Low-Scattering-Cross Section Thinned Phased Array Antenna Based on Active Cancellation Technique
In this article, a novel approach to simultaneously reduce the scattering cross section (SCS) and lower sidelobe level (SLL) as well as the cost of a phased array is proposed, which is a combination of active cancellation and array thinning techniques. Two 10 <inline-formula> <tex-math nota...
        Saved in:
      
    
          | Published in | IEEE transactions on antennas and propagation Vol. 70; no. 7; pp. 5481 - 5490 | 
|---|---|
| Main Authors | , , , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
        New York
          IEEE
    
        01.07.2022
     The Institute of Electrical and Electronics Engineers, Inc. (IEEE)  | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 0018-926X 1558-2221  | 
| DOI | 10.1109/TAP.2022.3161303 | 
Cover
| Abstract | In this article, a novel approach to simultaneously reduce the scattering cross section (SCS) and lower sidelobe level (SLL) as well as the cost of a phased array is proposed, which is a combination of active cancellation and array thinning techniques. Two 10 <inline-formula> <tex-math notation="LaTeX">\times\,\,10 </tex-math></inline-formula> planar microstrip phased arrays are designed to validate the proposed concept, including a full array and a thinned array with 20 passive elements. In the thinned array, the passive elements are made use of and terminated at an optimized position with short-circuited loads to generate scattering fields with the required magnitude and phase for cancellation of the scattering fields from the active elements. Furthermore, the positions of the passive elements are optimized by a multiple dimensional discrete particle swarm optimization (MDDPSO) algorithm to achieve a low SLL. It is theoretically predicted that the thinned array features a low SLL below −18 dB in a scan range of ±45°, and SCS reductions of 21 and 9.1 dB in 7.3-10.1 GHz compared to an equal-sized metallic plate and a full array, respectively, which are further verified in simulations and measurements. It is also remarkable that the array cost is reduced due to array thinning, at the cost of an approximately 1 dB gain drop. | 
    
|---|---|
| AbstractList | In this article, a novel approach to simultaneously reduce the scattering cross section (SCS) and lower sidelobe level (SLL) as well as the cost of a phased array is proposed, which is a combination of active cancellation and array thinning techniques. Two 10 [Formula Omitted] planar microstrip phased arrays are designed to validate the proposed concept, including a full array and a thinned array with 20 passive elements. In the thinned array, the passive elements are made use of and terminated at an optimized position with short-circuited loads to generate scattering fields with the required magnitude and phase for cancellation of the scattering fields from the active elements. Furthermore, the positions of the passive elements are optimized by a multiple dimensional discrete particle swarm optimization (MDDPSO) algorithm to achieve a low SLL. It is theoretically predicted that the thinned array features a low SLL below −18 dB in a scan range of ±45°, and SCS reductions of 21 and 9.1 dB in 7.3–10.1 GHz compared to an equal-sized metallic plate and a full array, respectively, which are further verified in simulations and measurements. It is also remarkable that the array cost is reduced due to array thinning, at the cost of an approximately 1 dB gain drop. In this article, a novel approach to simultaneously reduce the scattering cross section (SCS) and lower sidelobe level (SLL) as well as the cost of a phased array is proposed, which is a combination of active cancellation and array thinning techniques. Two 10 <inline-formula> <tex-math notation="LaTeX">\times\,\,10 </tex-math></inline-formula> planar microstrip phased arrays are designed to validate the proposed concept, including a full array and a thinned array with 20 passive elements. In the thinned array, the passive elements are made use of and terminated at an optimized position with short-circuited loads to generate scattering fields with the required magnitude and phase for cancellation of the scattering fields from the active elements. Furthermore, the positions of the passive elements are optimized by a multiple dimensional discrete particle swarm optimization (MDDPSO) algorithm to achieve a low SLL. It is theoretically predicted that the thinned array features a low SLL below −18 dB in a scan range of ±45°, and SCS reductions of 21 and 9.1 dB in 7.3-10.1 GHz compared to an equal-sized metallic plate and a full array, respectively, which are further verified in simulations and measurements. It is also remarkable that the array cost is reduced due to array thinning, at the cost of an approximately 1 dB gain drop.  | 
    
