UWB System for Indoor Positioning and Tracking With Arbitrary Target Orientation, Optimal Anchor Location, and Adaptive NLOS Mitigation
The Ultra-wideband (UWB) system for indoor positioning and tracking with the characteristics of arbitrary target orientation, optimal anchor location, and adaptive non-line-of-sight (NLOS) mitigation characteristics is proposed and implemented by introducing the circularly polarized antenna, the gen...
Saved in:
| Published in | IEEE transactions on vehicular technology Vol. 69; no. 9; pp. 9304 - 9314 |
|---|---|
| Main Authors | , , , , , |
| Format | Journal Article |
| Language | English |
| Published |
New York
IEEE
01.09.2020
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Subjects | |
| Online Access | Get full text |
| ISSN | 0018-9545 1939-9359 |
| DOI | 10.1109/TVT.2020.2972578 |
Cover
| Abstract | The Ultra-wideband (UWB) system for indoor positioning and tracking with the characteristics of arbitrary target orientation, optimal anchor location, and adaptive non-line-of-sight (NLOS) mitigation characteristics is proposed and implemented by introducing the circularly polarized antenna, the genetic algorithm (GA), and the machine learning method. The time-domain characteristic of the UWB system using the proposed circularly polarized antennas with wide bandwidth and omnidirectional radiation is investigated by transient response. Contrary to UWB system using the conventional linearly polarized antenna, the pulse distortion is insignificant and is verified by the measured antenna performance with high signal fidelity (>0.98) and low standard deviation (STD) of time delay (<0.05 ns). By considering the NLOS electromagnetic wave propagation models, the locations of the anchors in the UWB system are effectively optimized by using the proposed GA to minimize the average root-mean-square error (RMSE) of each tag location in the dense multipath area. By optimizing the three anchor locations, the average RMSE of tag location is minimized to 36.72 cm for a 45 m 2 area with concrete walls and pillars. The adaptive NLOS mitigation is investigated by using and optimizing machine learning models, including deep neural network (DNN), convolutional neural network (CNN) and long short-term memory (LSTM). The three-anchor UWB system for a 45 m 2 area is established to track an autonomous vehicle in severe NLOS environment by using the proposed circularly polarized antenna combined with the optimized LSTM model, achieving the measured positioning error of 26.1 cm. Moreover, the measured result of 20-30 cm positioning error with concrete walls, pillars and walking humans is demonstrated and analyzed. |
|---|---|
| AbstractList | The Ultra-wideband (UWB) system for indoor positioning and tracking with the characteristics of arbitrary target orientation, optimal anchor location, and adaptive non-line-of-sight (NLOS) mitigation characteristics is proposed and implemented by introducing the circularly polarized antenna, the genetic algorithm (GA), and the machine learning method. The time-domain characteristic of the UWB system using the proposed circularly polarized antennas with wide bandwidth and omnidirectional radiation is investigated by transient response. Contrary to UWB system using the conventional linearly polarized antenna, the pulse distortion is insignificant and is verified by the measured antenna performance