A Stochastic Model-Based Fusion Algorithm for Enhanced Localization of Land Vehicles

This article investigates a position estimation problem for land vehicles using sensors fusion and dead-reckoning (DR) to mitigate the influence of model inaccuracy and uncertain noise covariance. The kinematics of the vehicle is roughly modeled, considering the roll angle and slip angle. To achieve...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on instrumentation and measurement Vol. 71; pp. 1 - 10
Main Authors Guo, Ge, Liu, Jiageng
Format Journal Article
LanguageEnglish
Published New York IEEE 2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN0018-9456
1557-9662
DOI10.1109/TIM.2021.3137566

Cover

Abstract This article investigates a position estimation problem for land vehicles using sensors fusion and dead-reckoning (DR) to mitigate the influence of model inaccuracy and uncertain noise covariance. The kinematics of the vehicle is roughly modeled, considering the roll angle and slip angle. To achieve accurate position estimation, a novel stochastic model-based fusion algorithm is proposed by embedding absolute value modulated random noises into the model. For uncertainties that are Gaussian, a quantitative description of the deviation due to uncertainties is given. Improved state and measurement equations are derived to enhance the accuracy of positioning. The algorithm recursively provides robust estimations in a stochastic manner. The effectiveness and superiority of the proposed vehicle localization method with inadequate process knowledge is demonstrated by numerical simulations and real-world experiments. Experimental results also demonstrate that our method is more accurate and reliable than the state-of-the-art methods for vehicle localization under various driving conditions.
AbstractList This article investigates a position estimation problem for land vehicles using sensors fusion and dead-reckoning (DR) to mitigate the influence of model inaccuracy and uncertain noise covariance. The kinematics of the vehicle is roughly modeled, considering the roll angle and slip angle. To achieve accurate position estimation, a novel stochastic model-based fusion algorithm is proposed by embedding absolute value modulated random noises into the model. For uncertainties that are Gaussian, a quantitative description of the deviation due to uncertainties is given. Improved state and measurement equations are derived to enhance the accuracy of positioning. The algorithm recursively provides robust estimations in a stochastic manner. The effectiveness and superiority of the proposed vehicle localization method with inadequate process knowledge is demonstrated by numerical simulations and real-world experiments. Experimental results also demonstrate that our method is more accurate and reliable than the state-of-the-art methods for vehicle localization under various driving conditions.
Author Liu, Jiageng
Guo, Ge
Author_xml – sequence: 1
  givenname: Ge
  orcidid: 0000-0003-4752-4920
  surname: Guo
  fullname: Guo, Ge
  email: geguo@yeah.net
  organization: State Key Laboratory of Synthetical Automation for Process Industries, Northeastern University, Shenyang, China
– sequence: 2
  givenname: Jiageng
  orcidid: 0000-0002-7104-4399
  surname: Liu
  fullname: Liu, Jiageng
  email: liu331453318@163.com
  organization: College of Information Science and Engineering, Northeastern University, Shenyang, China
BookMark eNp9kDtPwzAURi1UJNrCjsRiiTnFj_g1lopCpVQMFNbIdWziKo2LnQ7w60lpxcDAdIf7nfvpnhEYtKG1AFxjNMEYqbvVYjkhiOAJxVQwzs_AEDMmMsU5GYAhQlhmKmf8AoxS2iCEBM_FEKym8KULptap8wYuQ2Wb7F4nW8H5PvnQwmnzHqLv6i10IcKHttat6bdFMLrxX7o7ZIKDhW4r-GZrbxqbLsG5002yV6c5Bq_zh9XsKSueHxezaZEZonCXaS4ZFc5VORXIEMEZlkrlGmOCabVWiFSKSGodEUJWJHdkjXJnnOFISuZyOga3x7u7GD72NnXlJuxj21eWhFOsOBaM9il0TJkYUorWlbvotzp-lhiVB3dl7648uCtP7nqE_0GM735-7aL2zX_gzRH01trfHsWZZJjSb08_e90
