa3K6D0VYl6x3xHVnsrMPvN98iuXQmbCey8C6Oh-F-_xqj0SQPH7wcYyLrYJ2yA_ZZdRiyF5fI3GE_RRsJOk3Wm1W53Gw-vSerTDjYr_lcTiTtDLlGOZKNwaB2ZN5vfbBpd3hSPOywj-b8Zz8rPr65vF68K5ert1eL-bJUFYdUygo4QC0ryVtom86AyTUDWVVdp1Biy1umGbZK8ppiraGpua67igFqpWfsrLg6crXHvRiCPWCYhEcr7h982AoMyareCE6hRqUROtnVUAGqC9qgZKqRHNmMZtaLI2t0A05fsO9_AYGKu1zE71yy-tlRPQT_eTQxib0fQ_6zKLK7tm4auKiyih5VKvgYg-mEsgnvMkgBbf9v8PO_Tv7j4gc51K1t
CitedBy_id crossref_primary_10_3390_en12122249
crossref_primary_10_3233_JIFS_239687
crossref_primary_10_3389_fmars_2024_1377215
crossref_primary_10_3390_en15020656
crossref_primary_10_1177_0144598719900964
crossref_primary_10_1007_s11356_023_25511_w
crossref_primary_10_1007_s11356_024_32083_w
Cites_doi 10.5194/nhess-17-2181-2017
10.3390/ma10070715
10.1016/j.neucom.2018.03.001
10.1016/j.jngse.2015.03.013
10.1016/j.ijpe.2016.01.016
10.1016/j.ijsrc.2017.09.005
10.1016/j.physa.2018.04.014
10.3390/en11040697
10.1016/j.compag.2018.04.022
10.1016/j.apenergy.2014.03.093
10.1016/j.ijepes.2018.02.003
10.1016/j.enpol.2012.07.017
10.1016/j.enconman.2010.06.053
10.1007/s11269-014-0638-7
10.1016/j.eneco.2013.09.003
10.1016/j.ecolecon.2010.09.029
10.1016/j.techfore.2004.12.003
10.3390/en11040781
10.3390/en11061449
10.1016/j.cor.2014.08.006
10.1007/s11063-016-9523-0
10.1016/j.jcis.2015.09.024
10.1016/j.cam.2015.03.050
10.1007/s10732-014-9247-0
10.1016/S0925-2312(01)00702-0
10.1016/j.enpol.2006.02.013
10.1109/TIP.2018.2831915
10.1016/j.jprocont.2017.03.012
ContentType Journal Article
Copyright 2019. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2019. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQQKQ
PQUKI
ADTOC
UNPAY
DOA
DOI 10.3390/en12010196
DatabaseName CrossRef
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest One
ProQuest Central
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
Unpaywall for CDI: Periodical Content
Unpaywall
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
ProQuest Central
ProQuest One Academic Middle East (New)
ProQuest One Academic UKI Edition
ProQuest Central Essentials
ProQuest Central Korea
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList
CrossRef
Publicly Available Content Database
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
– sequence: 3
  dbid: BENPR
  name: ProQuest Central
  url: http://www.proquest.com/pqcentral?accountid=15518
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1996-1073
ExternalDocumentID oai_doaj_org_article_9014acda1fbf4121ac805ab3c5b9a370
10.3390/en12010196
10_3390_en12010196
GeographicLocations Beijing China
China
GeographicLocations_xml – name: China
– name: Beijing China
GroupedDBID 29G
2WC
5GY
5VS
7XC
8FE
8FG
8FH
AADQD
AAHBH
AAYXX
ABDBF
ACUHS
ADBBV
ADMLS
AENEX
AFKRA
AFZYC
ALMA_UNASSIGNED_HOLDINGS
BCNDV
BENPR
CCPQU
CITATION
CS3
DU5
EBS
ESX
FRP
GROUPED_DOAJ
GX1
I-F
IAO
KQ8
L6V
L8X
MODMG
M~E
OK1
OVT
P2P
PHGZM
PHGZT
PIMPY
PROAC
TR2
TUS
ABUWG
AZQEC
DWQXO
PKEHL
PQEST
PQQKQ
