Blind Demixing for Low-Latency Communication

In next-generation wireless networks, low-latency communication is critical to support emerging diversified applications, e.g., tactile Internet and virtual reality. In this paper, a novel blind demixing approach is developed to reduce the channel signaling overhead, thereby supporting low-latency c...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on wireless communications Vol. 18; no. 2; pp. 897 - 911
Main Authors Dong, Jialin, Yang, Kai, Shi, Yuanming
Format Journal Article
LanguageEnglish
Published New York IEEE 01.02.2019
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN1536-1276
1558-2248
DOI10.1109/TWC.2018.2886191

Cover

Abstract In next-generation wireless networks, low-latency communication is critical to support emerging diversified applications, e.g., tactile Internet and virtual reality. In this paper, a novel blind demixing approach is developed to reduce the channel signaling overhead, thereby supporting low-latency communication. Specifically, we develop a low-rank approach to recover the original information only based on the single observed vector without any channel estimation. To address the unique challenges of multiple non-convex rank-one constraints, the quotient manifold geometry of the product of complex symmetric rank-one matrices is exploited. This is achieved by equivalently reformulating the original problem that uses complex asymmetric matrices to the one that uses Hermitian positive semidefinite matrices. We further generalize the geometric concepts of the complex product manifold via element-wise extension of the geometric concepts of the individual manifolds. The scalable Riemannian optimization algorithms, i.e., the Riemannian gradient descent algorithm and the Riemannian trust-region algorithm, are then developed to solve the blind demixing problem efficiently with low iteration complexity and low iteration cost. The statistical analysis shows that the Riemannian gradient descent with spectral initialization is guaranteed to linearly converge to the ground truth signals provided sufficient measurements. In addition, the Riemannian trust-region algorithm is provable to converge to an approximate local minimum from the arbitrary initialization point. Numerical experiments have been carried out in settings with different types of encoding matrices to demonstrate the algorithmic advantages, performance gains, and sample efficiency of the Riemannian optimization algorithms.
AbstractList In next-generation wireless networks, low-latency communication is critical to support emerging diversified applications, e.g., tactile Internet and virtual reality. In this paper, a novel blind demixing approach is developed to reduce the channel signaling overhead, thereby supporting low-latency communication. Specifically, we develop a low-rank approach to recover the original information only based on the single observed vector without any channel estimation. To address the unique challenges of multiple non-convex rank-one constraints, the quotient manifold geometry of the product of complex symmetric rank-one matrices is exploited. This is achieved by equivalently reformulating the original problem that uses complex asymmetric matrices to the one that uses Hermitian positive semidefinite matrices. We further generalize the geometric concepts of the complex product manifold via element-wise extension of the geometric concepts of the individual manifolds. The scalable Riemannian optimization algorithms, i.e., the Riemannian gradient descent algorithm and the Riemannian trust-region algorithm, are then developed to solve the blind demixing problem efficiently with low iteration complexity and low iteration cost. The statistical analysis shows that the Riemannian gradient descent with spectral initialization is guaranteed to linearly converge to the ground truth signals provided sufficient measurements. In addition, the Riemannian trust-region algorithm is provable to converge to an approximate local minimum from the arbitrary initialization point. Numerical experiments have been carried out in settings with different types of encoding matrices to demonstrate the algorithmic advantages, performance gains, and sample efficiency of the Riemannian optimization algorithms.