| Author | Yang, Shiwen Hu, Jun Qu, Shi-Wei Li, Peng-Fa  | 
    
| Author_xml | – sequence: 1 givenname: Peng-Fa orcidid: 0000-0003-0768-9237 surname: Li fullname: Li, Peng-Fa email: lipengfa@uestc.edu.cn organization: School of Electronic Science and Engineering, University of Electronic Science and Technology of China (UESTC), Chengdu, China – sequence: 2 givenname: Shi-Wei orcidid: 0000-0001-6683-9034 surname: Qu fullname: Qu, Shi-Wei email: shiweiqu@uestc.edu.cn organization: School of Electronic Science and Engineering, University of Electronic Science and Technology of China (UESTC), Chengdu, China – sequence: 3 givenname: Shiwen orcidid: 0000-0002-1546-8947 surname: Yang fullname: Yang, Shiwen organization: School of Electronic Science and Engineering, University of Electronic Science and Technology of China (UESTC), Chengdu, China – sequence: 4 givenname: Jun orcidid: 0000-0002-4565-3000 surname: Hu fullname: Hu, Jun organization: School of Electronic Science and Engineering, University of Electronic Science and Technology of China (UESTC), Chengdu, China  | 
    
| BookMark | eNp9kM9LwzAUx4NMcJveBS8Fz5351bQ51uEvGDjYBG8xSRPXUdOZZsr-e7N1ePDg6ZHH5_Pey3cEBq51BoBLBCcIQX6zLOcTDDGeEMQQgeQEDFGWFSnGGA3AEEJUpByz1zMw6rp1fNKC0iF4m7Xf6ULLEIyv3Xs69W3XJQujQ926ZLmqnTNVMl_JLpbSe7lLSheMczK5PfQiVUb4yyRT6bRpGtmbRq9c_bk15-DUyqYzF8c6Bi_3d8vpYzp7fnialrNUY45CKjVSlmqrCLKMy8xUREtdIKM4yyrNc1sprgpdUVYonRPIK0sLhRTUVa5sTsbgup-78W1c2wWxbrfexZUCM56hDGYER4r1lN7_0xsrdB0OFwcv60YgKPZpipim2KcpjmlGEf4RN77-kH73n3LVK7Ux5hfnOSUMU_IDNt2DNg | 
    
| CODEN | IETPAK | 
    
| CitedBy_id | crossref_primary_10_3390_electronics13234711 crossref_primary_10_1109_TAP_2023_3299452 crossref_primary_10_1109_TMTT_2023_3253166 crossref_primary_10_1109_TAP_2023_3264985 crossref_primary_10_1016_j_aeue_2024_155300 crossref_primary_10_1109_TAP_2023_3330344  | 
    
| Cites_doi | 10.1109/LAWP.2020.3013981 10.1109/TAP.2018.2880038 10.1109/TAP.2020.3008627 10.1109/TAP.2021.3076339 10.1049/SBRA026E 10.1109/TAP.2019.2905989 10.1109/LAWP.2010.2044230 10.1109/TAP.2017.2780903 10.1109/TAP.2012.2231922 10.1109/TAP.2020.3001446 10.1109/TAP.2020.2980360 10.1109/TAP.2015.2394785 10.1109/TAP.2021.3098590 10.1109/TAP.2016.2633951 10.1109/LAWP.2010.2047837 10.1109/LAWP.2020.3048779 10.1109/LAWP.2012.2215832 10.1109/TAP.2016.2543781 10.1109/TMAG.2015.2481883 10.1109/TAP.2005.854532 10.1109/TAP.1982.1142745 10.1109/TAP.2009.2025975 10.1002/0471457531 10.1109/TAP.2018.2794410 10.1109/TAP.2017.2670566 10.1109/LAWP.2009.2037168 10.1049/iet-map.2008.0325 10.1109/TAP.2014.2355852 10.1109/5.32056 10.1109/8.273305 10.1109/TAP.2013.2287888 10.1109/TAP.2019.2911633 10.1109/MAP.2019.2920066 10.1109/TMAG.2009.2012687 10.1109/MAP.2011.6157706 10.1109/LAWP.2015.2490241 10.1007/s11468-014-9699-y 10.1109/TAP.2015.2497352  | 
    
