An optimized deep learning model using Mutation-based Atom Search Optimization algorithm for cervical cancer detection
The cervical cancer patient’s death rate can be minimized by accurate and early detection of cervical cancer (CC). One of the popular techniques called the Pap test or Pap smear is widely used for the early detection of CC. In the instance of CC detection, the manual analysis took more time. Existin...
        Saved in:
      
    
          | Published in | Soft computing (Berlin, Germany) Vol. 25; no. 24; pp. 15363 - 15376 | 
|---|---|
| Main Authors | , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
        Berlin/Heidelberg
          Springer Berlin Heidelberg
    
        01.12.2021
     | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 1432-7643 1433-7479  | 
| DOI | 10.1007/s00500-021-06138-w | 
Cover
| Abstract | The cervical cancer patient’s death rate can be minimized by accurate and early detection of cervical cancer (CC). One of the popular techniques called the Pap test or Pap smear is widely used for the early detection of CC. In the instance of CC detection, the manual analysis took more time. Existing approaches had a number of drawbacks, including low accuracy, increased computational complexity, higher feature dimensionality, poor reliability, and increased time consumption due to poor hyperparameter optimization. In this paper, we proposed MASO-optimized DenseNet 121 architecture for the early detection of cervical cancer. At first, different kinds of augmentation techniques such as horizontal flip, vertical flip, zooming, shearing, height shift, width shift, rotation, and brightness increase the number of training samples. The Mutation-based Atom Search Optimization (MASO) algorithm is established to optimize the hyperparameters in DenseNet 121 architecture such as the number of neurons in the dense layer, learning rate value, and the batch sizes. The proposed method effectively optimizes the hyperparameters inherent in the DenseNet 121 architecture, resulting in improved classification results while reducing computational complexity and data overfitting. Different kinds of performance metrics such as accuracy, specificity, sensitivity, precisions, recall, F-score, and confusion matrix evaluate the performance of MASO-optimized DenseNet 121 architecture for CC detection. A single normal class with three abnormal classes, namely Carcinoma, Light dysplastic, and Sever dysplastic, was selected from the Hervel dataset for experimental investigation. The proposed MASO-optimized DenseNet 121 architecture achieves 98.38% accuracy, 98.5% specificity, 98.83% sensitivity, 98.58% precision, 99.3% recall, and 98.25% F-score values than other existing methods. | 
    
|---|---|
| AbstractList | The cervical cancer patient’s death rate can be minimized by accurate and early detection of cervical cancer (CC). One of the popular techniques called the Pap test or Pap smear is widely used for the early detection of CC. In the instance of CC detection, the manual analysis took more time. Existing approaches had a number of drawbacks, including low accuracy, increased computational complexity, higher feature dimensionality, poor reliability, and increased time consumption due to poor hyperparameter optimization. In this paper, we proposed MASO-optimized DenseNet 121 architecture for the early detection of cervical cancer. At first, different kinds of augmentation techniques such as horizontal flip, vertical flip, zooming, shearing, height shift, width shift, rotation, and brightness increase the number of training samples. The Mutation-based Atom Search Optimization (MASO) algorithm is established to optimize the hyperparameters in DenseNet 121 architecture such as the number of neurons in the dense layer, learning rate value, and the batch sizes. The proposed method effectively optimizes the hyperparameters inherent in the DenseNet 121 architecture, resulting in improved classification results while reducing computational complexity and data overfitting. Different kinds of performance metrics such as accuracy, specificity, sensitivity, precisions, recall, F-score, and confusion matrix evaluate the performance of MASO-optimized DenseNet 121 architecture for CC detection. A single normal class with three abnormal classes, namely Carcinoma, Light dysplastic, and Sever dysplastic, was selected from the Hervel dataset for experimental investigation. The proposed MASO-optimized DenseNet 121 architecture achieves 98.38% accuracy, 98.5% specificity, 98.83% sensitivity, 98.58% precision, 99.3% recall, and 98.25% F-score values than other existing methods. | 
    
| Author | Chitra, B. Kumar, S. S.  | 
    
| Author_xml | – sequence: 1 givenname: B. surname: Chitra fullname: Chitra, B. email: bchitra.research@gmail.com, chitrarammohan09@gmail.com organization: Department of Electronics and Communication Engineering, Noorul Islam Centre for Higher Education – sequence: 2 givenname: S. S. surname: Kumar fullname: Kumar, S. S. organization: Department of Electronics and Instrumentation Engineering, Noorul Islam Centre for Higher Education  | 
    
| BookMark | eNp9kM1uAiEUhUljk6rtC3TFC9DCMMwMS2P6l9i4aLueIHNHMTNgADXt0xedrrpwxUn4vpucM0Ej6ywgdM_oA6O0fAyUCkoJzRihBeMVOV6hMcs5J2VeytE5Z6Qscn6DJiFsaSJLwcfoMLPY7aLpzQ80uAHY4Q6Ut8auce8a6PA-nPL7PqponCUrFRI4i67HHwnUG7wc9PM3Vt3aeRM3PW6dxxr8wWjVYa1syul-BH3ibtF1q7oAd3_vFH09P33OX8li-fI2ny2IziSLRMkcdFuKSmWNoCtGKwmlWAGlOawkK1hbFaoQElIZUTLZCN4CyNRbCpWxjE9RNdzV3oXgoa21GYpEr0xXM1qf9quH_eq0Sn3erz4mNfun7rzplf--LPFBCgm2a_D11u29TRUvWb-HM4eL | 
    