Author Dong, Jialin
Yang, Kai
Shi, Yuanming
Author_xml – sequence: 1
  givenname: Jialin
  surname: Dong
  fullname: Dong, Jialin
  email: dongjl@shanghaitech.edu.cn
  organization: School of Information Science and Technology, ShanghaiTech University, Shanghai, China
– sequence: 2
  givenname: Kai
  surname: Yang
  fullname: Yang, Kai
  email: yangkai@shanghaitech.edu.cn
  organization: School of Information Science and Technology, ShanghaiTech University, Shanghai, China
– sequence: 3
  givenname: Yuanming
  orcidid: 0000-0002-1418-7465
  surname: Shi
  fullname: Shi, Yuanming
  email: shiym@shanghaitech.edu.cn
  organization: School of Information Science and Technology, ShanghaiTech University, Shanghai, China
BookMark eNp9kL1PwzAUxC1UJNrCjsQSiZWU9-w4dkYIn1IkliJGy0kc5Kqxi5MK-t-T0IqBgem94X53upuRifPOEHKOsECE7Hr5li8ooFxQKVPM8IhMkXMZU5rIyfizNEYq0hMy67oVAIqU8ym5ul1bV0d3prVf1r1HjQ9R4T_jQvfGVbso9227dbbSvfXulBw3et2Zs8Odk9eH-2X-FBcvj8_5TRFXNMM-1rVuaANANTMJCNEI1tC04oIlHFORaZ3R0jDgEnhNGUIlSgocSp7UCdY1m5PLve8m-I-t6Xq18tvghkhFUQ7GiUQYVLBXVcF3XTCN2gTb6rBTCGrcRA2bqHETddhkQNI_SGX7n2p90Hb9H3ixB60x5jdHjg2kYN82Y23k
CODEN ITWCAX
CitedBy_id crossref_primary_10_1109_JSAIT_2023_3287823
crossref_primary_10_1109_TSP_2024_3364914
crossref_primary_10_1109_TSP_2020_2970338
crossref_primary_10_1109_TSP_2022_3159988
crossref_primary_10_1109_JSTSP_2021_3057238
crossref_primary_10_1109_JSAC_2021_3126076
crossref_primary_10_1016_j_acha_2024_101746
Cites_doi 10.1109/JPROC.2016.2537298
10.1109/JSAC.2016.2525398
10.1109/COMST.2018.2841349
10.1109/JSAC.2014.2328098
10.1109/ICASSP.2013.6638382
10.1109/MSP.2011.2178495
10.1109/TIT.2013.2294644
10.1109/COMST.2015.2444095
10.1109/MWC.2015.7143330
10.1109/TWC.2016.2544758
10.1109/TIT.2010.2043769
10.1093/mnras/sts069
10.1093/imanum/drx080
10.1017/CBO9780511807213
10.1109/TIT.2017.2701342
10.1109/MCOM.2017.1601089
10.1007/s10208-014-9191-2
10.1017/CBO9780511841224
10.1007/s00180-013-0464-z
10.1117/12.2271571
10.1109/TSP.2018.2864660
10.1109/JPROC.2010.2042415
10.1137/110845768
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
DOI 10.1109/TWC.2018.2886191
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Technology Research Database
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Xplore Digital Library
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1558-2248
EndPage 911
ExternalDocumentID 10_1109_TWC_2018_2886191
8580587
Genre orig-research
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 61601290
  funderid: 10.13039/501100001809
– fundername: Shanghai Sailing Program
  grantid: 16YF1407700
GroupedDBID -~X
0R~
29I
4.4
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AIBXA
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
HZ~
H~9
IES
IFIPE
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
RIA
RIE
RNS
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
RIG
ID FETCH-LOGICAL-c291t-adaf2f002a3e4077f73f26c573451679aa92be305805d2310c7b2050b54d41dd3
IEDL.DBID RIE
ISSN 1536-1276
IngestDate Fri Jul 25 12:25:42 EDT 2025
Wed Oct 01 04:50:54 EDT 2025
Thu Apr 24 23:03:58 EDT 2025
Wed Aug 27 03:03:29 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c291t-adaf2f002a3e4077f73f26c573451679aa92be305805d2310c7b2050b54d41dd3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-1418-7465
PQID 2180024810
PQPubID 105736
PageCount 15
ParticipantIDs ieee_primary_8580587
crossref_primary_10_1109_TWC_2018_2886191
crossref_citationtrail_10_1109_TWC_2018_2886191
proquest_journals_2180024810
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-Feb.
2019-2-00
20190201
PublicationDateYYYYMMDD 2019-02-01
PublicationDate_xml – month: 02
  year: 2019
  text: 2019-Feb.