with high signal fidelity (>0.98) and low standard deviation (STD) of time delay (<0.05 ns). By considering the NLOS electromagnetic wave propagation models, the locations of the anchors in the UWB system are effectively optimized by using the proposed GA to minimize the average root-mean-square error (RMSE) of each tag location in the dense multipath area. By optimizing the three anchor locations, the average RMSE of tag location is minimized to 36.72 cm for a 45 m2 area with concrete walls and pillars. The adaptive NLOS mitigation is investigated by using and optimizing machine learning models, including deep neural network (DNN), convolutional neural network (CNN) and long short-term memory (LSTM). The three-anchor UWB system for a 45 m2 area is established to track an autonomous vehicle in severe NLOS environment by using the proposed circularly polarized antenna combined with the optimized LSTM model, achieving the measured positioning error of 26.1 cm. Moreover, the measured result of 20-30 cm positioning error with concrete walls, pillars and walking humans is demonstrated and analyzed. The Ultra-wideband (UWB) system for indoor positioning and tracking with the characteristics of arbitrary target orientation, optimal anchor location, and adaptive non-line-of-sight (NLOS) mitigation characteristics is proposed and implemented by introducing the circularly polarized antenna, the genetic algorithm (GA), and the machine learning method. The time-domain characteristic of the UWB system using the proposed circularly polarized antennas with wide bandwidth and omnidirectional radiation is investigated by transient response. Contrary to UWB system using the conventional linearly polarized antenna, the pulse distortion is insignificant and is verified by the measured antenna performance with high signal fidelity (>0.98) and low standard deviation (STD) of time delay (<0.05 ns). By considering the NLOS electromagnetic wave propagation models, the locations of the anchors in the UWB system are effectively optimized by using the proposed GA to minimize the average root-mean-square error (RMSE) of each tag location in the dense multipath area. By optimizing the three anchor locations, the average RMSE of tag location is minimized to 36.72 cm for a 45 m 2 area with concrete walls and pillars. The adaptive NLOS mitigation is investigated by using and optimizing machine learning models, including deep neural network (DNN), convolutional neural network (CNN) and long short-term memory (LSTM). The three-anchor UWB system for a 45 m 2 area is established to track an autonomous vehicle in severe NLOS environment by using the proposed circularly polarized antenna combined with the optimized LSTM model, achieving the measured positioning error of 26.1 cm. Moreover, the measured result of 20-30 cm positioning error with concrete walls, pillars and walking humans is demonstrated and analyzed. |
| Author | Mao, Shau-Gang Chen, Yu-Yao Huang, Shih-Ping Liou, Chong-Yi Tsai, Wei-Ting Wu, Ting-Wei |