| CitedBy_id | crossref_primary_10_1007_s13042_025_02576_2 crossref_primary_10_32604_or_2022_025897 crossref_primary_10_32604_cmc_2023_032794 crossref_primary_10_1080_02286203_2023_2287968 crossref_primary_10_1002_ima_22751 crossref_primary_10_1002_cpe_7493 crossref_primary_10_1016_j_asoc_2024_112202 crossref_primary_10_7717_peerj_cs_2722 crossref_primary_10_1002_widm_1550 crossref_primary_10_1007_s11063_022_11055_6 crossref_primary_10_1016_j_jclepro_2023_139339 crossref_primary_10_3390_diagnostics13101763 crossref_primary_10_1007_s40998_023_00664_z crossref_primary_10_1007_s00521_024_10909_5  | 
    
| Cites_doi | 10.1016/j.eswa.2019.112951 10.1016/j.dib.2020.105589 10.1016/j.ejogrb.2019.01.008 10.1016/j.compbiomed.2008.11.006 10.1016/j.bbe.2020.01.016 10.1504/IJBET.2019.103242 10.1016/j.compag.2018.08.013 10.1007/s10115-018-1263-1 10.1016/j.bspc.2018.09.008 10.1016/j.jretconser.2020.102190 10.1162/neco_a_00990 10.1007/s00138-020-01063-8 10.1016/j.knosys.2018.08.030 10.1007/s00500-019-04387-4 10.1016/j.asoc.2020.106742 10.1016/j.swevo.2019.01.010 10.1016/j.patrec.2011.01.008 10.4018/978-1-60566-766-9.ch011 10.1016/j.dib.2019.105046 10.1016/j.future.2018.05.037 10.1016/j.imu.2019.02.001 10.1109/ACCESS.2021.3067195 10.1016/j.future.2020.07.045 10.1016/j.cose.2018.04.009 10.1007/s00521-020-05474-6 10.1007/s11042-019-7577-5 10.1007/s11277-019-06414-x 10.1016/j.cmpb.2016.10.001 10.1007/s10278-019-00269-1 10.1002/ijfe.2483 10.1016/j.eswa.2016.08.015 10.1016/j.artmed.2020.101897 10.1007/s11277-018-6014-9 10.1002/pip.3315 10.1186/s40537-019-0197-0 10.1007/s00500-018-3124-y 10.1016/j.compbiomed.2017.04.008 10.1155/2021/5584004 10.1002/ijc.24745 10.1109/ICCVW.2017.18 10.1109/ICICT50816.2021.9358570 10.18653/v1/D19-1670  | 
    
| ContentType | Journal Article | 
    
| Copyright | The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2021 | 
    
| Copyright_xml | – notice: The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2021 | 
    
| DBID | AAYXX CITATION  | 
    
| DOI | 10.1007/s00500-021-06138-w | 
    
| DatabaseName | CrossRef | 
    
| DatabaseTitle | CrossRef | 
    
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Engineering Computer Science  | 
    
| EISSN | 1433-7479 | 
    
| EndPage | 15376 | 
    
| ExternalDocumentID | 10_1007_s00500_021_06138_w | 
    
| GroupedDBID | -5B -5G -BR -EM -Y2 -~C .86 .VR 06D 0R~ 0VY 1N0 1SB 203 29~ 2J2 2JN 2JY 2KG 2LR 2P1 2VQ 2~H 30V 4.4 406 408 409 40D 40E 5VS 67Z 6NX 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTD ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACSNA ACZOJ ADHHG ADHIR ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFGCZ AFKRA AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARAPS ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN B-. BA0 BDATZ BENPR BGLVJ BGNMA BSONS CAG CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 EBLON EBS EIOEI EJD ESBYG FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I09 IHE IJ- IKXTQ IWAJR IXC IXD IXE IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ K7- KDC KOV LAS LLZTM M4Y MA- N2Q NB0 NPVJJ NQJWS NU0 O9- O93 O9J OAM P2P P9P PF0 PT4 PT5 QOS R89 R9I RIG RNI ROL RPX RSV RZK S16 S1Z S27 S3B SAP SDH SEG SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 TSG TSK TSV TUC U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR Z45 Z5O Z7R Z7X Z7Y Z7Z Z81 Z83 Z88 ZMTXR AAPKM AAYXX ABBRH ABDBE ABFSG ABRTQ ACSTC ADHKG ADKFA AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT PQGLB PUEGO  | 
    
| ID | FETCH-LOGICAL-c291t-a94ecf758a2d50b1089e75be004eb9161f86a659e1755719d53fee943395a2123 | 
    
| IEDL.DBID | U2A | 
    
| ISSN | 1432-7643 | 
    
| IngestDate | Wed Oct 01 03:00:17 EDT 2025 Thu Apr 24 23:09:12 EDT 2025 Fri Feb 21 02:47:22 EST 2025  | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Issue | 24 | 
    
| Keywords | Mutation-based Atom Search Optimization Feature extraction Pap smear images And DenseNet 121 Fine-tuning  | 
    
| Language | English | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-c291t-a94ecf758a2d50b1089e75be004eb9161f86a659e1755719d53fee943395a2123 | 
    