PQUKI
2XV
ADTOC
C1A
IPNFZ
ITC
RIG
UNPAY
ID FETCH-LOGICAL-c291t-b219114b2b96165fe1eeee71b22ffcaba6963d3a6cb940a4d1549d4f231adcd73
IEDL.DBID BENPR
ISSN 1996-1073
IngestDate Fri Oct 03 12:48:57 EDT 2025
Sun Oct 26 03:57:10 EDT 2025
Mon Jun 30 11:17:50 EDT 2025
Thu Oct 16 04:35:36 EDT 2025
Thu Apr 24 23:00:21 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c291t-b219114b2b96165fe1eeee71b22ffcaba6963d3a6cb940a4d1549d4f231adcd73
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
OpenAccessLink https://www.proquest.com/docview/2316455182?pq-origsite=%requestingapplication%&accountid=15518
PQID 2316455182
PQPubID 2032402
ParticipantIDs doaj_primary_oai_doaj_org_article_9014acda1fbf4121ac805ab3c5b9a370
unpaywall_primary_10_3390_en12010196
proquest_journals_2316455182
crossref_citationtrail_10_3390_en12010196
crossref_primary_10_3390_en12010196
PublicationCentury 2000
PublicationDate 2019-01-01
PublicationDateYYYYMMDD 2019-01-01
PublicationDate_xml – month: 01
  year: 2019
  text: 2019-01-01
  day: 01
PublicationDecade 2010
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Energies (Basel)
PublicationYear 2019
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References Erdogdu (ref_16) 2007; 35
Sadeghian (ref_19) 2018; 67
Omri (ref_4) 2013; 40
Escobar (ref_31) 2014; 20
Zhou (ref_6) 2013; 57
Cogoljevic (ref_12) 2018; 505
Xue (ref_23) 2018; 21
Roushangar (ref_21) 2017; 32
ref_35
Luong (ref_17) 2018; 27
Liu (ref_27) 2017; 45
Sehgal (ref_11) 2014; 10
Zhu (ref_14) 2009; 64
Peng (ref_30) 2015; 53
Zhang (ref_15) 2003; 50
Wen (ref_26) 2017; 17
Clarkson (ref_18) 2018; 100
Liang (ref_2) 2010; 5
Lin (ref_9) 2011; 88
ref_25
ref_24
Gorjaei (ref_28) 2015; 24
Huan (ref_22) 2018; 150
Wright (ref_34) 2011; 58
ref_1
Sicilia (ref_33) 2016; 291
ref_29
Ghaedi (ref_10) 2016; 461
Wu (ref_20) 2018; 314
Yi (ref_13) 2006; 73
Lee (ref_8) 2011; 52
Xu (ref_3) 2014; 127
Poumanyvong (ref_5) 2010; 70
Li (ref_32) 2016; 174
ref_7
References_xml – volume: 58
  start-page: 11
  year: 2011
  ident: ref_34
  article-title: Robust Principal Component Analysis?
  publication-title: J. ACM
– volume: 17
  start-page: 2181
  year: 2017
  ident: ref_26
  article-title: Landslide displacement prediction using the GA-LSSVM model and time series analysis: A case study of Three Gorges Reservoir, China
  publication-title: Nat. Hazards Earth Syst. Sci.
  doi: 10.5194/nhess-17-2181-2017
– ident: ref_7
  doi: 10.3390/ma10070715
– volume: 314
  start-page: 120
  year: 2018
  ident: ref_20
  article-title: Multi-component group sparse RPCA model for motion object detection under complex dynamic background
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2018.03.001
– volume: 24
  start-page: 228
  year: 2015
  ident: ref_28
  article-title: A novel PSO-LSSVM model for predicting liquid rate of two phase flow through wellhead chokes
  publication-title: J. Nat. Gas Sci. Eng.
