A Fused Load Curve Clustering Algorithm Based on Wavelet Transform

The electricity load data recorded by smart meters contain plenty of knowledge that contributes to obtaining load patterns and consumer categories. Generally, the daily load curves are clustered first in order to obtain load patterns of each consumer. However, due to the volume and high dimensions o...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on industrial informatics Vol. 14; no. 5; pp. 1856 - 1865
Main Authors Jiang, Zigui, Lin, Rongheng, Yang, Fangchun, Wu, Budan
Format Journal Article
LanguageEnglish
Published Piscataway IEEE 01.05.2018
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN1551-3203
1941-0050
DOI10.1109/TII.2017.2769450

Cover

More Information
Summary:The electricity load data recorded by smart meters contain plenty of knowledge that contributes to obtaining load patterns and consumer categories. Generally, the daily load curves are clustered first in order to obtain load patterns of each consumer. However, due to the volume and high dimensions of load curves, existing clustering algorithms are not appropriate in this situation. Thus, a fused load curve clustering algorithm based on wavelet transform (FCCWT) is proposed to solve this problem. The algorithm includes two main phases. First, FCCWT applies multilevel discrete wavelet transform (DWT) to convert the daily load curves for dimensionality reduction. Second, it detects clusters at two outputs of the first phase, and then fuses two groups of clusters with a sub-algorithm named cluster fusion to achieve the optimized clusters. FCCWT is implemented on datasets of both China and United States. Their clustering performances are evaluated by diverse validity indices comparing with four typical clustering methods. The experimental results show that FCCWT outperforms other comparison methods. Additionally, case analysis of two datasets are also provided to discuss the significance of load patterns.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:1551-3203
1941-0050
DOI:10.1109/TII.2017.2769450