PublicationDecade 2010
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on wireless communications
PublicationTitleAbbrev TWC
PublicationYear 2019
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref12
ref15
ref14
strohmer (ref18) 2017
ref33
ref11
ref10
ref2
ref1
ref19
absil (ref29) 2009
beek (ref23) 1998
ref24
ref26
ref25
ref22
ge (ref30) 2017; 70
ref28
ling (ref17) 2018
ref27
boumal (ref31) 2014; 15
ref8
ref7
ref9
ref4
mccoy (ref16) 2017
ref3
boumal (ref20) 2011
ref6
ref5
grant (ref32) 2014
huang (ref21) 2017
References_xml – ident: ref7
  doi: 10.1109/JPROC.2016.2537298
– ident: ref2
  doi: 10.1109/JSAC.2016.2525398
– year: 2014
  ident: ref32
  publication-title: CVX MATLAB Software for Disciplined Convex Programming
– ident: ref5
  doi: 10.1109/COMST.2018.2841349
– ident: ref4
  doi: 10.1109/JSAC.2014.2328098
– ident: ref27
  doi: 10.1109/ICASSP.2013.6638382
– ident: ref11
  doi: 10.1109/MSP.2011.2178495
– ident: ref14
  doi: 10.1109/TIT.2013.2294644
– start-page: 1
  year: 2018
  ident: ref17
  article-title: Regularized gradient descent: A non-convex recipe for fast joint blind deconvolution and demixing
  publication-title: Inf Inference J IMA
– volume: 15
  start-page: 1455
  year: 2014
  ident: ref31
  article-title: Manopt, a MATLAB toolbox for optimization on manifolds
  publication-title: J Mach Learn Res
– start-page: 1
  year: 2017
  ident: ref18
  article-title: Painless breakups-Efficient demixing of low rank matrices
  publication-title: J Fourier Anal Appl
– year: 2009
  ident: ref29
  publication-title: Optimization Algorithms on Matrix Manifolds
– ident: ref1
  doi: 10.1109/COMST.2015.2444095
– ident: ref6
  doi: 10.1109/MWC.2015.7143330
– ident: ref10
  doi: 10.1109/TWC.2016.2544758
– year: 1998
  ident: ref23
  article-title: Synchronization channel estimation OFDM syst
– ident: ref8
  doi: 10.1109/TIT.2010.2043769
– ident: ref28
  doi: 10.1093/mnras/sts069
– ident: ref19
  doi: 10.1093/imanum/drx080
– volume: 70
  start-page: 1233
  year: 2017
  ident: ref30
  article-title: No spurious local minima in nonconvex low rank problems: A unified geometric analysis
  publication-title: Proc Int Conf Mach Learn (ICML)
– ident: ref22
  doi: 10.1017/CBO9780511807213
– ident: ref12
  doi: 10.1109/TIT.2017.2701342
– ident: ref3
  doi: 10.1109/MCOM.2017.1601089
– ident: ref15
  doi: 10.1007/s10208-014-9191-2
– year: 2017
  ident: ref16
  article-title: The achievable performance of convex demixing
– ident: ref24
  doi: 10.1017/CBO9780511841224
– ident: ref26
  doi: 10.1007/s00180-013-0464-z
– start-page: 406
  year: 2011
  ident: ref20
  article-title: RTRMC: A Riemannian trust-region method for low-rank matrix completion
  publication-title: Proc NIPS
– year: 2017
  ident: ref21
  publication-title: Blind deconvolution by a steepest descent algorithm on a quotient manifold
– ident: ref13
  doi: 10.1117/12.2271571
– ident: ref33
  doi: 10.1109/TSP.2018.2864660
– ident: ref9
  doi: 10.1109/JPROC.2010.2042415