  doi: 10.1016/j.jngse.2015.03.013
– volume: 174
  start-page: 93
  year: 2016
  ident: ref_32
  article-title: An effective hybrid genetic algorithm and tabu search for flexible job shop scheduling problem
  publication-title: Int. J. Prod. Econ.
  doi: 10.1016/j.ijpe.2016.01.016
– volume: 32
  start-page: 515
  year: 2017
  ident: ref_21
  article-title: Predicting characteristics of dune bedforms using PSO-LSSVM
  publication-title: Int. J. Sediment Res.
  doi: 10.1016/j.ijsrc.2017.09.005
– volume: 5
  start-page: 89
  year: 2010
  ident: ref_2
  article-title: Effects of different stages of the energy consumption of urbanization factors
  publication-title: J. Shanghai Univ. Financ. Econ.
– volume: 505
  start-page: 941
  year: 2018
  ident: ref_12
  article-title: Analyzing of consumer price index influence on inflation by multiple linear regression
  publication-title: Phys. A Stat. Mech. Appl.
  doi: 10.1016/j.physa.2018.04.014
– ident: ref_24
  doi: 10.3390/en11040697
– volume: 150
  start-page: 257
  year: 2018
  ident: ref_22
  article-title: Prediction of dissolved oxygen in aquaculture based on EEMD and LSSVM optimized by the Bayesian evidence framework
  publication-title: Comput. Electron. Agric.
  doi: 10.1016/j.compag.2018.04.022
– volume: 127
  start-page: 182
  year: 2014
  ident: ref_3
  article-title: Factors that influence carbon emissions due to energy consumption in China: Decomposition analysis using LMDI
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2014.03.093
– volume: 100
  start-page: 559
  year: 2018
  ident: ref_18
  article-title: Application of Robust PCA with a structured outlier matrix to topology estimation in power grids
  publication-title: Int. J. Electr. Power Energy Syst.
  doi: 10.1016/j.ijepes.2018.02.003
– ident: ref_1
– ident: ref_35
– volume: 57
  start-page: 43
  year: 2013
  ident: ref_6
  article-title: Industrial structural transformation and carbon dioxide emissions in China
  publication-title: Energy Policy
  doi: 10.1016/j.enpol.2012.07.017
– volume: 52
  start-page: 147
  year: 2011
  ident: ref_8
  article-title: Forecasting energy consumption using a grey model improved by incorporating genetic programming
  publication-title: Energy Convers. Manag.
  doi: 10.1016/j.enconman.2010.06.053
– volume: 10
  start-page: 2793
  year: 2014
  ident: ref_11
  article-title: Wavelet Bootstrap Multiple Linear Regression Based Hybrid Modeling
  publication-title: Water Resour. Manag.
  doi: 10.1007/s11269-014-0638-7
– volume: 40
  start-page: 657
  year: 2013
  ident: ref_4
  article-title: CO2 emissions, energy consumption and economic growth nexus in MENA countries: Evidence from simultaneous equations models
  publication-title: Energy Econ.
  doi: 10.1016/j.eneco.2013.09.003
– volume: 70
  start-page: 434
  year: 2010
  ident: ref_5
  article-title: Does urbanization lead to less energy use and lower CO2 emissions? A cross-country analysis
  publication-title: Ecol. Econ.
  doi: 10.1016/j.ecolecon.2010.09.029
– volume: 73
  start-page: 405
  year: 2006
  ident: ref_13
  article-title: A scenario analysis of energy requirements and energy intensity for China’s rapidly developing society in the year 2020
  publication-title: Technol. Forecast. Soc. Chang.
  doi: 10.1016/j.techfore.2004.12.003
– ident: ref_25
  doi: 10.3390/en11040781
– ident: ref_29
  doi: 10.3390/en11061449
– volume: 21
  start-page: 501
  year: 2018
  ident: ref_23
  article-title: Evaluation of concrete compressive strength based on an improved PSO-LSSVM model
  publication-title: Comput. Concr.