CODEN IEIMAO
CitedBy_id crossref_primary_10_1109_TIM_2024_3472800
crossref_primary_10_1109_TIV_2022_3227921
crossref_primary_10_1109_TITS_2023_3297248
crossref_primary_10_1080_23307706_2023_2202183
crossref_primary_10_1109_MITS_2022_3198334
Cites_doi 10.1109/TIM.2020.3041825
10.1109/TIE.2019.2946564
10.1109/TIE.2009.2017096
10.1109/TAC.2017.2668359
10.1109/TIM.2021.3097401
10.1109/JSEN.2017.2693246
10.1109/TIM.2006.877718
10.1109/TITS.2017.2735362
10.1109/TIM.2021.3097400
10.1109/TITS.2015.2464697
10.1109/TIM.2019.2955797
10.1109/TITS.2019.2949915
10.1016/j.inffus.2018.04.006
10.1109/TRA.2002.805661
10.1109/TVT.2020.3031661
10.1109/TAC.2019.2929817
10.1109/LCSYS.2019.2951611
10.1109/TITS.2011.2171033
10.1109/TITS.2019.2902664
10.1109/TITS.2018.2868840
10.1109/TITS.2019.2902797
10.1109/TVT.2020.2981619
10.1109/TCST.2020.3001387
10.1109/TITS.2018.2866232
10.1109/TIM.2020.3024357
10.1109/TITS.2018.2872607
10.1109/TVT.2019.2895297
10.1109/TGRS.2010.2083672
10.1109/TVT.2020.3026106
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
DBID 97E
RIA
RIE
AAYXX
CITATION
7SP
7U5
8FD
L7M
DOI 10.1109/TIM.2021.3137566
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Electronics & Communications Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
Electronics & Communications Abstracts
DatabaseTitleList
Solid State and Superconductivity Abstracts
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Physics
EISSN 1557-9662
EndPage 10
ExternalDocumentID 10_1109_TIM_2021_3137566
9658513
Genre orig-research
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 62173079; U1808205
  funderid: 10.13039/501100001809
GroupedDBID -~X
0R~
29I
4.4
5GY
5VS
6IK
85S
8WZ
97E
A6W
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACIWK
ACNCT
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
F5P
HZ~
H~9
IAAWW
IBMZZ
ICLAB
IDIHD
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
RIA
RIE
RNS
TN5
TWZ
VH1
VJK
AAYXX
CITATION
7SP
7U5
8FD
L7M
ID FETCH-LOGICAL-c291t-a68537ffd4370c276518994a11213db902d9283ef2778d24f2b04fcfc60885f43
IEDL.DBID RIE
ISSN 0018-9456
IngestDate Mon Jun 30 10:13:20 EDT 2025
Wed Oct 01 03:46:33 EDT 2025
Thu Apr 24 22:52:54 EDT 2025
Wed Aug 27 02:49:36 EDT 2025
IsPeerReviewed true
IsScholarly true
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c291t-a68537ffd4370c276518994a11213db902d9283ef2778d24f2b04fcfc60885f43
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-7104-4399
0000-0003-4752-4920
PQID 2631961753
PQPubID 85462
PageCount 10
ParticipantIDs ieee_primary_9658513
crossref_primary_10_1109_TIM_2021_3137566
crossref_citationtrail_10_1109_TIM_2021_3137566
proquest_journals_2631961753
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20220000
2022-00-00
20220101
PublicationDateYYYYMMDD 2022-01-01
PublicationDate_xml – year: 2022
  text: 20220000
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on instrumentation and measurement
PublicationTitleAbbrev TIM
PublicationYear 2022
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref12
ref15
ref14
ref11
ref10
ref2
ref1
ref17
ref16
ref19
ref18
ref24
ref23
ref26
ref25
ref20
ref22
ref21
ref28
ref27
ref29
ref8
ref7
ref9
ref4
ref3
ref6
ref5
References_xml – ident: ref8
  doi: 10.1109/TIM.2020.3041825
– ident: ref24
  doi: 10.1109/TIE.2019.2946564
– ident: ref27
  doi: 10.1109/TIE.2009.2017096
– ident: ref28
  doi: 10.1109/TAC.2017.2668359
– ident: ref5
  doi: 10.1109/TIM.2021.3097401
– ident: ref20
  doi: 10.1109/JSEN.2017.2693246
– ident: ref18
  doi: 10.1109/TIM.2006.877718
– ident: ref19
  doi: 10.1109/TITS.2017.2735362
– ident: ref3
  doi: 10.1109/TIM.2021.3097400
– ident: ref13
  doi: 10.1109/TITS.2015.2464697
– ident: ref9
  doi: 10.1109/TIM.2019.2955797