| PageCount | 14 | 
    
| ParticipantIDs | crossref_citationtrail_10_1007_s00500_021_06138_w crossref_primary_10_1007_s00500_021_06138_w springer_journals_10_1007_s00500_021_06138_w  | 
    
| ProviderPackageCode | CITATION AAYXX  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 20211200 2021-12-00  | 
    
| PublicationDateYYYYMMDD | 2021-12-01 | 
    
| PublicationDate_xml | – month: 12 year: 2021 text: 20211200  | 
    
| PublicationDecade | 2020 | 
    
| PublicationPlace | Berlin/Heidelberg | 
    
| PublicationPlace_xml | – name: Berlin/Heidelberg | 
    
| PublicationSubtitle | A Fusion of Foundations, Methodologies and Applications | 
    
| PublicationTitle | Soft computing (Berlin, Germany) | 
    
| PublicationTitleAbbrev | Soft Comput | 
    
| PublicationYear | 2021 | 
    
| Publisher | Springer Berlin Heidelberg | 
    
| Publisher_xml | – name: Springer Berlin Heidelberg | 
    
| References | Song, Seong, Lee, Kim, Woong, Kim, Nam, Sim, Kim (CR32) 2019; 234 Zhao, Wang, Han, Wang, Dai, Sun, Zhang, Pedersen (CR49) 2020; 114 Rejeesh (CR27) 2019; 78 Kudva, Prasad, Guruvare (CR23) 2019; 33 Barbedo (CR6) 2018; 153 Cabada, Rangel, Estrada, Lopez (CR9) 2020; 24 Hassan, Rashid (CR19) 2020; 28 Zhao, Wang, Zhang (CR48) 2019; 163 Apostolidou, Hadwin, Burnell, Jones, Baff, Pyndiah, Mould (CR3) 2009; 125 Sundararaj, Rejeesh (CR35) 2021; 58 Ezzat, Hassanien, Ella (CR11) 2020; 98 Garcia-Gonzalez, Garcia-Silvente, Aguirre (CR12) 2016; 64 Sundararaj, Anoop, Dixit, Arjaria, Chourasia, Bhambri, Rejeesh, Sundararaj (CR37) 2020; 28 Rawat, Wang (CR26) 2017; 29 Torrey, Shavlik (CR40) 2010 Hussain, Mahanta, Borah, Das (CR20) 2020; 30 CR4 Sundararaj (CR34) 2019; 31 Sundararaj, Muthukumar, Kumar (CR36) 2018; 77 Adweb, Amer, Sekeroglu (CR1) 2021; 9 Zhao, Wang, Zhang (CR47) 2019; 91 Vinu (CR41) 2019; 104 CR44 CR43 Gowthul Alam, Baulkani (CR17) 2019; 60 Sundararaj (CR33) 2016; 9 Tiwari, Tiwari, Sam Santhose, Mishra, Rajeesh, Sundararaj (CR39) 2021 Taha, Dias, Werghi (CR38) 2017 Arya, Bhadoria (CR5) 2019 Hassan (CR18) 2021; 33 Hussain, Mahanta, Das, Choudhury, Chowdhury (CR21) 2020; 107 Xiang, Sun, Pan, Yan, Yin, Liang (CR46) 2020; 40 CR14 Marinakis, Dounias, Jantzen (CR24) 2009; 39 Gowthul Alam, Baulkani (CR16) 2019; 23 Salajegheh, Salajegheh (CR30) 2019; 46 Bora, Chowdhury, Mahanta, Kundu, Das (CR8) 2017; 138 Saini, Bansal, Kaur, Juneja (CR29) 2020; 31 Shorten, Khoshgoftaar (CR31) 2019; 6 Wang, Wang, Li, Song, Lv, Xianling (CR42) 2019; 48 Plissiti, Nikou, Charchanti (CR25) 2011; 32 Bhadoria, Bajpai (CR7) 2019; 108 Alyafeai, Ghouti (CR2) 2020; 141 Chandran, Sumithra, Karthick, Tony George, Deivakani, Subramaniam, Manoharan (CR10) 2021; 2021 CR22 Goutte, Gaussier (CR15) 2005 Saha, Bajger, Lee (CR28) 2017; 85 William, Ware, Basaza-Ejiri, Obungoloch (CR45) 2019; 14 Goodfellow, Bengio, Courville, Bengio (CR13) 2016 6138_CR14 Y Xiang (6138_CR46) 2020; 40 Z Alyafeai (6138_CR2) 2020; 141 D Ezzat (6138_CR11) 2020; 98 SK Saini (6138_CR29) 2020; 31 V Sundararaj (6138_CR35) 2021; 58 JGA Barbedo (6138_CR6) 2018; 153 L Torrey (6138_CR40) 2010 C Goutte (6138_CR15) 2005 R Saha (6138_CR28) 2017; 85 RS Bhadoria (6138_CR7) 2019; 108 I Goodfellow (6138_CR13) 2016 S Vinu (6138_CR41) 2019; 104 V Chandran (6138_CR10) 2021; 2021 W Zhao (6138_CR48) 2019; 163 MR Rejeesh (6138_CR27) 2019; 78 V Sundararaj (6138_CR34) 2019; 31 6138_CR4 RZ Cabada (6138_CR9) 2020; 24 S Apostolidou (6138_CR3) 2009; 125 E Hussain (6138_CR21) 2020; 107 B Taha (6138_CR38) 2017 V Kudva (6138_CR23) 2019; 33 T Song (6138_CR32) 2019; 234 F Salajegheh (6138_CR30) 2019; 46 M Zhao (6138_CR49) 2020; 114 P Wang (6138_CR42) 2019; 48 MM Gowthul Alam (6138_CR16) 2019; 23 E Hussain (6138_CR20) 2020; 30 6138_CR22 BA Hassan (6138_CR19) 2020; 28 MM Gowthul Alam (6138_CR17) 2019; 60 M Tiwari (6138_CR39) 2021 C Shorten (6138_CR31) 2019; 6 V Sundararaj (6138_CR33) 2016; 9 D Garcia-Gonzalez (6138_CR12) 2016; 64 V Sundararaj (6138_CR36) 2018; 77 ME Plissiti (6138_CR25) 2011; 32 Y Marinakis (6138_CR24) 2009; 39 W Zhao (6138_CR47) 2019; 91 W William (6138_CR45) 2019; 14 K Bora (6138_CR8) 2017; 138 V Sundararaj (6138_CR37) 2020; 28 BA Hassan (6138_CR18) 2021; 33 W Rawat (6138_CR26) 2017; 29 KM Adweb (6138_CR1) 2021; 9 (6138_CR5) 2019 6138_CR43 6138_CR44  | 
    