| Author_xml | – sequence: 1 givenname: Yu-Yao surname: Chen fullname: Chen, Yu-Yao email: yuyaochen.tw@gmail.com organization: Graduate Institute of Communication Engineering, National Taiwan University, Taipei, Taiwan – sequence: 2 givenname: Shih-Ping surname: Huang fullname: Huang, Shih-Ping email: sphuang.tw@gmail.com organization: Graduate Institute of Communication Engineering, National Taiwan University, Taipei, Taiwan – sequence: 3 givenname: Ting-Wei surname: Wu fullname: Wu, Ting-Wei email: sgmao601@gmail.com organization: Graduate Institute of Communication Engineering, National Taiwan University, Taipei, Taiwan – sequence: 4 givenname: Wei-Ting orcidid: 0000-0002-2417-9637 surname: Tsai fullname: Tsai, Wei-Ting email: sgmao@ieee.org organization: Graduate Institute of Communication Engineering, National Taiwan University, Taipei, Taiwan – sequence: 5 givenname: Chong-Yi surname: Liou fullname: Liou, Chong-Yi email: yichenchen.tw@gmail.com organization: Graduate Institute of Communication Engineering, National Taiwan University, Taipei, Taiwan – sequence: 6 givenname: Shau-Gang orcidid: 0000-0002-2417-9637 surname: Mao fullname: Mao, Shau-Gang email: sgmao@ntu.edu.tw organization: Graduate Institute of Communication Engineering, National Taiwan University, Taipei, Taiwan |
| BookMark | eNp9UEtLAzEQDlLB-rgLXgJe3ZpkN7ubYy2-oFrBVY9Lmp20qTWp2Sj0F_i3zdriwYPMYZj5HsN8-6hnnQWEjikZUErEefVcDRhhZMBEwXhR7qA-FalIRMpFD_UJoWUieMb30H7bLuKYZYL20dfTywV-XLcB3rB2Ht_axsX24FoTjLPGzrC0Da68VK_d8GLCHA_91AQv_RpX0s8g4Ik3YIPsFGd4sgrmTS7x0Kp5tBo7tQU6o2EjI_wJ-H48ecR38cjsBz1Eu1ouWzja9gP0dHVZjW6S8eT6djQcJ4oJGhKZggBgZclYyknOmNKKg8xzoWXRlHkjNMiUKcg4meq4URI0yShM8yKnmqcH6HTju_Lu_QPaUC_ch7fxZM0yTmlZCkYiK9-wlHdt60HXymzei2-bZU1J3YVex9DrLvR6G3oUkj_ClY9h-PV_kpONxADAL70UsViRfgNb05CS |
| CODEN | ITVTAB |
| CitedBy_id | crossref_primary_10_53600_ajesa_1354785 crossref_primary_10_1109_TCOMM_2022_3173003 crossref_primary_10_1109_JIOT_2023_3330166 crossref_primary_10_1109_JIOT_2024_3373795 crossref_primary_10_1109_TCOMM_2023_3277039 crossref_primary_10_1109_TIM_2022_3193705 crossref_primary_10_1016_j_phycom_2021_101328 crossref_primary_10_1109_TIM_2022_3205690 crossref_primary_10_1109_JSEN_2024_3398789 crossref_primary_10_1109_TVT_2024_3439335 crossref_primary_10_1109_JIOT_2022_3155736 crossref_primary_10_3390_s21196447 crossref_primary_10_1109_JSAC_2022_3157397 crossref_primary_10_1109_TVT_2022_3172863 crossref_primary_10_1109_LSENS_2021_3083480 crossref_primary_10_1109_JSEN_2023_3310480 crossref_primary_10_1109_TIM_2022_3146925 crossref_primary_10_1109_JIOT_2022_3219454 crossref_primary_10_1109_TVT_2022_3187978 crossref_primary_10_1109_TCSII_2023_3330073 crossref_primary_10_1109_TIM_2025_3548180 crossref_primary_10_1109_TII_2022_3217533 crossref_primary_10_1007_s42154_022_00187_z crossref_primary_10_1016_j_energy_2023_128514 crossref_primary_10_1109_TCOMM_2022_3145408 crossref_primary_10_1016_j_ifacol_2021_11_289 crossref_primary_10_1007_s11235_022_00945_8 crossref_primary_10_1109_TIM_2024_3462984 |
| Cites_doi | 10.1109/JSYST.2017.2766690 10.1109/ACCESS.2018.2882379 10.1109/LCOMM.2014.021214.132662 10.1109/TVT.2019.2910307 10.1109/JSEN.2015.2472978 10.1109/LAWP.2014.2340472 10.1109/MWC.2017.1600374 10.1109/JPHOT.2018.2841831 10.1109/TIM.2015.2506239 10.1109/JSEN.2017.2762428 10.1109/JSAC.2010.100907 10.1109/TIM.2017.2681398 10.1109/JSEE.2015.00130 10.1109/ACCESS.2018.2817800 10.1109/TVT.2015.2508501 10.1109/ACCESS.2017.2743213 10.1109/TENCON.2009.5395935 10.1109/TAP.2006.879189 10.1109/TVT.2015.2403868 10.1109/TVT.2019.2906485 10.1109/JIOT.2017.2782479 10.1109/ACCESS.2018.2871960 10.1109/TIM.2010.2047987 10.1109/TIM.2014.2308995 10.1109/ACCESS.2019.2899736 10.1109/WIMOB.2007.4390815 10.1109/MWSYM.2019.8701018 10.1109/JIOT.2016.2558659 10.1109/TVT.2016.2545523 10.1109/TVT.2018.2883810 10.1109/TVT.2015.2396640 10.1109/LCOMM.2009.090093 10.1109/ACCESS.2019.2904201 10.1109/TVT.2012.2207749 10.1109/TWC.2017.2777457 10.1109/INFOCOM.2014.6847959 10.1109/LSENS.2019.2897924 10.3846/1392-1541.2009.35.18-22 10.1109/MNET.2019.1800305 10.1109/JSEN.2016.2639530 10.1029/2011RS004683 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020 |
