An optimized deep learning model using Mutation-based Atom Search Optimization algorithm for cervical cancer detection

The cervical cancer patient’s death rate can be minimized by accurate and early detection of cervical cancer (CC). One of the popular techniques called the Pap test or Pap smear is widely used for the early detection of CC. In the instance of CC detection, the manual analysis took more time. Existin...

Full description

Saved in:
Bibliographic Details
Published inSoft computing (Berlin, Germany) Vol. 25; no. 24; pp. 15363 - 15376
Main Authors Chitra, B., Kumar, S. S.
Format Journal Article
LanguageEnglish
Published Berlin/Heidelberg Springer Berlin Heidelberg 01.12.2021
Subjects
Online AccessGet full text
ISSN1432-7643
1433-7479
DOI10.1007/s00500-021-06138-w

Cover

Abstract The cervical cancer patient’s death rate can be minimized by accurate and early detection of cervical cancer (CC). One of the popular techniques called the Pap test or Pap smear is widely used for the early detection of CC. In the instance of CC detection, the manual analysis took more time. Existing approaches had a number of drawbacks, including low accuracy, increased computational complexity, higher feature dimensionality, poor reliability, and increased time consumption due to poor hyperparameter optimization. In this paper, we proposed MASO-optimized DenseNet 121 architecture for the early detection of cervical cancer. At first, different kinds of augmentation techniques such as horizontal flip, vertical flip, zooming, shearing, height shift, width shift, rotation, and brightness increase the number of training samples. The Mutation-based Atom Search Optimization (MASO) algorithm is established to optimize the hyperparameters in DenseNet 121 architecture such as the number of neurons in the dense layer, learning rate value, and the batch sizes. The proposed method effectively optimizes the hyperparameters inherent in the DenseNet 121 architecture, resulting in improved classification results while reducing computational complexity and data overfitting. Different kinds of performance metrics such as accuracy, specificity, sensitivity, precisions, recall, F-score, and confusion matrix evaluate the performance of MASO-optimized DenseNet 121 architecture for CC detection. A single normal class with three abnormal classes, namely Carcinoma, Light dysplastic, and Sever dysplastic, was selected from the Hervel dataset for experimental investigation. The proposed MASO-optimized DenseNet 121 architecture achieves 98.38% accuracy, 98.5% specificity, 98.83% sensitivity, 98.58% precision, 99.3% recall, and 98.25% F-score values than other existing methods.
AbstractList The cervical cancer patient’s death rate can be minimized by accurate and early detection of cervical cancer (CC). One of the popular techniques called the Pap test or Pap smear is widely used for the early detection of CC. In the instance of CC detection, the manual analysis took more time. Existing approaches had a number of drawbacks, including low accuracy, increased computational complexity, higher feature dimensionality, poor reliability, and increased time consumption due to poor hyperparameter optimization. In this paper, we proposed MASO-optimized DenseNet 121 architecture for the early detection of cervical cancer. At first, different kinds of augmentation techniques such as horizontal flip, vertical flip, zooming, shearing, height shift, width shift, rotation, and brightness increase the number of training samples. The Mutation-based Atom Search Optimization (MASO) algorithm is established to optimize the hyperparameters in DenseNet 121 architecture such as the number of neurons in the dense layer, learning rate value, and the batch sizes. The proposed method effectively optimizes the hyperparameters inherent in the DenseNet 121 architecture, resulting in improved classification results while reducing computational complexity and data overfitting. Different kinds of performance metrics such as accuracy, specificity, sensitivity, precisions, recall, F-score, and confusion matrix evaluate the performance of MASO-optimized DenseNet 121 architecture for CC detection. A single normal class with three abnormal classes, namely Carcinoma, Light dysplastic, and Sever dysplastic, was selected from the Hervel dataset for experimental investigation. The proposed MASO-optimized DenseNet 121 architecture achieves 98.38% accuracy, 98.5% specificity, 98.83% sensitivity, 98.58% precision, 99.3% recall, and 98.25% F-score values than other existing methods.
Author Chitra, B.
Kumar, S. S.
Author_xml – sequence: 1
  givenname: B.
  surname: Chitra
  fullname: Chitra, B.
  email: bchitra.research@gmail.com, chitrarammohan09@gmail.com
  organization: Department of Electronics and Communication Engineering, Noorul Islam Centre for Higher Education
– sequence: 2
  givenname: S. S.
  surname: Kumar
  fullname: Kumar, S. S.