– ident: ref25
  doi: 10.1137/110845768
SSID ssj0017655
Score 2.377271
Snippet In next-generation wireless networks, low-latency communication is critical to support emerging diversified applications, e.g., tactile Internet and virtual...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 897
SubjectTerms Algorithms
Blind demixing
Channel estimation
Communication
Complexity
Complexity theory
Convergence
Cost analysis
Demixing
Ground truth
Interference
Iterative methods
low-latency communication
low-rank optimization
Manifolds
Manifolds (mathematics)
Mathematical analysis
Matrix methods
OFDM
Optimization
Optimization algorithms
product manifold
Riemannian optimization
Statistical analysis
Symmetric matrices
Virtual reality
Wireless communications
Wireless networks
Title Blind Demixing for Low-Latency Communication
URI https://ieeexplore.ieee.org/document/8580587
https://www.proquest.com/docview/2180024810
Volume 18
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Xplore Digital Library
  customDbUrl:
  eissn: 1558-2248
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017655
  issn: 1536-1276
  databaseCode: RIE
  dateStart: 20020101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT8MwDLbGTnDgNRCDgXrggrR26SNNcoTBNKGN0yZ2q5I6lRCwIdjE49eTtF3FACFuVZVUlh3Hn-sXwKmgKmAo0WVhxtxI-uhKmqFLtOQoJZdE2OLk4U3cH0fXEzqpQbuqhdFa58ln2rOPeSwfZ-nC_irrcMoJ5WwN1hiPi1qtKmLA4nzCqVFgO1eGVSFJIjqj267N4eJewLnxF_wVE5TPVPlxEefWpbcFwyVdRVLJvbeYKy_9-Nay8b-Eb8NmCTOd8-Jc7EBNT3dh40vzwQa0LwzCROdSP969mReOQa_OYPbqDqSF0e_OSunIHox7V6Nu3y1nJ7hpIPy5K1FmQWauOxlq47OxzMgiiFPKQjuZlwkpRaC0UXZDGFqMlzIVEEoUjTDyEcN9qE9nU30AToQB4VpJgRmPIk2VNEYvlRSRpagxbEJnyc4kLRuL2_kWD0nuYBCRGAEkVgBJKYAmnFU7noqmGn-sbVh-VutKVjahtZRYUmrdS2LgSt6jzSeHv-86gnXzbVFkXbegPn9e6GMDKubqJD9NnwzMx6Q
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT8MwDLbGOAAH3ojBgB64INEubZMlOfLUgI3TJrhVaZ1KCNgQdOLx60narmKAELeqSlTLjuPP9QtgX7I44KjQ5WHKXap8dBVL0SVaCVRKKCJtcXLvut0Z0MtbdluDw6oWRmudJ59pzz7msXwcJWP7q6wlmCBM8BmYZZRSVlRrVTED3s5nnBoVtpNleBWUJLLVvzmxWVzCC4QwHoM_ZYTyqSo_ruLcvpwvQW9CWZFWcu-Ns9hLPr41bfwv6cuwWAJN56g4GStQ08NVWPjSfnANDo8NxkTnVD_evZkXjsGvTnf06naVBdLvzlTxyDoMzs_6Jx23nJ7gJoH0M1ehSoPUXHgq1MZr46mRRtBOGA_tbF4ulZJBrI26G8LQoryExwFhJGYUqY8YbkB9OBrqTXAoBkToWElMBaWaxcqYvUQxRJ6gxrABrQk7o6RsLW4nXDxEuYtBZGQEEFkBRKUAGnBQ7Xgq2mr8sXbN8rNaV7KyAc2JxKJS714iA1jyLm0-2fp91x7Mdfq9btS9uL7ahnnzHVnkYDehnj2P9Y6BGFm8m5-sT7C7yvE
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Blind+Demixing+for+Low-Latency+Communication&rft.jtitle=IEEE+transactions+on+wireless+communications&rft.au=Dong%2C+Jialin&rft.au=Yang%2C+Kai&rft.au=Shi%2C+Yuanming&rft.date=2019-02-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=1536-1276&rft.eissn=1558-2248&rft.volume=18&rft.issue=2&rft.spage=897&rft_id=info:doi/10.1109%2FTWC.2018.2886191&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1536-1276&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1536-1276&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1536-1276&client=summon