– volume: 53
  start-page: 154
  year: 2015
  ident: ref_30
  article-title: A tabu search/path relinking algorithm to solve the job shop scheduling problem
  publication-title: Comput. Oper. Res.
  doi: 10.1016/j.cor.2014.08.006
– volume: 64
  start-page: 935
  year: 2009
  ident: ref_14
  article-title: Simulation on China’s Economy and Prediction on Energy Consumption and Carbon Emission under Optimal Growth Path
  publication-title: Acta Geogr. Sin.
– volume: 45
  start-page: 299
  year: 2017
  ident: ref_27
  article-title: A Hybrid Heat Rate Forecasting Model Using Optimized LSSVM Based on Improved GSA
  publication-title: Neural Process. Lett.
  doi: 10.1007/s11063-016-9523-0
– volume: 461
  start-page: 425
  year: 2016
  ident: ref_10
  article-title: Application of least squares support vector regression and linear multiple regression for modeling removal of methyl orange onto tin oxide nanoparticles loaded on activated carbon and activated carbon prepared from Pistacia atlantica wood
  publication-title: J. Colloid Interface Sci.
  doi: 10.1016/j.jcis.2015.09.024
– volume: 291
  start-page: 468
  year: 2016
  ident: ref_33
  article-title: An optimization algorithm for solving the rich vehicle routing problem based on Variable Neighborhood Search and Tabu Search metaheuristic
  publication-title: J. Comput. Appl. Math.
  doi: 10.1016/j.cam.2015.03.050
– volume: 20
  start-page: 483
  year: 2014
  ident: ref_31
  article-title: A hybrid Granular Tabu Search algorithm for the Multi-Depot Vehicle Routing Problem
  publication-title: J. Heuristics
  doi: 10.1007/s10732-014-9247-0
– volume: 88
  start-page: 3816
  year: 2011
  ident: ref_9
  article-title: Grey forecasting model for CO2 emissions: A Taiwan study
  publication-title: Adv. Mater.
– volume: 50
  start-page: 159
  year: 2003
  ident: ref_15
  article-title: Time series forecasting using a hybrid ARIMA and neural network model
  publication-title: Neurocomputing
  doi: 10.1016/S0925-2312(01)00702-0
– volume: 35
  start-page: 1129
  year: 2007
  ident: ref_16
  article-title: Electricity demand analysis using cointegration and ARIMA modelling: A case study of Turkey
  publication-title: Energy Policy
  doi: 10.1016/j.enpol.2006.02.013
– volume: 27
  start-page: 4314
  year: 2018
  ident: ref_17
  article-title: Compressive Online Robust Principal Component Analysis via n-l1 Minimization
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2018.2831915
– volume: 67
  start-page: 94
  year: 2018
  ident: ref_19
  article-title: Robust probabilistic principal component analysis based process modeling: Dealing with simultaneous contamination of both input and output data
  publication-title: J. Process. Control
  doi: 10.1016/j.jprocont.2017.03.012
SSID ssj0000331333
Score 2.2288973
Snippet China’s energy consumption issues are closely associated with global climate issues, and the scale of energy consumption, peak energy consumption, and...