| References_xml | – ident: CR22 – volume: 141 start-page: 112951 year: 2020 ident: CR2 article-title: A fully-automated deep learning pipeline for cervical cancer classification publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2019.112951 – volume: 30 start-page: 105589 year: 2020 ident: CR20 article-title: Liquid based-cytology Pap smear dataset for automated multi-class diagnosis of pre-cancerous and cervical cancer lesions publication-title: Data Brief doi: 10.1016/j.dib.2020.105589 – volume: 234 start-page: 112 year: 2019 end-page: 116 ident: CR32 article-title: "Screening capacity and cost-effectiveness of the human papillomavirus test versus cervicography as an adjunctive test to Pap cytology to detect high-grade cervical dysplasia publication-title: Eur J Obst Gynecol Reprod Biol doi: 10.1016/j.ejogrb.2019.01.008 – volume: 39 start-page: 69 issue: 1 year: 2009 end-page: 78 ident: CR24 article-title: Pap smear diagnosis using a hybrid intelligent scheme focusing on genetic algorithm based feature selection and nearest neighbor classification publication-title: Comput Biol Med doi: 10.1016/j.compbiomed.2008.11.006 – volume: 40 start-page: 611 issue: 2 year: 2020 end-page: 623 ident: CR46 article-title: A novel automation-assisted cervical cancer reading method based on convolutional neural network publication-title: Biocybern Biomed Eng doi: 10.1016/j.bbe.2020.01.016 – volume: 31 start-page: 325 issue: 4 year: 2019 ident: CR34 article-title: Optimised denoising scheme via opposition-based self-adaptive learning PSO algorithm for wavelet-based ECG signal noise reduction publication-title: Int J Biomed Eng Technol doi: 10.1504/IJBET.2019.103242 – ident: CR4 – volume: 153 start-page: 46 year: 2018 end-page: 53 ident: CR6 article-title: Impact of dataset size and variety on the effectiveness of deep learning and transfer learning for plant disease classification publication-title: Comput Electron Agric doi: 10.1016/j.compag.2018.08.013 – volume: 60 start-page: 971 issue: 2 year: 2019 end-page: 1000 ident: CR17 article-title: Local and global characteristics-based kernel hybridization to increase optimal support vector machine performance for stock market prediction publication-title: Knowl Inf Syst doi: 10.1007/s10115-018-1263-1 – volume: 48 start-page: 93 year: 2019 end-page: 103 ident: CR42 article-title: Automatic cell nuclei segmentation and classification of cervical Pap smear images publication-title: Biomed Signal Process Control doi: 10.1016/j.bspc.2018.09.008 – volume: 58 start-page: 102 year: 2021 ident: CR35 article-title: A detailed behavioral analysis on consumer and customer changing behavior with respect to social networking sites publication-title: J Retail Consum Serv doi: 10.1016/j.jretconser.2020.102190 – year: 2016 ident: CR13 publication-title: Deep learning – volume: 29 start-page: 2352 issue: 9 year: 2017 end-page: 2449 ident: CR26 article-title: Deep convolutional neural networks for image classification: a comprehensive review publication-title: Neural Comput doi: 10.1162/neco_a_00990 – volume: 31 start-page: 1 issue: 3 year: 2020 end-page: 15 ident: CR29 article-title: ColpoNet for automated cervical cancer screening using colposcopy images publication-title: Mach vis Appl doi: 10.1007/s00138-020-01063-8 – volume: 163 start-page: 283 year: 2019 end-page: 304 ident: CR48 article-title: Atom search optimization and its application to solve a hydrogeologic parameter estimation problem publication-title: Knowl-Based Syst doi: 10.1016/j.knosys.2018.08.030 – volume: 24 start-page: 7593 issue: 10 year: 2020 end-page: 7602 ident: CR9 article-title: Hyperparameter optimization in CNN for learning-centered emotion recognition for intelligent tutoring systems publication-title: Soft Comput doi: 10.1007/s00500-019-04387-4 – volume: 98 start-page: 106742 year: 2020 ident: CR11 article-title: An optimized deep learning architecture for the diagnosis of COVID-19 disease based on gravitational search optimization publication-title: Applied Soft Computing doi: 10.1016/j.asoc.2020.106742 – volume: 46 start-page: 28 year: 2019 end-page: 51 ident: CR30 article-title: PSOG: Enhanced