  organization: Department of Electronics and Instrumentation Engineering, Noorul Islam Centre for Higher Education
BookMark eNp9kM1uAiEUhUljk6rtC3TFC9DCMMwMS2P6l9i4aLueIHNHMTNgADXt0xedrrpwxUn4vpucM0Ej6ywgdM_oA6O0fAyUCkoJzRihBeMVOV6hMcs5J2VeytE5Z6Qscn6DJiFsaSJLwcfoMLPY7aLpzQ80uAHY4Q6Ut8auce8a6PA-nPL7PqponCUrFRI4i67HHwnUG7wc9PM3Vt3aeRM3PW6dxxr8wWjVYa1syul-BH3ibtF1q7oAd3_vFH09P33OX8li-fI2ny2IziSLRMkcdFuKSmWNoCtGKwmlWAGlOawkK1hbFaoQElIZUTLZCN4CyNRbCpWxjE9RNdzV3oXgoa21GYpEr0xXM1qf9quH_eq0Sn3erz4mNfun7rzplf--LPFBCgm2a_D11u29TRUvWb-HM4eL
CitedBy_id crossref_primary_10_1007_s13042_025_02576_2
crossref_primary_10_32604_or_2022_025897
crossref_primary_10_32604_cmc_2023_032794
crossref_primary_10_1080_02286203_2023_2287968
crossref_primary_10_1002_ima_22751
crossref_primary_10_1002_cpe_7493
crossref_primary_10_1016_j_asoc_2024_112202
crossref_primary_10_7717_peerj_cs_2722
crossref_primary_10_1002_widm_1550
crossref_primary_10_1007_s11063_022_11055_6
crossref_primary_10_1016_j_jclepro_2023_139339
crossref_primary_10_3390_diagnostics13101763
crossref_primary_10_1007_s40998_023_00664_z
crossref_primary_10_1007_s00521_024_10909_5
Cites_doi 10.1016/j.eswa.2019.112951
10.1016/j.dib.2020.105589
10.1016/j.ejogrb.2019.01.008
10.1016/j.compbiomed.2008.11.006
10.1016/j.bbe.2020.01.016
10.1504/IJBET.2019.103242
10.1016/j.compag.2018.08.013
10.1007/s10115-018-1263-1
10.1016/j.bspc.2018.09.008
10.1016/j.jretconser.2020.102190
10.1162/neco_a_00990
10.1007/s00138-020-01063-8
10.1016/j.knosys.2018.08.030
10.1007/s00500-019-04387-4
10.1016/j.asoc.2020.106742
10.1016/j.swevo.2019.01.010
10.1016/j.patrec.2011.01.008
10.4018/978-1-60566-766-9.ch011
10.1016/j.dib.2019.105046
10.1016/j.future.2018.05.037
10.1016/j.imu.2019.02.001
10.1109/ACCESS.2021.3067195
10.1016/j.future.2020.07.045
10.1016/j.cose.2018.04.009
10.1007/s00521-020-05474-6
10.1007/s11042-019-7577-5
10.1007/s11277-019-06414-x
10.1016/j.cmpb.2016.10.001
10.1007/s10278-019-00269-1
10.1002/ijfe.2483
10.1016/j.eswa.2016.08.015
10.1016/j.artmed.2020.101897
10.1007/s11277-018-6014-9
10.1002/pip.3315
10.1186/s40537-019-0197-0
10.1007/s00500-018-3124-y
10.1016/j.compbiomed.2017.04.008
10.1155/2021/5584004
10.1002/ijc.24745
10.1109/ICCVW.2017.18
10.1109/ICICT50816.2021.9358570
10.18653/v1/D19-1670
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2021
Copyright_xml – notice: The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2021
DBID AAYXX
CITATION
DOI 10.1007/s00500-021-06138-w
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
EISSN 1433-7479
EndPage 15376
ExternalDocumentID 10_1007_s00500_021_06138_w
GroupedDBID -5B
-5G
-BR
-EM
-Y2
-~C
.86
.VR
06D
0R~
0VY
1N0
1SB
203
29~
2J2
2JN
2JY
2KG
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
5VS
67Z
6NX
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTD
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACZOJ
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
BA0
BDATZ
BENPR
BGLVJ
BGNMA
BSONS
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
EBLON
EBS
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IHE
IJ-
IKXTQ
IWAJR
IXC
IXD
IXE
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K7-
KDC
KOV
LAS
LLZTM
M4Y
MA-
N2Q
NB0
NPVJJ
NQJWS
NU0
O9-
O93
O9J
OAM
P2P
P9P
PF0
PT4
PT5
QOS
R89
R9I
RIG
RNI
ROL
RPX
RSV
RZK
S16
S1Z
S27
S3B
SAP
SDH
SEG
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
Z5O
Z7R
Z7X
Z7Y
Z7Z
Z81
Z83
Z88
ZMTXR
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADHKG
ADKFA
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
PQGLB
PUEGO
ID FETCH-LOGICAL-c291t-a94ecf758a2d50b1089e75be004eb9161f86a659e1755719d53fee943395a2123
IEDL.DBID U2A
ISSN 1432-7643
IngestDate Wed Oct 01 03:00:17 EDT 2025
Thu Apr 24 23:09:12 EDT 2025
Fri Feb 21 02:47:22 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 24
Keywords Mutation-based Atom Search Optimization
Feature extraction
Pap smear images
And DenseNet 121
Fine-tuning
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c291t-a94ecf758a2d50b1089e75be004eb9161f86a659e1755719d53fee943395a2123
PageCount 14
ParticipantIDs crossref_citationtrail_10_1007_s00500_021_06138_w
crossref_primary_10_1007_s00500_021_06138_w
springer_journals_10_1007_s00500_021_06138_w
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20211200
2021-12-00
PublicationDateYYYYMMDD 2021-12-01
PublicationDate_xml – month: 12