SourceID doaj
unpaywall
proquest
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Enrichment Source
Index Database
StartPage 196
SubjectTerms Decomposition
energy consumption forecasting
improved PSO-LSSVM algorithm
Job shops
Natural gas
Neural networks
robust principal component analysis
Tabu Search
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NbtQwELZQL8AB8Su2FDQSvXCIGseONz62VasKAV2xLeotGv9BpW222s0KlRMPwAvwejwJYye7BAnBhSiHyLKTiWfsmfHY3zC2q712Krcm08piJrnjWVVqmaGSVhtuYnHcbfFOnZzL1xflxSDVV9wT1sEDdx23F8N8aB3yYILkBUdb5SUaYUujUYyTt55XeuBMpTlYCHK-RIdHKsiv3_MNj4FfHtH5BxooAfX_Zl3eXjXXePMZZ7OBojm-z-71FiLsd5Q9YLd885DdHeAGPmLfJosYX4l9CvMAKQf2j6_fl3CUTvLBYTpXmSYDOCA15YAe3s_NatnCpFtdpy_EqWDekNKBNTIJYONgMj3N3kynH97CKb3h6vILNTc3QIYinKFZQbdBGfZnH-eLy_bT1WN2fnx0dniS9WkVMlto3maGJinygkxBjOCqDJ57usbcFEUIFg0qGpROoLJGyxyliyhuTgayBNFZNxZP2FZD5D1lYIX03uZGlR5lpXNqWtEdgojxSOdG7NW6q2vbY47H1BezmnyPyJb6F1tG7OWm7nWHtPHHWgeRY5saER07FZDM1L3M1P-SmRHbWfO77ofssqbfUzLi0xUjtruRgb-Qsv0_SHnG7tDrdLeos8O22sXKPyczpzUvkkT_BPsA_P8
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3PbtMwGLdQdwAODAaIwkCW2IVD1jhx3Po0ddOmCcFW0RWNU-S_o6JLqjbZtJ14AF6A1-NJ-Oy4pSA0TYtySCw7sfXZ33__jNAWN1yzWMmIMyUiSjSJehmnkWBUcUmkK3bZFkfscETfn2anweE2D2mVYIqPPZP2GbJgn6QdknQIvLLOVNudi-BJcto2A4nvTPY1loEu3kJro6NB_4sPJYe2DSZpCrZ9xxTEBX-JQ-hfkUIerP8vDfN-XUzF1aWYTFaEzcE6yhfdbHJMvm3XldxW1_8gON59HI_Ro6CH4n4zcZ6ge6bYQA9X0Amfoh-DmYviOMrh0mJ_0vav7z_neN_vF8R7fvemZzl4F4ShxvDwqZT1vMKDxocPf3AMpyxAtOEF_gkWhcaD4XH0YTj8_BEfwxfOx9fQXF5hUEfxiZA1btKgcX9yVs7G1dfzZ2h0sH-ydxiFwxsilXBSRRJYIdhaMgFyE5ZZQwxcXSKTxFolpGCw9HUqmJKcxoJqhxWnqQV9U2ilu-lz1Cqgey8QVik1RsWSZUbQHo-haQ9ua1MX9dS6jd4tiJmrgGzuDtiY5GDhOMLnfwjfRm-XdacNnsd_a-26ObGs4TC4fUE5O8vDks5dAFooLYiVlpKECNWLMyFTlUku0m7cRpuLGZUHxjDPYXiMOhS8pI22lrPshq68vF21V-gBPPHGObSJWtWsNq9BXarkm7AmfgOMMhEh
  priority: 102
  providerName: Unpaywall
Title Prediction of China’s Energy Consumption Based on Robust Principal Component Analysis and PSO-LSSVM Optimized by the Tabu Search Algorithm
URI https://www.proquest.com/docview/2316455182
https://www.mdpi.com/1996-1073/12/1/196/pdf?version=1548655150
https://doaj.org/article/9014acda1fbf4121ac805ab3c5b9a370
UnpaywallVersion publishedVersion
Volume 12
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1996-1073
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000331333
  issn: 1996-1073
  databaseCode: KQ8
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1996-1073
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000331333
  issn: 1996-1073
  databaseCode: DOA
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVEBS
  databaseName: EBSCOhost Academic Search Ultimate
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  eissn: 1996-1073