| DBID | 97E RIA RIE AAYXX CITATION 7SP 8FD FR3 KR7 L7M |
| DOI | 10.1109/TVT.2020.2972578 |
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Electronics & Communications Abstracts Technology Research Database Engineering Research Database Civil Engineering Abstracts Advanced Technologies Database with Aerospace |
| DatabaseTitle | CrossRef Civil Engineering Abstracts Engineering Research Database Technology Research Database Advanced Technologies Database with Aerospace Electronics & Communications Abstracts |
| DatabaseTitleList | Civil Engineering Abstracts |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Xplore url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1939-9359 |
| EndPage | 9314 |
| ExternalDocumentID | 10_1109_TVT_2020_2972578 8989827 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: Ministry of Education in Taiwan – fundername: Center for Electronics Technology Integration grantid: NTU-107L900503 – fundername: Ministry of Science and Technology, Taiwan funderid: 10.13039/501100004663 – fundername: National Taiwan University funderid: 10.13039/501100006477 |
| GroupedDBID | -~X .DC 0R~ 29I 3EH 4.4 5GY 5VS 6IK 97E AAIKC AAJGR AAMNW AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACGFS ACIWK ACNCT AENEX AETIX AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD HZ~ H~9 IAAWW IBMZZ ICLAB IFIPE IFJZH IPLJI JAVBF LAI M43 MS~ O9- OCL P2P RIA RIE RNS RXW TAE TN5 VH1 AAYXX CITATION 7SP 8FD FR3 KR7 L7M |
| ID | FETCH-LOGICAL-c291t-a3e9ee28822350622cfc5ea669fa7d86d9fea32ce450bf7d8caef041eb6761f53 |
| IEDL.DBID | RIE |
| ISSN | 0018-9545 |
| IngestDate | Mon Jun 30 10:14:23 EDT 2025 Wed Oct 01 01:47:56 EDT 2025 Thu Apr 24 22:58:50 EDT 2025 Wed Aug 27 02:30:35 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 9 |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c291t-a3e9ee28822350622cfc5ea669fa7d86d9fea32ce450bf7d8caef041eb6761f53 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-2417-9637 |
| PQID | 2451188920 |
| PQPubID | 85454 |
| PageCount | 11 |
| ParticipantIDs | proquest_journals_2451188920 crossref_citationtrail_10_1109_TVT_2020_2972578 crossref_primary_10_1109_TVT_2020_2972578 ieee_primary_8989827 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2020-09-01 |
| PublicationDateYYYYMMDD | 2020-09-01 |
| PublicationDate_xml | – month: 09 year: 2020 text: 2020-09-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York |
| PublicationTitle | IEEE transactions on vehicular technology |
| PublicationTitleAbbrev | TVT |
| PublicationYear | 2020 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref35 ref13 ref34 ref12 ref37 ref15 ref36 ref14 ref31 ref30 ref33 ref11 ref32 ref10 ref2 ref1 ref39 ref17 ref38 ref16 ref19 ref18 melanie (ref44) 1998 (ref41) 0 ref24 ref23 ref26 ref25 ref20 ref42 ref22 ref21 ref28 ref27 ref29 zhang (ref43) 2019 ref8 ref7 ref9 ref4 ref3 ref6 ref5 ref40 |