  year: 2021
  text: 20211200
PublicationDecade 2020
PublicationPlace Berlin/Heidelberg
PublicationPlace_xml – name: Berlin/Heidelberg
PublicationSubtitle A Fusion of Foundations, Methodologies and Applications
PublicationTitle Soft computing (Berlin, Germany)
PublicationTitleAbbrev Soft Comput
PublicationYear 2021
Publisher Springer Berlin Heidelberg
Publisher_xml – name: Springer Berlin Heidelberg
References Song, Seong, Lee, Kim, Woong, Kim, Nam, Sim, Kim (CR32) 2019; 234
Zhao, Wang, Han, Wang, Dai, Sun, Zhang, Pedersen (CR49) 2020; 114
Rejeesh (CR27) 2019; 78
Kudva, Prasad, Guruvare (CR23) 2019; 33
Barbedo (CR6) 2018; 153
Cabada, Rangel, Estrada, Lopez (CR9) 2020; 24
Hassan, Rashid (CR19) 2020; 28
Zhao, Wang, Zhang (CR48) 2019; 163
Apostolidou, Hadwin, Burnell, Jones, Baff, Pyndiah, Mould (CR3) 2009; 125
Sundararaj, Rejeesh (CR35) 2021; 58
Ezzat, Hassanien, Ella (CR11) 2020; 98
Garcia-Gonzalez, Garcia-Silvente, Aguirre (CR12) 2016; 64
Sundararaj, Anoop, Dixit, Arjaria, Chourasia, Bhambri, Rejeesh, Sundararaj (CR37) 2020; 28
Rawat, Wang (CR26) 2017; 29
Torrey, Shavlik (CR40) 2010
Hussain, Mahanta, Borah, Das (CR20) 2020; 30
CR4
Sundararaj (CR34) 2019; 31
Sundararaj, Muthukumar, Kumar (CR36) 2018; 77
Adweb, Amer, Sekeroglu (CR1) 2021; 9
Zhao, Wang, Zhang (CR47) 2019; 91
Vinu (CR41) 2019; 104
CR44
CR43
Gowthul Alam, Baulkani (CR17) 2019; 60
Sundararaj (CR33) 2016; 9
Tiwari, Tiwari, Sam Santhose, Mishra, Rajeesh, Sundararaj (CR39) 2021
Taha, Dias, Werghi (CR38) 2017
Arya, Bhadoria (CR5) 2019
Hassan (CR18) 2021; 33
Hussain, Mahanta, Das, Choudhury, Chowdhury (CR21) 2020; 107
Xiang, Sun, Pan, Yan, Yin, Liang (CR46) 2020; 40
CR14
Marinakis, Dounias, Jantzen (CR24) 2009; 39
Gowthul Alam, Baulkani (CR16) 2019; 23
Salajegheh, Salajegheh (CR30) 2019; 46
Bora, Chowdhury, Mahanta, Kundu, Das (CR8) 2017; 138
Saini, Bansal, Kaur, Juneja (CR29) 2020; 31
Shorten, Khoshgoftaar (CR31) 2019; 6
Wang, Wang, Li, Song, Lv, Xianling (CR42) 2019; 48
Plissiti, Nikou, Charchanti (CR25) 2011; 32
Bhadoria, Bajpai (CR7) 2019; 108
Alyafeai, Ghouti (CR2) 2020; 141
Chandran, Sumithra, Karthick, Tony George, Deivakani, Subramaniam, Manoharan (CR10) 2021; 2021
CR22
Goutte, Gaussier (CR15) 2005
Saha, Bajger, Lee (CR28) 2017; 85
William, Ware, Basaza-Ejiri, Obungoloch (CR45) 2019; 14
Goodfellow, Bengio, Courville, Bengio (CR13) 2016
6138_CR14
Y Xiang (6138_CR46) 2020; 40
Z Alyafeai (6138_CR2) 2020; 141
D Ezzat (6138_CR11) 2020; 98
SK Saini (6138_CR29) 2020; 31
V Sundararaj (6138_CR35) 2021; 58
JGA Barbedo (6138_CR6) 2018; 153
L Torrey (6138_CR40) 2010
C Goutte (6138_CR15) 2005
R Saha (6138_CR28) 2017; 85
RS Bhadoria (6138_CR7) 2019; 108
I Goodfellow (6138_CR13) 2016
S Vinu (6138_CR41) 2019; 104
V Chandran (6138_CR10) 2021; 2021
W Zhao (6138_CR48) 2019; 163
MR Rejeesh (6138_CR27) 2019; 78
V Sundararaj (6138_CR34) 2019; 31
6138_CR4
RZ Cabada (6138_CR9) 2020; 24
S Apostolidou (6138_CR3) 2009; 125
E Hussain (6138_CR21) 2020; 107
B Taha (6138_CR38) 2017
V Kudva (6138_CR23) 2019; 33
T Song (6138_CR32) 2019; 234
F Salajegheh (6138_CR30) 2019; 46
M Zhao (6138_CR49) 2020; 114
P Wang (6138_CR42) 2019; 48
MM Gowthul Alam (6138_CR16) 2019; 23
E Hussain (6138_CR20) 2020; 30
6138_CR22
BA Hassan (6138_CR19) 2020; 28
MM Gowthul Alam (6138_CR17) 2019; 60
M Tiwari (6138_CR39) 2021
C Shorten (6138_CR31) 2019; 6
V Sundararaj (6138_CR33) 2016; 9
D Garcia-Gonzalez (6138_CR12) 2016; 64
V Sundararaj (6138_CR36) 2018; 77
ME Plissiti (6138_CR25) 2011; 32
Y Marinakis (6138_CR24) 2009; 39
W Zhao (6138_CR47) 2019; 91
W William (6138_CR45) 2019; 14
K Bora (6138_CR8) 2017; 138
V Sundararaj (6138_CR37) 2020; 28
BA Hassan (6138_CR18) 2021; 33
W Rawat (6138_CR26) 2017; 29
KM Adweb (6138_CR1) 2021; 9
(6138_CR5) 2019
6138_CR43
6138_CR44
References_xml – ident: CR22
– volume: 141
  start-page: 112951
  year: 2020
  ident: CR2
  article-title: A fully-automated deep learning pipeline for cervical cancer classification
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2019.112951
– volume: 30
  start-page: 105589
  year: 2020
  ident: CR20
  article-title: Liquid based-cytology Pap smear dataset for automated multi-class diagnosis of pre-cancerous and cervical cancer lesions
  publication-title: Data Brief
  doi: 10.1016/j.dib.2020.105589
– volume: 234
  start-page: 112
  year: 2019
  end-page: 116
  ident: CR32