| ContentType | Journal Article | 
    
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022 | 
    
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022 | 
    
| DBID | 97E RIA RIE AAYXX CITATION 7SP 8FD L7M  | 
    
| DOI | 10.1109/TAP.2022.3161303 | 
    
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Electronics & Communications Abstracts Technology Research Database Advanced Technologies Database with Aerospace  | 
    
| DatabaseTitle | CrossRef Technology Research Database Advanced Technologies Database with Aerospace Electronics & Communications Abstracts  | 
    
| DatabaseTitleList | Technology Research Database | 
    
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Xplore url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher  | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Engineering | 
    
| EISSN | 1558-2221 | 
    
| EndPage | 5490 | 
    
| ExternalDocumentID | 10_1109_TAP_2022_3161303 9743624  | 
    
| Genre | orig-research | 
    
| GrantInformation_xml | – fundername: Natural Science Foundation of China (NSFC) Projects grantid: 62001093; 61721001 funderid: 10.13039/501100001809 – fundername: Postdoctoral Innovation Talents Support Program of China grantid: BX20190058  | 
    
| GroupedDBID | -~X 0R~ 29I 4.4 5GY 5VS 6IK 85S 97E AAJGR AARMG AASAJ AAWTH ABAZT ABFSI ABQJQ ABVLG ACGFO ACGFS ACIWK ACKIV ACNCT AENEX AETIX AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 E.L EBS EJD F5P HZ~ H~9 IAAWW IBMZZ ICLAB IDIHD IFIPE IFJZH IPLJI JAVBF LAI M43 O9- OCL P2P RIA RIE RNS RXW TAE TAF TN5 VH1 VJK VOH AAYXX CITATION 7SP 8FD L7M  | 
    
| ID | FETCH-LOGICAL-c291t-ac1bf4cfb31f69a5ed3cac81eb965dc97fdb9b8cd468bc7309df48b1b0cd7bf73 | 
    
| IEDL.DBID | RIE | 
    
| ISSN | 0018-926X | 
    
| IngestDate | Mon Jun 30 10:15:01 EDT 2025 Wed Oct 01 04:02:17 EDT 2025 Thu Apr 24 22:55:38 EDT 2025 Wed Aug 27 02:25:27 EDT 2025  | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Issue | 7 | 
    
| Language | English | 
    
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037  | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-c291t-ac1bf4cfb31f69a5ed3cac81eb965dc97fdb9b8cd468bc7309df48b1b0cd7bf73 | 
    
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14  | 
    
| ORCID | 0000-0003-0768-9237 0000-0001-6683-9034 0000-0002-1546-8947 0000-0002-4565-3000  | 
    
| PQID | 2695150532 | 
    
| PQPubID | 85476 | 
    
| PageCount | 10 | 
    
| ParticipantIDs | crossref_citationtrail_10_1109_TAP_2022_3161303 ieee_primary_9743624 proquest_journals_2695150532 crossref_primary_10_1109_TAP_2022_3161303  | 
    
| ProviderPackageCode | CITATION AAYXX  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 2022-07-01 | 
    
| PublicationDateYYYYMMDD | 2022-07-01 | 
    
| PublicationDate_xml | – month: 07 year: 2022 text: 2022-07-01 day: 01  | 
    
| PublicationDecade | 2020 | 
    
| PublicationPlace | New York | 
    
| PublicationPlace_xml | – name: New York | 
    
| PublicationTitle | IEEE transactions on antennas and propagation | 
    
| PublicationTitleAbbrev | TAP | 
    
| PublicationYear | 2022 | 
    
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE)  | 
    
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)  | 
    
| References | ref35 ref12 ref34 ref15 ref37 ref14 ref36 ref31 ref30 ref11 ref33 ref32 ref2 ref1 ref17 ref39 ref16 ref38 ref19 ref18 Gong (ref13) 2010 ref24 ref23 ref26 ref25 ref20 ref41 ref22 ref21 ref28 ref27 ref29 ref8 ref9 ref4 ref3 ref6 ref5 Green (ref7) 1963 ref40 Collin (ref10) 1969  | 
    