particle swarm optimization by a unit vector of first and second order gradient directions publication-title: Swarm Evol Comput doi: 10.1016/j.swevo.2019.01.010 – volume: 32 start-page: 838 issue: 6 year: 2011 end-page: 853 ident: CR25 article-title: Combining shape, texture and intensity features for cell nuclei extraction in Pap smear images publication-title: Pattern Recogn Lett doi: 10.1016/j.patrec.2011.01.008 – start-page: 242 year: 2010 end-page: 264 ident: CR40 article-title: Transfer learning publication-title: Handbook of research on machine learning applications and trends: algorithms, methods, and techniques doi: 10.4018/978-1-60566-766-9.ch011 – start-page: 261 year: 2017 end-page: 272 ident: CR38 article-title: Classification of cervical-cancer using pap-smear images: a convolutional neural network approach publication-title: Annual conference on medical image understanding and analysis – volume: 28 start-page: 105046 year: 2020 ident: CR19 article-title: Datasets on statistical analysis and performance evaluation of backtracking search optimisation algorithm compared with its counterpart algorithms publication-title: Data Brief doi: 10.1016/j.dib.2019.105046 – volume: 91 start-page: 601 year: 2019 end-page: 610 ident: CR47 article-title: A novel atom search optimization for dispersion coefficient estimation in groundwater publication-title: Futur Gener Comput Syst doi: 10.1016/j.future.2018.05.037 – volume: 14 start-page: 23 year: 2019 end-page: 33 ident: CR45 article-title: Cervical cancer classification from Pap-smears using an enhanced fuzzy C-means algorithm publication-title: Inf Med Unlocked doi: 10.1016/j.imu.2019.02.001 – volume: 9 start-page: 46612 year: 2021 end-page: 46625 ident: CR1 article-title: Cervical cancer diagnosis using very deep networks over different activation functions publication-title: IEEE Access doi: 10.1109/ACCESS.2021.3067195 – volume: 114 start-page: 185 year: 2020 end-page: 194 ident: CR49 article-title: Seens: Nuclei segmentation in pap smear images with selective edge enhancement publication-title: Futur Gener Comput Syst doi: 10.1016/j.future.2020.07.045 – ident: CR43 – volume: 77 start-page: 277 year: 2018 end-page: 288 ident: CR36 article-title: An optimal cluster formation based energy efficient dynamic scheduling hybrid MAC protocol for heavy traffic load in wireless sensor networks publication-title: Comput Secur doi: 10.1016/j.cose.2018.04.009 – volume: 33 start-page: 7011 issue: 12 year: 2021 end-page: 7030 ident: CR18 article-title: CSCF: a chaotic sine cosine firefly algorithm for practical application problems publication-title: Neural Comput Appl doi: 10.1007/s00521-020-05474-6 – ident: CR14 – volume: 78 start-page: 22691 issue: 16 year: 2019 end-page: 22710 ident: CR27 article-title: Interest point based face recognition using adaptive neuro fuzzy inference system publication-title: Multimed Tools Appl doi: 10.1007/s11042-019-7577-5 – volume: 108 start-page: 493 issue: 1 year: 2019 end-page: 510 ident: CR7 article-title: Stabilizing sensor data collection for control of environment-friendly clean technologies using internet of things publication-title: Wireless Pers Commun doi: 10.1007/s11277-019-06414-x – volume: 138 start-page: 31 year: 2017 end-page: 47 ident: CR8 article-title: Automated classification of Pap smear images to detect cervical dysplasia publication-title: Comput Methods Programs Biomed doi: 10.1016/j.cmpb.2016.10.001 – volume: 33 start-page: 619 year: 2019 end-page: 631 ident: CR23 article-title: Hybrid transfer learning for classification of uterine cervix images for cervical cancer screening publication-title: J Digit Imag doi: 10.1007/s10278-019-00269-1 – ident: CR44 – start-page: 345 year: 2005 end-page: 359 ident: CR15 article-title: A probabilistic interpretation of precision, recall and F-score, with implication for evaluation publication-title: European conference on information retrieval – year: 2021 ident: CR39 article-title: Corporate social responsibility and supply chain: a study for evaluating corporate hypocrisy with special focus on stakeholders publication-title: Int J Fin Econ doi: 10.1002/ijfe.2483 – volume: 64 start-page: 512 year: 2016 end-page: 522 ident: CR12 article-title: A multiscale algorithm for nuclei extraction in pap smear images publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2016.08.015 – volume: 107 start-page: 101897 year: 2020 ident: CR21 article-title: A shape context fully convolutional neural network for segmentation and classification of cervical nuclei in Pap smear images publication-title: Artif Intell Med doi: 10.1016/j.artmed.2020.101897 – volume: 9 start-page: 117 issue: 3 year: 2016 end-page: 126 ident: CR33 article-title: An efficient threshold prediction scheme for wavelet based ECG signal noise reduction using variable step size firefly algorithm publication-title: Int J Intell Eng Syst – volume: 104 start-page: 173 issue: 1 year: 2019 end-page: 197 ident: CR41 article-title: Optimal task assignment in mobile cloud computing by queue based ant-bee algorithm publication-title: Wirel Pers Commun doi: 10.1007/s11277-018-6014-9 – volume: 28 start-page: 1128 issue: 11 year: 2020 end-page: 1145 ident: CR37 article-title: CCGPA-MPPT: Cauchy preferential crossover-based global pollination algorithm for MPPT in photovoltaic system publication-title: Prog Photovolt Res Appl doi: 10.1002/pip.3315 – volume: 6 start-page: 1 issue: 1 year: 2019 end-page: 48 ident: CR31 article-title: A survey on image data augmentation for deep learning publication-title: J Big Data doi: 10.1186/s40537-019-0197-0 – volume: 23 start-page: 1079 issue: 4 year: 2019 end-page: 1098 ident: CR16 article-title: Geometric structure information based multi-objective function to increase fuzzy clustering performance with artificial and real-life data publication-title: Soft Comput doi: 10.1007/s00500-018-3124-y – volume: 85 start-page: 13 year: 2017 end-page: 23 ident: CR28 article-title: Circular shape constrained fuzzy clustering (CiscFC) for nucleus segmentation in Pap smear images publication-title: Comput Biol Med doi: 10.1016/j.compbiomed.2017.04.008 – volume: 2021 start-page: 1 year: 2021 end-page: 15 ident: CR10 article-title: Diagnosis of cervical cancer based on ensemble deep learning network using colposcopy images publication-title: BioMed Res Int doi: 10.1155/2021/5584004 – year: 2019 ident: CR5 publication-title: The biometric computing: recognition and registration – volume: 125 start-page: 2995 issue: 12 year: 2009 end-page: 3002 ident: CR3 article-title: DNA methylation analysis in liquid-based cytology for cervical cancer screening publication-title: Int J Cancer doi: 10.1002/ijc.24745 – ident: 6138_CR44 doi: 10.1109/ICCVW.2017.18 – start-page: 242 volume-title: Handbook of research on machine learning applications and trends: algorithms, methods, and techniques year: 2010 ident: 6138_CR40 doi: 10.4018/978-1-60566-766-9.ch011 – volume: 9 start-page: 117 issue: 3 year: 2016 ident: 6138_CR33 publication-title: Int J Intell Eng Syst – start-page: 261 volume-title: Annual conference on medical image understanding and analysis year: 2017 ident: 6138_CR38 – volume: 114 start-page: 185 year: 2020 ident: 6138_CR49 publication-title: Futur Gener Comput Syst doi: 10.1016/j.future.2020.07.045 – volume: 14 start-page: 23 year: 2019 ident: 6138_CR45 publication-title: Inf Med Unlocked doi: 10.1016/j.imu.2019.02.001 – volume: 40 start-page: 611 issue: 2 year: 2020 ident: 6138_CR46 publication-title: Biocybern Biomed Eng doi: 10.1016/j.bbe.2020.01.016 – volume: 98 start-page: 106742 year: 2020 ident: 6138_CR11 publication-title: Applied Soft Computing doi: 10.1016/j.asoc.2020.106742 – year: 2021 ident: 6138_CR39 publication-title: Int J Fin Econ doi: 10.1002/ijfe.2483 – volume: 31 start-page: 1 issue: 3 year: 2020 ident: 6138_CR29 publication-title: Mach vis Appl doi: 10.1007/s00138-020-01063-8 – volume: 31 start-page: 325 issue: 4 year: 2019 ident: 6138_CR34 publication-title: Int J Biomed Eng Technol doi: 10.1504/IJBET.2019.103242 – volume: 64 start-page: 512 year: 2016 ident: 6138_CR12 publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2016.08.015 – volume: 6 start-page: 1 issue: 1 year: 2019 ident: 6138_CR31 publication-title: J Big Data doi: 10.1186/s40537-019-0197-0 – volume: 138 