  article-title: "Screening capacity and cost-effectiveness of the human papillomavirus test versus cervicography as an adjunctive test to Pap cytology to detect high-grade cervical dysplasia
  publication-title: Eur J Obst Gynecol Reprod Biol
  doi: 10.1016/j.ejogrb.2019.01.008
– volume: 39
  start-page: 69
  issue: 1
  year: 2009
  end-page: 78
  ident: CR24
  article-title: Pap smear diagnosis using a hybrid intelligent scheme focusing on genetic algorithm based feature selection and nearest neighbor classification
  publication-title: Comput Biol Med
  doi: 10.1016/j.compbiomed.2008.11.006
– volume: 40
  start-page: 611
  issue: 2
  year: 2020
  end-page: 623
  ident: CR46
  article-title: A novel automation-assisted cervical cancer reading method based on convolutional neural network
  publication-title: Biocybern Biomed Eng
  doi: 10.1016/j.bbe.2020.01.016
– volume: 31
  start-page: 325
  issue: 4
  year: 2019
  ident: CR34
  article-title: Optimised denoising scheme via opposition-based self-adaptive learning PSO algorithm for wavelet-based ECG signal noise reduction
  publication-title: Int J Biomed Eng Technol
  doi: 10.1504/IJBET.2019.103242
– ident: CR4
– volume: 153
  start-page: 46
  year: 2018
  end-page: 53
  ident: CR6
  article-title: Impact of dataset size and variety on the effectiveness of deep learning and transfer learning for plant disease classification
  publication-title: Comput Electron Agric
  doi: 10.1016/j.compag.2018.08.013
– volume: 60
  start-page: 971
  issue: 2
  year: 2019
  end-page: 1000
  ident: CR17
  article-title: Local and global characteristics-based kernel hybridization to increase optimal support vector machine performance for stock market prediction
  publication-title: Knowl Inf Syst
  doi: 10.1007/s10115-018-1263-1
– volume: 48
  start-page: 93
  year: 2019
  end-page: 103
  ident: CR42
  article-title: Automatic cell nuclei segmentation and classification of cervical Pap smear images
  publication-title: Biomed Signal Process Control
  doi: 10.1016/j.bspc.2018.09.008
– volume: 58
  start-page: 102
  year: 2021
  ident: CR35
  article-title: A detailed behavioral analysis on consumer and customer changing behavior with respect to social networking sites
  publication-title: J Retail Consum Serv
  doi: 10.1016/j.jretconser.2020.102190
– year: 2016
  ident: CR13
  publication-title: Deep learning
– volume: 29
  start-page: 2352
  issue: 9
  year: 2017
  end-page: 2449
  ident: CR26
  article-title: Deep convolutional neural networks for image classification: a comprehensive review
  publication-title: Neural Comput
  doi: 10.1162/neco_a_00990
– volume: 31
  start-page: 1
  issue: 3
  year: 2020
  end-page: 15
  ident: CR29
  article-title: ColpoNet for automated cervical cancer screening using colposcopy images
  publication-title: Mach vis Appl
  doi: 10.1007/s00138-020-01063-8
– volume: 163
  start-page: 283
  year: 2019
  end-page: 304
  ident: CR48
  article-title: Atom search optimization and its application to solve a hydrogeologic parameter estimation problem
  publication-title: Knowl-Based Syst
  doi: 10.1016/j.knosys.2018.08.030
– volume: 24
  start-page: 7593
  issue: 10
  year: 2020
  end-page: 7602
  ident: CR9
  article-title: Hyperparameter optimization in CNN for learning-centered emotion recognition for intelligent tutoring systems
  publication-title: Soft Comput
  doi: 10.1007/s00500-019-04387-4
– volume: 98
  start-page: 106742
  year: 2020
  ident: CR11
  article-title: An optimized deep learning architecture for the diagnosis of COVID-19 disease based on gravitational search optimization
  publication-title: Applied Soft Computing
  doi: 10.1016/j.asoc.2020.106742
– volume: 46
  start-page: 28
  year: 2019
  end-page: 51
  ident: CR30
  article-title: PSOG: Enhanced particle swarm optimization by a unit vector of first and second order gradient directions
  publication-title: Swarm Evol Comput
  doi: 10.1016/j.swevo.2019.01.010
– volume: 32
  start-page: 838
  issue: 6
  year: 2011
  end-page: 853
  ident: CR25
  article-title: Combining shape, texture and intensity features for cell nuclei extraction in Pap smear images
  publication-title: Pattern Recogn Lett
  doi: 10.1016/j.patrec.2011.01.008
– start-page: 242
  year: 2010
  end-page: 264
  ident: CR40
  article-title: Transfer learning