– ident: ref1
  doi: 10.1109/TITS.2019.2949915
– ident: ref25
  doi: 10.1016/j.inffus.2018.04.006
– ident: ref14
  doi: 10.1109/TRA.2002.805661
– ident: ref15
  doi: 10.1109/TVT.2020.3031661
– ident: ref12
  doi: 10.1109/TAC.2019.2929817
– ident: ref26
  doi: 10.1109/LCSYS.2019.2951611
– ident: ref17
  doi: 10.1109/TITS.2011.2171033
– ident: ref7
  doi: 10.1109/TITS.2019.2902664
– ident: ref4
  doi: 10.1109/TITS.2018.2868840
– ident: ref6
  doi: 10.1109/TITS.2019.2902797
– ident: ref16
  doi: 10.1109/TVT.2020.2981619
– ident: ref21
  doi: 10.1109/TCST.2020.3001387
– ident: ref11
  doi: 10.1109/TITS.2018.2866232
– ident: ref23
  doi: 10.1109/TIM.2020.3024357
– ident: ref2
  doi: 10.1109/TITS.2018.2872607
– ident: ref22
  doi: 10.1109/TVT.2019.2895297
– ident: ref29
  doi: 10.1109/TGRS.2010.2083672
– ident: ref10
  doi: 10.1109/TVT.2020.3026106
SSID ssj0007647
Score 2.410859
Snippet This article investigates a position estimation problem for land vehicles using sensors fusion and dead-reckoning (DR) to mitigate the influence of model...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1
SubjectTerms Adaptation models
Algorithms
Dead reckoning
Driving conditions
Estimation
extended Kalman filter (EKF)
Kalman filters
Kinematics
kinematics model
Localization
Localization method
Location awareness
Mathematical models
Robustness (mathematics)
sensor fusion
Stochastic models
Stochastic processes
Uncertainty
vehicle localization
Vehicles
Title A Stochastic Model-Based Fusion Algorithm for Enhanced Localization of Land Vehicles
URI https://ieeexplore.ieee.org/document/9658513
https://www.proquest.com/docview/2631961753
Volume 71
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1557-9662
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0007647
  issn: 0018-9456
  databaseCode: RIE
  dateStart: 19630101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9wwEB5RpEr0ABSoujwqH3pBIruJ49jJcUGsALG9dEHcIj9Z1CVBkL3w6_E42S0CVPWWg21Z-ex5eeYbgJ_WKC6TTESxVSxiecIjmdk8QlXPlHSKc6xGHv_iZ1fs4ia7WYGjZS2MtTYkn9k-foa3fFPrOYbKBkhUkmGL2k8i522t1lLqCs5afszEX2BvFSyeJONiMDkfe0eQJt4_TUUW-BD_qqDQU-WdIA7aZbQB48W-2qSSP_15o_r6-Q1l4_9ufBPWOzOTDNtz8RVWbLUFX16RD27B55D8qZ-2YTIkv5taTyVyNhPsjjaLjr12M2Q0x2AaGc5u68e7ZnpPvIlLTqtpSBsgl6gHuzpOUjtyKStDru00ZNrtwNXodHJyFnXdFiJNi6SJJPeaWzhnWCpiTQXPEu-LMZkg6ZtRRUxN4W0R66gQuaHMURUzp53mXlBljqXfYLWqK_sdiFCpX8QUjEvJvIiQXizIhAmbW5lSK3owWABQ6o6KHDtizMrgksRF6SErEbKyg6wHh8sZDy0Nxz_GbiMCy3Hdz-_B_gLjsrunTyXlKIKQrXT341l7sEax4CEEXfZhtXmc2wNvhjTqRzh_L_Mn1no
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3Nb9MwFH-aNk3AYRsbiLKx-cAFibSJ44_m2KFV3Wh3oUO7Rf6kiJKgLb3w18_PSQsChHbLwbas_Oz35fd-D-Cts1qojMskdZolbJiJRHE3TFDVM628FgKrkWfXYnLDrm757Ra839TCOOdi8pnr42d8y7e1WWGobIBEJRxb1O5wxhhvq7U2clcK1jJkZuEKB7tg_SiZFoP55Sy4gjQLHmoueWRE_KWEYleVv0Rx1C_jfZitd9amlXzrrxrdNz__IG187NYPYK8zNMmoPRnPYctVh_DsN_rBQ9iN6Z_m_gjmI_Kpqc1CIWszwf5oy-Q86DdLxisMp5HR8kt997VZfCfByCUX1SImDpApasKukpPUnkxVZclnt4i5di_gZnwx_zBJun4LiaFF1iRKBN0tvbcsl6mhUvAseGNMZUj7ZnWRUlsEa8R5KuXQUuapTpk33oggqrhn-UvYrurKvQIidR4WsQUTSrEgJFQQDCpj0g2dyqmTPRisAShNR0aOPTGWZXRK0qIMkJUIWdlB1oN3mxk_WiKO_4w9QgQ247qf34OTNcZld1PvSypQCCFf6et_zzqDJ5P5bFpOL68_HsNTiuUPMQRzAtvN3cq9CUZJo0_jWXwAW17Zxw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Stochastic+Model-Based+Fusion+Algorithm+for+Enhanced+Localization+of+Land+Vehicles&rft.jtitle=IEEE+transactions+on+instrumentation+and+measurement&rft.au=Guo%2C+Ge&rft.au=Liu%2C+Jiageng&rft.date=2022&rft.pub=IEEE&rft.issn=0018-9456&rft.volume=71&rft.spage=1&rft.epage=10&rft_id=info:doi/10.1109%2FTIM.2021.3137566&rft.externalDocID=9658513
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0018-9456&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0018-9456&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0018-9456&client=summon