start-page: 31 year: 2017 ident: 6138_CR8 publication-title: Comput Methods Programs Biomed doi: 10.1016/j.cmpb.2016.10.001 – volume: 24 start-page: 7593 issue: 10 year: 2020 ident: 6138_CR9 publication-title: Soft Comput doi: 10.1007/s00500-019-04387-4 – volume: 28 start-page: 1128 issue: 11 year: 2020 ident: 6138_CR37 publication-title: Prog Photovolt Res Appl doi: 10.1002/pip.3315 – volume-title: The biometric computing: recognition and registration year: 2019 ident: 6138_CR5 – volume: 48 start-page: 93 year: 2019 ident: 6138_CR42 publication-title: Biomed Signal Process Control doi: 10.1016/j.bspc.2018.09.008 – volume: 153 start-page: 46 year: 2018 ident: 6138_CR6 publication-title: Comput Electron Agric doi: 10.1016/j.compag.2018.08.013 – volume: 141 start-page: 112951 year: 2020 ident: 6138_CR2 publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2019.112951 – ident: 6138_CR22 – volume: 234 start-page: 112 year: 2019 ident: 6138_CR32 publication-title: Eur J Obst Gynecol Reprod Biol doi: 10.1016/j.ejogrb.2019.01.008 – volume: 58 start-page: 102 year: 2021 ident: 6138_CR35 publication-title: J Retail Consum Serv doi: 10.1016/j.jretconser.2020.102190 – volume: 107 start-page: 101897 year: 2020 ident: 6138_CR21 publication-title: Artif Intell Med doi: 10.1016/j.artmed.2020.101897 – volume: 29 start-page: 2352 issue: 9 year: 2017 ident: 6138_CR26 publication-title: Neural Comput doi: 10.1162/neco_a_00990 – volume: 39 start-page: 69 issue: 1 year: 2009 ident: 6138_CR24 publication-title: Comput Biol Med doi: 10.1016/j.compbiomed.2008.11.006 – volume: 30 start-page: 105589 year: 2020 ident: 6138_CR20 publication-title: Data Brief doi: 10.1016/j.dib.2020.105589 – start-page: 345 volume-title: European conference on information retrieval year: 2005 ident: 6138_CR15 – ident: 6138_CR4 doi: 10.1109/ICICT50816.2021.9358570 – volume: 46 start-page: 28 year: 2019 ident: 6138_CR30 publication-title: Swarm Evol Comput doi: 10.1016/j.swevo.2019.01.010 – volume: 91 start-page: 601 year: 2019 ident: 6138_CR47 publication-title: Futur Gener Comput Syst doi: 10.1016/j.future.2018.05.037 – volume: 77 start-page: 277 year: 2018 ident: 6138_CR36 publication-title: Comput Secur doi: 10.1016/j.cose.2018.04.009 – volume: 23 start-page: 1079 issue: 4 year: 2019 ident: 6138_CR16 publication-title: Soft Comput doi: 10.1007/s00500-018-3124-y – ident: 6138_CR43 doi: 10.18653/v1/D19-1670 – volume: 163 start-page: 283 year: 2019 ident: 6138_CR48 publication-title: Knowl-Based Syst doi: 10.1016/j.knosys.2018.08.030 – volume: 108 start-page: 493 issue: 1 year: 2019 ident: 6138_CR7 publication-title: Wireless Pers Commun doi: 10.1007/s11277-019-06414-x – volume: 2021 start-page: 1 year: 2021 ident: 6138_CR10 publication-title: BioMed Res Int doi: 10.1155/2021/5584004 – ident: 6138_CR14 – volume: 125 start-page: 2995 issue: 12 year: 2009 ident: 6138_CR3 publication-title: Int J Cancer doi: 10.1002/ijc.24745 – volume: 78 start-page: 22691 issue: 16 year: 2019 ident: 6138_CR27 publication-title: Multimed Tools Appl doi: 10.1007/s11042-019-7577-5 – volume: 32 start-page: 838 issue: 6 year: 2011 ident: 6138_CR25 publication-title: Pattern Recogn Lett doi: 10.1016/j.patrec.2011.01.008 – volume: 85 start-page: 13 year: 2017 ident: 6138_CR28 publication-title: Comput Biol Med doi: 10.1016/j.compbiomed.2017.04.008 – volume: 28 start-page: 105046 year: 2020 ident: 6138_CR19 publication-title: Data Brief doi: 10.1016/j.dib.2019.105046 – volume: 9 start-page: 46612 year: 2021 ident: 6138_CR1 publication-title: IEEE Access doi: 10.1109/ACCESS.2021.3067195 – volume: 33 start-page: 619 year: 2019 ident: 6138_CR23 publication-title: J Digit Imag doi: 10.1007/s10278-019-00269-1 – volume: 104 start-page: 173 issue: 1 year: 2019 ident: 6138_CR41 publication-title: Wirel Pers Commun doi: 10.1007/s11277-018-6014-9 – volume-title: Deep learning year: 2016 ident: 6138_CR13 – volume: 60 start-page: 971 issue: 2 year: 2019 ident: 6138_CR17 publication-title: Knowl Inf Syst doi: 10.1007/s10115-018-1263-1 – volume: 33 start-page: 7011 issue: 12 year: 2021 ident: 6138_CR18 publication-title: Neural Comput Appl doi: 10.1007/s00521-020-05474-6  | 
    