  publication-title: Handbook of research on machine learning applications and trends: algorithms, methods, and techniques
  doi: 10.4018/978-1-60566-766-9.ch011
– start-page: 261
  year: 2017
  end-page: 272
  ident: CR38
  article-title: Classification of cervical-cancer using pap-smear images: a convolutional neural network approach
  publication-title: Annual conference on medical image understanding and analysis
– volume: 28
  start-page: 105046
  year: 2020
  ident: CR19
  article-title: Datasets on statistical analysis and performance evaluation of backtracking search optimisation algorithm compared with its counterpart algorithms
  publication-title: Data Brief
  doi: 10.1016/j.dib.2019.105046
– volume: 91
  start-page: 601
  year: 2019
  end-page: 610
  ident: CR47
  article-title: A novel atom search optimization for dispersion coefficient estimation in groundwater
  publication-title: Futur Gener Comput Syst
  doi: 10.1016/j.future.2018.05.037
– volume: 14
  start-page: 23
  year: 2019
  end-page: 33
  ident: CR45
  article-title: Cervical cancer classification from Pap-smears using an enhanced fuzzy C-means algorithm
  publication-title: Inf Med Unlocked
  doi: 10.1016/j.imu.2019.02.001
– volume: 9
  start-page: 46612
  year: 2021
  end-page: 46625
  ident: CR1
  article-title: Cervical cancer diagnosis using very deep networks over different activation functions
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2021.3067195
– volume: 114
  start-page: 185
  year: 2020
  end-page: 194
  ident: CR49
  article-title: Seens: Nuclei segmentation in pap smear images with selective edge enhancement
  publication-title: Futur Gener Comput Syst
  doi: 10.1016/j.future.2020.07.045
– ident: CR43
– volume: 77
  start-page: 277
  year: 2018
  end-page: 288
  ident: CR36
  article-title: An optimal cluster formation based energy efficient dynamic scheduling hybrid MAC protocol for heavy traffic load in wireless sensor networks
  publication-title: Comput Secur
  doi: 10.1016/j.cose.2018.04.009
– volume: 33
  start-page: 7011
  issue: 12
  year: 2021
  end-page: 7030
  ident: CR18
  article-title: CSCF: a chaotic sine cosine firefly algorithm for practical application problems
  publication-title: Neural Comput Appl
  doi: 10.1007/s00521-020-05474-6
– ident: CR14
– volume: 78
  start-page: 22691
  issue: 16
  year: 2019
  end-page: 22710
  ident: CR27
  article-title: Interest point based face recognition using adaptive neuro fuzzy inference system
  publication-title: Multimed Tools Appl
  doi: 10.1007/s11042-019-7577-5
– volume: 108
  start-page: 493
  issue: 1
  year: 2019
  end-page: 510
  ident: CR7
  article-title: Stabilizing sensor data collection for control of environment-friendly clean technologies using internet of things
  publication-title: Wireless Pers Commun
  doi: 10.1007/s11277-019-06414-x
– volume: 138
  start-page: 31
  year: 2017
  end-page: 47
  ident: CR8
  article-title: Automated classification of Pap smear images to detect cervical dysplasia
  publication-title: Comput Methods Programs Biomed
  doi: 10.1016/j.cmpb.2016.10.001
– volume: 33
  start-page: 619
  year: 2019
  end-page: 631
  ident: CR23
  article-title: Hybrid transfer learning for classification of uterine cervix images for cervical cancer screening
  publication-title: J Digit Imag
  doi: 10.1007/s10278-019-00269-1
– ident: CR44
– start-page: 345
  year: 2005
  end-page: 359
  ident: CR15
  article-title: A probabilistic interpretation of precision, recall and F-score, with implication for evaluation
  publication-title: European conference on information retrieval
– year: 2021
  ident: CR39
  article-title: Corporate social responsibility and supply chain: a study for evaluating corporate hypocrisy with special focus on stakeholders
  publication-title: Int J Fin Econ
  doi: 10.1002/ijfe.2483
– volume: 64
  start-page: 512
  year: 2016
  end-page: 522
  ident: CR12
  article-title: A multiscale algorithm for nuclei extraction in pap smear images
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2016.08.015
– volume: 107
  start-page: 101897
  year: 2020
  ident: CR21
  article-title: A shape context fully convolutional neural network for segmentation and classification of cervical nuclei in Pap smear images
  publication-title: Artif Intell Med