| References_xml | – ident: ref40 doi: 10.1109/LAWP.2020.3013981 – ident: ref22 doi: 10.1109/TAP.2018.2880038 – ident: ref23 doi: 10.1109/TAP.2020.3008627 – ident: ref24 doi: 10.1109/TAP.2021.3076339 – ident: ref12 doi: 10.1049/SBRA026E – ident: ref32 doi: 10.1109/TAP.2019.2905989 – ident: ref33 doi: 10.1109/LAWP.2010.2044230 – ident: ref15 doi: 10.1109/TAP.2017.2780903 – ident: ref16 doi: 10.1109/TAP.2012.2231922 – ident: ref17 doi: 10.1109/TAP.2020.3001446 – ident: ref35 doi: 10.1109/TAP.2020.2980360 – ident: ref38 doi: 10.1109/TAP.2015.2394785 – ident: ref25 doi: 10.1109/TAP.2021.3098590 – ident: ref31 doi: 10.1109/TAP.2016.2633951 – ident: ref19 doi: 10.1109/LAWP.2010.2047837 – ident: ref36 doi: 10.1109/LAWP.2020.3048779 – ident: ref30 doi: 10.1109/LAWP.2012.2215832 – year: 1963 ident: ref7 article-title: The general theory of antenna scattering – ident: ref34 doi: 10.1109/TAP.2016.2543781 – ident: ref39 doi: 10.1109/TMAG.2015.2481883 – ident: ref3 doi: 10.1109/TAP.2005.854532 – ident: ref9 doi: 10.1109/TAP.1982.1142745 – ident: ref4 doi: 10.1109/TAP.2009.2025975 – ident: ref8 doi: 10.1002/0471457531 – ident: ref26 doi: 10.1109/TAP.2018.2794410 – ident: ref18 doi: 10.1109/TAP.2017.2670566 – volume-title: Antenna Theory year: 1969 ident: ref10 – ident: ref20 doi: 10.1109/LAWP.2009.2037168 – volume-title: Prediction and Reduction of Antenna Radar Cross Section year: 2010 ident: ref13 – ident: ref21 doi: 10.1049/iet-map.2008.0325 – ident: ref5 doi: 10.1109/TAP.2014.2355852 – ident: ref11 doi: 10.1109/5.32056 – ident: ref41 doi: 10.1109/8.273305 – ident: ref14 doi: 10.1109/TAP.2013.2287888 – ident: ref28 doi: 10.1109/TAP.2019.2911633 – ident: ref6 doi: 10.1109/MAP.2019.2920066 – ident: ref37 doi: 10.1109/TMAG.2009.2012687 – ident: ref2 doi: 10.1109/MAP.2011.6157706 – ident: ref29 doi: 10.1109/LAWP.2015.2490241 – ident: ref1 doi: 10.1007/s11468-014-9699-y – ident: ref27 doi: 10.1109/TAP.2015.2497352  | 
    
| SSID | ssj0014844 | 
    
| Score | 2.4457784 | 
    
| Snippet | In this article, a novel approach to simultaneously reduce the scattering cross section (SCS) and lower sidelobe level (SLL) as well as the cost of a phased... | 
    
| SourceID | proquest crossref ieee  | 
    
| SourceType | Aggregation Database Enrichment Source Index Database Publisher  | 
    
| StartPage | 5481 | 
    
| SubjectTerms | Active cancellation technique Algorithms Antenna arrays Cancellation Costs Metal plates Microstrip antenna arrays optimization algorithm Particle swarm optimization phased array Phased arrays Prediction algorithms Predictive models Prototypes Scattering scattering cross section reduction (SCSR) Scattering cross sections Sidelobes thinned arrays Thinning  | 
    