| SSID | ssj0021753 | 
    
| Score | 2.399049 | 
    
| Snippet | The cervical cancer patient’s death rate can be minimized by accurate and early detection of cervical cancer (CC). One of the popular techniques called the Pap... | 
    
| SourceID | crossref springer  | 
    
| SourceType | Enrichment Source Index Database Publisher  | 
    
| StartPage | 15363 | 
    
| SubjectTerms | Application of Soft Computing Artificial Intelligence Computational Intelligence Control Engineering Mathematical Logic and Foundations Mechatronics Robotics  | 
    
| Title | An optimized deep learning model using Mutation-based Atom Search Optimization algorithm for cervical cancer detection | 
    
| URI | https://link.springer.com/article/10.1007/s00500-021-06138-w | 
    
| Volume | 25 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVLSH databaseName: SpringerLink Journals customDbUrl: mediaType: online eissn: 1433-7479 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0021753 issn: 1432-7643 databaseCode: AFBBN dateStart: 19970401 isFulltext: true providerName: Library Specific Holdings – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 1433-7479 dateEnd: 20241102 omitProxy: true ssIdentifier: ssj0021753 issn: 1432-7643 databaseCode: BENPR dateStart: 20090101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVAVX databaseName: SpringerLINK - Czech Republic Consortium customDbUrl: eissn: 1433-7479 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0021753 issn: 1432-7643 databaseCode: AGYKE dateStart: 19970101 isFulltext: true titleUrlDefault: http://link.springer.com providerName: Springer Nature – providerCode: PRVAVX databaseName: SpringerLink Journals (ICM) customDbUrl: eissn: 1433-7479 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0021753 issn: 1432-7643 databaseCode: U2A dateStart: 19970404 isFulltext: true titleUrlDefault: http://www.springerlink.com/journals/ providerName: Springer Nature  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEF60vejBR1Wsj7IHb7qQ1ybNMZXWorReLNRT2CSTWmiT0qYW_PXObjbFggiectgHYWdm5xt25htC7lJILBtMl3GB4arjpgmLrLbBPNu1wTHQhasKucHQ7Y-c5zEf66KwVZXtXj1Jqpt6W-wmqUoMJlMKpA9qs80-qXNJ54VaPLKCbZiluScRCCB2RIerS2V-32PXHe2-hSoX0zshRxob0qAU5inZg6xBjqu-C1SbYYMc_iARPCOfQUZzNPz59AsSmgAsqG4FMaGqzw2Vue0TOliXr-5MOq6EBkU-p2WyMX0tl6thKmaTfDktPuYU8SyN1V2CfxVL9Vji_oVK3srOyajXfXvsM91NgcWWbxZM-A7EKYYHwkq4EZlG2wePR4BWAhGCRDNtu8LlPuD5cc_0E26nAL5j2z4X0sFdkFqWZ3BJKAgP45IYvBThlqSv4YhqnERwlK8hUtEkZnWoYaypxmXHi1m4JUlWgghREKESRLhpkvvtmkVJtPHn7IdKVqE2utUf06_-N_2aHFhSR1TWyg2pFcs13CL2KKIWqQe9Tmcov0_vL92WUr1vkVbTUg | 
    
| linkProvider | Springer Nature | 
    
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3JTsMwEB1BOQAHdsSOD9zAVTYnzbFCQKEtXKgEp8hJJqWCpqikIPH1jB2nAoQqcfYiyx573shv3gCcZJg6Lto-F5LCVc_PUh47DYsHru-iZ5EL1xly3Vu_1fNuHsSDSQp7q9ju1ZekfqmnyW5KqsTiilKgfFCDf8zDgkcBilODhebVY_tiGmgZ9UmCAoQeyeWaZJm_Z_npkH7-hmonc7kKvWp5JbfkuT4p4nry-Uu58b_rX4MVgzpZszSTdZjDfANWq4oOzFzwDVj-Jk-4Ce_NnI3oSRkOPjFlKeIrM0Um-kxX0GGKNd9n3Un5n8-VS0xZsxgNWUljZnflcN3M5Et_NB4UT0NGSJkl-pWiVSXK8MY0f6FpYfkW9C4v7s9b3NRp4IkT2gWXoYdJRoGHdFJhxbbVCDEQMdL9w5jgp501fOmLEOlcRGCHqXAzxNBz3VBI5Tq3oZaPctwBhjKgiCfBICMgp4RxBOElL5WCLMeSmdwFuzqsKDEi5qqWxks0lV_W2xzRNkd6m6OPXTidjnktJTxm9j6rji8y1_ltRve9_3U_hsXWfbcTda5v2_uw5Chr0NyYA6gV4wkeEsIp4iNj0F_SHfBX | 
    
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEF60gujBR1Wszz1406V5bdIcg1rqo9WDhd7CJjuphTYtNbXgr3d2k4YWpOA5u0vYmd3vG3bmG0JuEpCWDabLuMBw1XETySKrYTDPdm1wDIRwXSHX7ritrvPc472lKn6d7b54ksxrGpRKU5rVJzKpl4VvSrbEYCq9QOFRg803yZajhBLQo7tWUIZchQ4lkgLkkQi-RdnM32usQtPqu6iGm-YB2St4Ig1ywx6SDUirZH_Rg4EWR7JKdpcEBY_Id5DSMV4Co8EPSCoBJrRoC9GnuucNVXnufdqe5S_wTIGYpEE2HtE88Zi-5dP1ZyqG_fF0kH2OKHJbGut7Bf8qVq4yxfUznciVHpNu8_HjvsWKzgostnwzY8J3IE4wVBCW5EZkGg0fPB4BnhiIkDCaScMVLvcB9497pi-5nQD4jm37XCiwOyGVdJzCKaEgPIxRYvASpF5KyoYjw3Gk4GhrQySiRszFpoZxITuuul8Mw1IwWRsiREOE2hDhvEZuyzmTXHRj7ei7ha3C4gB-rRl-9r_h12T7_aEZvj51Xs7JjqXcRSezXJBKNp3BJVKSLLrSXvcLspTXag | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+optimized+deep+learning+model+using+Mutation-based+Atom+Search+Optimization+algorithm+for+cervical+cancer+detection&rft.jtitle=Soft+computing+%28Berlin%2C+Germany%29&rft.au=Chitra%2C+B.&rft.au=Kumar%2C+S.+S.&rft.date=2021-12-01&rft.issn=1432-7643&rft.eissn=1433-7479&rft.volume=25&rft.issue=24&rft.spage=15363&rft.epage=15376&rft_id=info:doi/10.1007%2Fs00500-021-06138-w&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s00500_021_06138_w | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1432-7643&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1432-7643&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1432-7643&client=summon |