  doi: 10.1016/j.artmed.2020.101897
– volume: 9
  start-page: 117
  issue: 3
  year: 2016
  end-page: 126
  ident: CR33
  article-title: An efficient threshold prediction scheme for wavelet based ECG signal noise reduction using variable step size firefly algorithm
  publication-title: Int J Intell Eng Syst
– volume: 104
  start-page: 173
  issue: 1
  year: 2019
  end-page: 197
  ident: CR41
  article-title: Optimal task assignment in mobile cloud computing by queue based ant-bee algorithm
  publication-title: Wirel Pers Commun
  doi: 10.1007/s11277-018-6014-9
– volume: 28
  start-page: 1128
  issue: 11
  year: 2020
  end-page: 1145
  ident: CR37
  article-title: CCGPA-MPPT: Cauchy preferential crossover-based global pollination algorithm for MPPT in photovoltaic system
  publication-title: Prog Photovolt Res Appl
  doi: 10.1002/pip.3315
– volume: 6
  start-page: 1
  issue: 1
  year: 2019
  end-page: 48
  ident: CR31
  article-title: A survey on image data augmentation for deep learning
  publication-title: J Big Data
  doi: 10.1186/s40537-019-0197-0
– volume: 23
  start-page: 1079
  issue: 4
  year: 2019
  end-page: 1098
  ident: CR16
  article-title: Geometric structure information based multi-objective function to increase fuzzy clustering performance with artificial and real-life data
  publication-title: Soft Comput
  doi: 10.1007/s00500-018-3124-y
– volume: 85
  start-page: 13
  year: 2017
  end-page: 23
  ident: CR28
  article-title: Circular shape constrained fuzzy clustering (CiscFC) for nucleus segmentation in Pap smear images
  publication-title: Comput Biol Med
  doi: 10.1016/j.compbiomed.2017.04.008
– volume: 2021
  start-page: 1
  year: 2021
  end-page: 15
  ident: CR10
  article-title: Diagnosis of cervical cancer based on ensemble deep learning network using colposcopy images
  publication-title: BioMed Res Int
  doi: 10.1155/2021/5584004
– year: 2019
  ident: CR5
  publication-title: The biometric computing: recognition and registration
– volume: 125
  start-page: 2995
  issue: 12
  year: 2009
  end-page: 3002
  ident: CR3
  article-title: DNA methylation analysis in liquid-based cytology for cervical cancer screening
  publication-title: Int J Cancer
  doi: 10.1002/ijc.24745
– ident: 6138_CR44
  doi: 10.1109/ICCVW.2017.18
– start-page: 242
  volume-title: Handbook of research on machine learning applications and trends: algorithms, methods, and techniques
  year: 2010
  ident: 6138_CR40
  doi: 10.4018/978-1-60566-766-9.ch011
– volume: 9
  start-page: 117
  issue: 3
  year: 2016
  ident: 6138_CR33
  publication-title: Int J Intell Eng Syst
– start-page: 261
  volume-title: Annual conference on medical image understanding and analysis
  year: 2017
  ident: 6138_CR38
– volume: 114
  start-page: 185
  year: 2020
  ident: 6138_CR49
  publication-title: Futur Gener Comput Syst
  doi: 10.1016/j.future.2020.07.045
– volume: 14
  start-page: 23
  year: 2019
  ident: 6138_CR45
  publication-title: Inf Med Unlocked
  doi: 10.1016/j.imu.2019.02.001
– volume: 40
  start-page: 611
  issue: 2
  year: 2020
  ident: 6138_CR46
  publication-title: Biocybern Biomed Eng
  doi: 10.1016/j.bbe.2020.01.016
– volume: 98
  start-page: 106742
  year: 2020
  ident: 6138_CR11
  publication-title: Applied Soft Computing
  doi: 10.1016/j.asoc.2020.106742
– year: 2021
  ident: 6138_CR39
  publication-title: Int J Fin Econ
  doi: 10.1002/ijfe.2483
– volume: 31
  start-page: 1
  issue: 3
  year: 2020
  ident: 6138_CR29
  publication-title: Mach vis Appl
  doi: 10.1007/s00138-020-01063-8
– volume: 31
  start-page: 325
  issue: 4
  year: 2019
  ident: 6138_CR34
  publication-title: Int J Biomed Eng Technol
  doi: 10.1504/IJBET.2019.103242
– volume: 64
  start-page: 512
  year: 2016
  ident: 6138_CR12
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2016.08.015
– volume: 6
  start-page: 1
  issue: 1
  year: 2019
  ident: 6138_CR31
  publication-title: J Big Data
  doi: 10.1186/s40537-019-0197-0
– volume: 138
  start-page: 31
  year: 2017
  ident: 6138_CR8
  publication-title: Comput Methods Programs Biomed
  doi: 10.1016/j.cmpb.2016.10.001
– volume: 24
  start-page: 7593
  issue: 10
  year: 2020
  ident: 6138_CR9
  publication-title: Soft Comput
  doi: 10.1007/s00500-019-04387-4
– volume: 28
  start-page: 1128
  issue: 11
  year: 2020
  ident: 6138_CR37