| Title | Low-Scattering-Cross Section Thinned Phased Array Antenna Based on Active Cancellation Technique | 
    
| URI | https://ieeexplore.ieee.org/document/9743624 https://www.proquest.com/docview/2695150532  | 
    
| Volume | 70 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Xplore customDbUrl: eissn: 1558-2221 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0014844 issn: 0018-926X databaseCode: RIE dateStart: 19630101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3dT9swED-1PG0PjA0QHd3kh70g4bZJHDd-LNWqahoTEq3Ut-CzHSFRpQhaIfjrOTtJBWxCe4ss2zrlzvfhO_8O4AfZTCOtFhzJVnOKN5BnmUZuUUaFv3EQxt9Dnv-R07n4tUgXLTjdvoVxzoXiM9fznyGXb1dm46_K-uT7kr4VbWgPM1m91dpmDEQmKsTliA5wLBdNSnKg-rPRBQWCcUzxqfeWk1cmKPRU-UsRB-sy-QTnDV1VUclNb7PGnnl6A9n4v4TvwW7tZrJRJRefoeXKL_DxBfjgPlz9Xj3wSxPwNWmAjz2x7DKUZpXM9_MkDcwursnMWdroTj-yka93LzU7C2M0axS0JRt70VlWVXVs1qDCHsB88nM2nvK63wI3sYrWXJsIC2EKTKJCKp06mxhtssihkqk1alhYVOi7HckMDakGZQuRYYQDY4dYDJND2ClXpTsCFqOMBzrNpEpRpEmsyc_wAE_SiQiVwQ70GxbkpgYj9z0xlnkISgYqJ6blnml5zbQOnGxX3FZAHO_M3fc82M6rf38Hug2X8_qk3ucxkUhOMdH49d-rjuGD37sq0e3Czvpu476RI7LG70ECnwEJh9n9 | 
    
| linkProvider | IEEE | 
    
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NT9swFH_q2IFxgA2YKOs2H3aZhNsmcdz4WKqhwlqERJF6C362o0mgFEErtP31e3aSagM07RZZdvKUZ79v_x7AF9KZRlotOJKu5uRvIM8yjdyijAofcRDGxyGn53J8Jc7m6bwFR-u7MM65UHzmuv4x5PLtwqx8qKxHti_JW_EKXqdCiLS6rbXOGYhMVJjLER3hWM6bpGRf9WbDC3IF45g8VG8vJ38podBV5ZkoDvrlZAemDWVVWclNd7XErvn1BLTxf0l_C9u1ocmG1c54By1X7sLWH_CDe3A9WTzySxMQNmmAjzyx7DIUZ5XMd_QkGcwufpCis_Sie_2TDX3Fe6nZcRijWcMgL9nIb57bqq6OzRpc2H24Ovk2G4153XGBm1hFS65NhIUwBSZRIZVOnU2MNlnkUMnUGjUoLCr0_Y5khoaEg7KFyDDCvrEDLAbJe9goF6U7ABajjPs6zaRKUaRJrMnS8BBP0okIlcE29BoW5KaGI_ddMW7z4Jb0VU5Myz3T8pppbfi6XnFXQXH8Y-6e58F6Xv3729BpuJzXZ_Uhj4lEMouJxsOXV32GzfFsOsknp-ffP8Ab_52qYLcDG8v7lftIZskSP4Xd-Bubfd1K | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Low-Scattering-Cross+Section+Thinned+Phased+Array+Antenna+Based+on+Active+Cancellation+Technique&rft.jtitle=IEEE+transactions+on+antennas+and+propagation&rft.au=Peng-Fa%2C+Li&rft.au=Shi-Wei%2C+Qu&rft.au=Yang%2C+Shiwen&rft.au=Hu%2C+Jun&rft.date=2022-07-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=0018-926X&rft.eissn=1558-2221&rft.volume=70&rft.issue=7&rft.spage=5481&rft_id=info:doi/10.1109%2FTAP.2022.3161303&rft.externalDBID=NO_FULL_TEXT | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0018-926X&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0018-926X&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0018-926X&client=summon |