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000331333
  issn: 1996-1073
  databaseCode: ABDBF
  dateStart: 20100401
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  providerName: EBSCOhost
– providerCode: PRVEBS
  databaseName: Inspec with Full Text
  customDbUrl:
  eissn: 1996-1073
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000331333
  issn: 1996-1073
  databaseCode: ADMLS
  dateStart: 20100401
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text
  providerName: EBSCOhost
– providerCode: PRVFQY
  databaseName: GFMER Free Medical Journals
  customDbUrl:
  eissn: 1996-1073
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000331333
  issn: 1996-1073
  databaseCode: GX1
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php
  providerName: Geneva Foundation for Medical Education and Research
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1996-1073
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000331333
  issn: 1996-1073
  databaseCode: M~E
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 1996-1073
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000331333
  issn: 1996-1073
  databaseCode: BENPR
  dateStart: 20080301
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Technology Collection
  customDbUrl:
  eissn: 1996-1073
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000331333
  issn: 1996-1073
  databaseCode: 8FG
  dateStart: 20080301
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/technologycollection1
  providerName: ProQuest
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1fa9swEBdt-rDtYewvzdYGwfqyB1PLkh3roZSkJC1jS03TjOzJ6I_dDVI7TRxK97QPsC-wr9dPsjv_STMYNcYYcZaF7nQ63Um_I-RAJtIGrtGODIxyBLPMCX0pHBUIIzXTWIy7LUbB2UR8mvrTLTJqzsLgtspGJ5aK2uYGfeSHYIcEAuHDvOP5jYNZozC62qTQUHVqBXtUQoxtkx0PkbFaZKc_GEUXa6-LyzksyniFU8phvX-YZAwDwgxR-zdmphLA_x-r88kqm6u7WzWbbUxAwxfkeW050l7F6pdkK8lekWcbeIKvye9ogXEX7Guap7TMjX3_68-SDsoTfvSkPG9ZKgnah-nLUni5yPVqWdCo8rrDH1BF5BlMRrRBLKEqszQanzufx-OvX-g51HD94yd8ru8oGJD0UukVrTYu097sCrqt-H79hkyGg8uTM6dOt-AYT7LC0aC8YHWkPWAQC_w0YQlcXaY9L02N0iqAwWq5CoyWwlXCIrqbFSlwRllju_wtaWXQvF1CDRdJYlwd-IkSoXTh0xDuNOUYp7S2TT42XR2bGoscU2LMYliTIFviB7a0yYc17bxC4PgvVR85tqZA1OyyIF9cxfUgjDFkrIxVLNWpAPlQJnR9pbnxtVS867bJXsPvuB7Ky_hB8NrkYC0DjzTl3eO1vCdPgVBWbpw90ioWq2QfDJtCd8h2ODzt1DLbKd0D8DydMiibjKLet78I3_7Y