  publication-title: Prog Photovolt Res Appl
  doi: 10.1002/pip.3315
– volume-title: The biometric computing: recognition and registration
  year: 2019
  ident: 6138_CR5
– volume: 48
  start-page: 93
  year: 2019
  ident: 6138_CR42
  publication-title: Biomed Signal Process Control
  doi: 10.1016/j.bspc.2018.09.008
– volume: 153
  start-page: 46
  year: 2018
  ident: 6138_CR6
  publication-title: Comput Electron Agric
  doi: 10.1016/j.compag.2018.08.013
– volume: 141
  start-page: 112951
  year: 2020
  ident: 6138_CR2
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2019.112951
– ident: 6138_CR22
– volume: 234
  start-page: 112
  year: 2019
  ident: 6138_CR32
  publication-title: Eur J Obst Gynecol Reprod Biol
  doi: 10.1016/j.ejogrb.2019.01.008
– volume: 58
  start-page: 102
  year: 2021
  ident: 6138_CR35
  publication-title: J Retail Consum Serv
  doi: 10.1016/j.jretconser.2020.102190
– volume: 107
  start-page: 101897
  year: 2020
  ident: 6138_CR21
  publication-title: Artif Intell Med
  doi: 10.1016/j.artmed.2020.101897
– volume: 29
  start-page: 2352
  issue: 9
  year: 2017
  ident: 6138_CR26
  publication-title: Neural Comput
  doi: 10.1162/neco_a_00990
– volume: 39
  start-page: 69
  issue: 1
  year: 2009
  ident: 6138_CR24
  publication-title: Comput Biol Med
  doi: 10.1016/j.compbiomed.2008.11.006
– volume: 30
  start-page: 105589
  year: 2020
  ident: 6138_CR20
  publication-title: Data Brief
  doi: 10.1016/j.dib.2020.105589
– start-page: 345
  volume-title: European conference on information retrieval
  year: 2005
  ident: 6138_CR15
– ident: 6138_CR4
  doi: 10.1109/ICICT50816.2021.9358570
– volume: 46
  start-page: 28
  year: 2019
  ident: 6138_CR30
  publication-title: Swarm Evol Comput
  doi: 10.1016/j.swevo.2019.01.010
– volume: 91
  start-page: 601
  year: 2019
  ident: 6138_CR47
  publication-title: Futur Gener Comput Syst
  doi: 10.1016/j.future.2018.05.037
– volume: 77
  start-page: 277
  year: 2018
  ident: 6138_CR36
  publication-title: Comput Secur
  doi: 10.1016/j.cose.2018.04.009
– volume: 23
  start-page: 1079
  issue: 4
  year: 2019
  ident: 6138_CR16
  publication-title: Soft Comput
  doi: 10.1007/s00500-018-3124-y
– ident: 6138_CR43
  doi: 10.18653/v1/D19-1670
– volume: 163
  start-page: 283
  year: 2019
  ident: 6138_CR48
  publication-title: Knowl-Based Syst
  doi: 10.1016/j.knosys.2018.08.030
– volume: 108
  start-page: 493
  issue: 1
  year: 2019
  ident: 6138_CR7
  publication-title: Wireless Pers Commun
  doi: 10.1007/s11277-019-06414-x
– volume: 2021
  start-page: 1
  year: 2021
  ident: 6138_CR10
  publication-title: BioMed Res Int
  doi: 10.1155/2021/5584004
– ident: 6138_CR14
– volume: 125
  start-page: 2995
  issue: 12
  year: 2009
  ident: 6138_CR3
  publication-title: Int J Cancer
  doi: 10.1002/ijc.24745
– volume: 78
  start-page: 22691
  issue: 16
  year: 2019
  ident: 6138_CR27
  publication-title: Multimed Tools Appl
  doi: 10.1007/s11042-019-7577-5
– volume: 32
  start-page: 838
  issue: 6
  year: 2011
  ident: 6138_CR25
  publication-title: Pattern Recogn Lett
  doi: 10.1016/j.patrec.2011.01.008
– volume: 85
  start-page: 13
  year: 2017
  ident: 6138_CR28
  publication-title: Comput Biol Med
  doi: 10.1016/j.compbiomed.2017.04.008
– volume: 28
  start-page: 105046
  year: 2020
  ident: 6138_CR19
  publication-title: Data Brief
  doi: 10.1016/j.dib.2019.105046
– volume: 9
  start-page: 46612
  year: 2021
  ident: 6138_CR1
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2021.3067195
– volume: 33
  start-page: 619
  year: 2019
  ident: 6138_CR23
  publication-title: J Digit Imag
  doi: 10.1007/s10278-019-00269-1
– volume: 104
  start-page: 173
  issue: 1
  year: 2019
  ident: 6138_CR41
  publication-title: Wirel Pers Commun
  doi: 10.1007/s11277-018-6014-9
– volume-title: Deep learning
  year: 2016
  ident: 6138_CR13
– volume: 60
  start-page: 971
  issue: 2
  year: 2019
  ident: 6138_CR17
  publication-title: Knowl Inf Syst
  doi: 10.1007/s10115-018-1263-1
– volume: 33
  start-page: 7011
  issue: 12
  year: 2021
  ident: 6138_CR18
  publication-title: Neural Comput Appl
  doi: 10.1007/s00521-020-05474-6
SSID ssj0021753
Score 2.399049
Snippet The cervical cancer patient’s death rate can be minimized by accurate and early detection of cervical cancer (CC). One of the popular techniques called the Pap...
SourceID crossref
springer
SourceType Enrichment Source
Index Database
Publisher
StartPage 15363
SubjectTerms Application of Soft Computing
Artificial Intelligence
Computational Intelligence
Control
Engineering
Mathematical Logic and Foundations
Mechatronics
Robotics
Title An optimized deep learning model using Mutation-based Atom Search Optimization algorithm for cervical cancer detection
URI https://link.springer.com/article/10.1007/s00500-021-06138-w
Volume 25
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVLSH
  databaseName: SpringerLink Journals
  customDbUrl:
  mediaType: online
  eissn: 1433-7479
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0021753
  issn: 1432-7643
  databaseCode: AFBBN
  dateStart: 19970401
  isFulltext: true
  providerName: Library Specific Holdings
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 1433-7479
  dateEnd: 20241102
  omitProxy: true
  ssIdentifier: ssj0021753
  issn: 1432-7643
  databaseCode: BENPR
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: SpringerLINK - Czech Republic Consortium
  customDbUrl:
  eissn: 1433-7479
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0021753
  issn: 1432-7643
  databaseCode: AGYKE
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://link.springer.com
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: SpringerLink Journals (ICM)
  customDbUrl:
  eissn: 1433-7479
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0021753
  issn: 1432-7643
  databaseCode: U2A
  dateStart: 19970404
  isFulltext: true
  titleUrlDefault: http://www.springerlink.com/journals/
  providerName: Springer Nature
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEF60vejBR1Wsj7IHb7qQ1ybNMZXWorReLNRT2CSTWmiT0qYW_PXObjbFggiectgHYWdm5xt25htC7lJILBtMl3GB4arjpgmLrLbBPNu1wTHQhasKucHQ7Y-c5zEf66KwVZXtXj1Jqpt6W-wmqUoMJlMKpA9qs80-qXNJ54VaPLKCbZiluScRCCB2RIerS2V-32PXHe2-hSoX0zshRxob0qAU5inZg6xBjqu-C1SbYYMc_iARPCOfQUZzNPz59AsSmgAsqG4FMaGqzw2Vue0TOliXr-5MOq6EBkU-p2WyMX0tl6thKmaTfDktPuYU8SyN1V2CfxVL9Vji_oVK3srOyajXfXvsM91NgcWWbxZM-A7EKYYHwkq4EZlG2wePR4BWAhGCRDNtu8LlPuD5cc_0E26nAL5j2z4X0sFdkFqWZ3BJKAgP45IYvBThlqSv4YhqnERwlK8hUtEkZnWoYaypxmXHi1m4JUlWgghREKESRLhpkvvtmkVJtPHn7IdKVqE2utUf06_-N_2aHFhSR1TWyg2pFcs13CL2KKIWqQe9Tmcov0_vL92WUr1vkVbTUg
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3JTsMwEB1BOQAHdsSOD9zAVTYnzbFCQKEtXKgEp8hJJqWCpqikIPH1jB2nAoQqcfYiyx573shv3gCcZJg6Lto-F5LCVc_PUh47DYsHru-iZ5EL1xly3Vu_1fNuHsSDSQp7q9ju1ZekfqmnyW5KqsTiilKgfFCDf8zDgkcBilODhebVY_tiGmgZ9UmCAoQeyeWaZJm_Z_npkH7-hmonc7kKvWp5JbfkuT4p4nry-Uu58b_rX4MVgzpZszSTdZjDfANWq4oOzFzwDVj-Jk-4Ce_NnI3oSRkOPjFlKeIrM0Um-kxX0GGKNd9n3Un5n8-VS0xZsxgNWUljZnflcN3M5Et_NB4UT0NGSJkl-pWiVSXK8MY0f6FpYfkW9C4v7s9b3NRp4IkT2gWXoYdJRoGHdFJhxbbVCDEQMdL9w5jgp501fOmLEOlcRGCHqXAzxNBz3VBI5Tq3oZaPctwBhjKgiCfBICMgp4RxBOElL5WCLMeSmdwFuzqsKDEi5qqWxks0lV_W2xzRNkd6m6OPXTidjnktJTxm9j6rji8y1_ltRve9_3U_hsXWfbcTda5v2_uw5Chr0NyYA6gV4wkeEsIp4iNj0F_SHfBX
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEF60gujBR1Wszz1406V5bdIcg1rqo9WDhd7CJjuphTYtNbXgr3d2k4YWpOA5u0vYmd3vG3bmG0JuEpCWDabLuMBw1XETySKrYTDPdm1wDIRwXSHX7ritrvPc472lKn6d7b54ksxrGpRKU5rVJzKpl4VvSrbEYCq9QOFRg803yZajhBLQo7tWUIZchQ4lkgLkkQi-RdnM32usQtPqu6iGm-YB2St4Ig1ywx6SDUirZH_Rg4EWR7JKdpcEBY_Id5DSMV4Co8EPSCoBJrRoC9GnuucNVXnufdqe5S_wTIGYpEE2HtE88Zi-5dP1ZyqG_fF0kH2OKHJbGut7Bf8qVq4yxfUznciVHpNu8_HjvsWKzgostnwzY8J3IE4wVBCW5EZkGg0fPB4BnhiIkDCaScMVLvcB9497pi-5nQD4jm37XCiwOyGVdJzCKaEgPIxRYvASpF5KyoYjw3Gk4GhrQySiRszFpoZxITuuul8Mw1IwWRsiREOE2hDhvEZuyzmTXHRj7ei7ha3C4gB-rRl-9r_h12T7_aEZvj51Xs7JjqXcRSezXJBKNp3BJVKSLLrSXvcLspTXag
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+optimized+deep+learning+model+using+Mutation-based+Atom+Search+Optimization+algorithm+for+cervical+cancer+detection&rft.jtitle=Soft+computing+%28Berlin%2C+Germany%29&rft.au=Chitra%2C+B.&rft.au=Kumar%2C+S.+S.&rft.date=2021-12-01&rft.issn=1432-7643&rft.eissn=1433-7479&rft.volume=25&rft.issue=24&rft.spage=15363&rft.epage=15376&rft_id=info:doi/10.1007%2Fs00500-021-06138-w&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s00500_021_06138_w
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1432-7643&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1432-7643&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1432-7643&client=summon