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NbhMxELZKeygcEL8iUMAS5cBh1fXau4kPFWpKqpSmadSkqLfFf1uQ0t2QbFSFEw_AC_AyPAxPwsz-pEFCvXW1h5Vley3PeDzj8XxDyLZ00ka-0Z6MjPIEs8xrhVJ4KhJGaqaxGG9b9KPumfh4Hp6vkd91LAxeq6xlYiGobWbwjHwH9JBIIHxY8H7yzcOsUehdrVNoqCq1gt0tIMaqwI4jt7gCE262e_gB6P02CA46o_2uV2UZ8EwgWe5pWLNgFOgAxsWiMHHMwdNkOgiSxCitIuBRy1VktBS-EhZBzaxIYEDKGtvk0O8dsiG4kGD8bbQ7_cHp8pTH5xyMQF7ionIu_R2XMnRAM8wSsLITFgkD_tFyN-fpRC2u1Hi8suEdPCD3K02V7pWs9ZCsufQRubeCX_iY_BxM0c-DtKVZQotc3H9-_JrRThFRSPeL-M5CKNE2bJeWwsdppueznA7KU374A4qkLIXNj9YIKVSllg6GJ15vOPx0TE-gh8uv36G5XlBQWOlI6TktL0rTvfEFkCn_cvmEnN3KxD8l6ykM7xmhhgvnjK-j0CnRkj40bcGbJBz9otY2yLt6qmNTYZ9jCo5xDDYQkiW-JkuDvFnWnZSIH_-t1UaKLWsgSndRkE0v4mrRx-iiVsYqluhEsIAp0_JDpbkJtVS86TfIVk3vuBIds_ia0Rtke8kDNwzl-c29vCab3dFxL-4d9o9ekLvQSJZHSFtkPZ_O3UtQqnL9quJcSj7f9mL5C2saOIE
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NbhMxELZKkaAcEL8iUMAS5cBhlfXau4kPCPUvtLS0EWlRb4t_W6R0NyQbVeHEA_ACvAqPw5Mwsz9pkFBvXe1hZdnekWc8Hns83xCyJp20SWh0IBOjAsEsC7qxFIFKhJGaaSzG2xYHyc6x-HASnyyR300sDF6rbHRiqahtbvCMvA12SCIQPixq-_paRH-r9270LcAMUuhpbdJpVCKy52YXsH2bvN3dAl6_jqLe9tHmTlBnGAhMJFkRaJivsCHQEdDEktg75uDpMB1F3hulVQLyablKjJYiVMIioJkVHohR1tgOh35vkJsdRHHHKPXe-_n5Tsg5bP94hYjKuQzbLmPoemaYH2BhDSxTBfxj396eZiM1u1DD4cJS17tH7tY2Kl2vhOo-WXLZA3JnAbnwIfnZH6OHB7lKc0_LLNx_fvya0O0ylpBulpGdpTqiG7BQWgofn3I9nRS0X53vwx9QGeUZLHu0wUahKrO0PzgM9geDzx_pIfRw_vU7NNczCqYqPVJ6Sqsr0nR9eApMKc7OH5Hjaxn2x2Q5A_KeEGq4cM6EOomdEl0ZQtMuvN5z9Iha2yJvmqFOTY16jsk3hinsfpAt6SVbWuTVvO6owvr4b60N5Ni8BuJzlwX5-DStp3uKzmllrGJee8Eipkw3jJXmJtZS8U7YIqsNv9NaaUzSSxFvkbW5DFxBytOre3lJbsEUSfd3D_aekRVoI6uzo1WyXIyn7jlYU4V-UYotJV-ue578Be_iNhs
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3PbtMwGLdQdwAODAaIwkCW2IVD1jhx3Po0ddOmCcFW0RWNU-S_o6JLqjbZtJ14AF6A1-NJ-Oy4pSA0TYtySCw7sfXZ33__jNAWN1yzWMmIMyUiSjSJehmnkWBUcUmkK3bZFkfscETfn2anweE2D2mVYIqPPZP2GbJgn6QdknQIvLLOVNudi-BJcto2A4nvTPY1loEu3kJro6NB_4sPJYe2DSZpCrZ9xxTEBX-JQ-hfkUIerP8vDfN-XUzF1aWYTFaEzcE6yhfdbHJMvm3XldxW1_8gON59HI_Ro6CH4n4zcZ6ge6bYQA9X0Amfoh-DmYviOMrh0mJ_0vav7z_neN_vF8R7fvemZzl4F4ShxvDwqZT1vMKDxocPf3AMpyxAtOEF_gkWhcaD4XH0YTj8_BEfwxfOx9fQXF5hUEfxiZA1btKgcX9yVs7G1dfzZ2h0sH-ydxiFwxsilXBSRRJYIdhaMgFyE5ZZQwxcXSKTxFolpGCw9HUqmJKcxoJqhxWnqQV9U2ilu-lz1Cqgey8QVik1RsWSZUbQHo-haQ9ua1MX9dS6jd4tiJmrgGzuDtiY5GDhOMLnfwjfRm-XdacNnsd_a-26ObGs4TC4fUE5O8vDks5dAFooLYiVlpKECNWLMyFTlUku0m7cRpuLGZUHxjDPYXiMOhS8pI22lrPshq68vF21V-gBPPHGObSJWtWsNq9BXarkm7AmfgOMMhEh
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Prediction+of+China%E2%80%99s+Energy+Consumption+Based+on+Robust+Principal+Component+Analysis+and+PSO-LSSVM+Optimized+by+the+Tabu+Search+Algorithm&rft.jtitle=Energies+%28Basel%29&rft.au=Zhang%2C+Lihui&rft.au=Ge%2C+Riletu&rft.au=Chai%2C+Jianxue&rft.date=2019-01-01&rft.pub=MDPI+AG&rft.eissn=1996-1073&rft.volume=12&rft.issue=1&rft.spage=196&rft_id=info:doi/10.3390%2Fen12010196&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1996-1073&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1996-1073&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1996-1073&client=summon