| References_xml | – year: 1998 ident: ref44 publication-title: An Introduction to Genetic Algorithms – ident: ref9 doi: 10.1109/JSYST.2017.2766690 – ident: ref23 doi: 10.1109/ACCESS.2018.2882379 – year: 0 ident: ref41 article-title: DWM1000 datasheet – ident: ref11 doi: 10.1109/LCOMM.2014.021214.132662 – ident: ref18 doi: 10.1109/TVT.2019.2910307 – ident: ref8 doi: 10.1109/JSEN.2015.2472978 – ident: ref21 doi: 10.1109/LAWP.2014.2340472 – ident: ref30 doi: 10.1109/MWC.2017.1600374 – ident: ref15 doi: 10.1109/JPHOT.2018.2841831 – ident: ref17 doi: 10.1109/TIM.2015.2506239 – ident: ref26 doi: 10.1109/JSEN.2017.2762428 – ident: ref36 doi: 10.1109/JSAC.2010.100907 – ident: ref34 doi: 10.1109/TIM.2017.2681398 – ident: ref24 doi: 10.1109/JSEE.2015.00130 – ident: ref38 doi: 10.1109/ACCESS.2018.2817800 – ident: ref14 doi: 10.1109/TVT.2015.2508501 – ident: ref31 doi: 10.1109/ACCESS.2017.2743213 – ident: ref39 doi: 10.1109/TENCON.2009.5395935 – ident: ref40 doi: 10.1109/TAP.2006.879189 – ident: ref28 doi: 10.1109/TVT.2015.2403868 – ident: ref19 doi: 10.1109/TVT.2019.2906485 – ident: ref25 doi: 10.1109/JIOT.2017.2782479 – ident: ref5 doi: 10.1109/ACCESS.2018.2871960 – ident: ref16 doi: 10.1109/TIM.2010.2047987 – ident: ref13 doi: 10.1109/TIM.2014.2308995 – ident: ref4 doi: 10.1109/ACCESS.2019.2899736 – ident: ref6 doi: 10.1109/WIMOB.2007.4390815 – ident: ref35 doi: 10.1109/MWSYM.2019.8701018 – ident: ref27 doi: 10.1109/JIOT.2016.2558659 – ident: ref3 doi: 10.1109/TVT.2016.2545523 – ident: ref37 doi: 10.1109/TVT.2018.2883810 – ident: ref10 doi: 10.1109/TVT.2015.2396640 – ident: ref42 doi: 10.1109/LCOMM.2009.090093 – year: 2019 ident: ref43 article-title: Dive into deep learning – ident: ref22 doi: 10.1109/ACCESS.2019.2904201 – ident: ref32 doi: 10.1109/TVT.2012.2207749 – ident: ref20 doi: 10.1109/TWC.2017.2777457 – ident: ref7 doi: 10.1109/INFOCOM.2014.6847959 – ident: ref12 doi: 10.1109/LSENS.2019.2897924 – ident: ref2 doi: 10.3846/1392-1541.2009.35.18-22 – ident: ref29 doi: 10.1109/MNET.2019.1800305 – ident: ref33 doi: 10.1109/JSEN.2016.2639530 – ident: ref1 doi: 10.1029/2011RS004683 |
| SSID | ssj0014491 |
| Score | 2.5469398 |
| Snippet | The Ultra-wideband (UWB) system for indoor positioning and tracking with the characteristics of arbitrary target orientation, optimal anchor location, and... |
| SourceID | proquest crossref ieee |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 9304 |
| SubjectTerms | Adaptive systems Anchors Antenna measurements Antennas Artificial neural networks Bandwidths Circular polarization circularly polarized CNN Delay effects Electromagnetic radiation Error analysis genetic algorithm Genetic algorithms indoor tracking Linear polarization LSTM Machine learning Neural networks NLOS Optimization Root-mean-square errors Target tracking Time domain analysis Time lag Tracking Transient response Ultra wideband antennas Ultra-wideband Ultrawideband Wave propagation wireless positioning |
| Title | UWB System for Indoor Positioning and Tracking With Arbitrary Target Orientation, Optimal Anchor Location, and Adaptive NLOS Mitigation |
| URI | https://ieeexplore.ieee.org/document/8989827 https://www.proquest.com/docview/2451188920 |
| Volume | 69 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Xplore customDbUrl: eissn: 1939-9359 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0014491 issn: 0018-9545 databaseCode: RIE dateStart: 19670101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9swDCbanLZD160rmi0ddNhlQJ3Ysi1Lx7RY0A15DFiy9mbYEo0G2-wicy77A_vbo2Ql2AvFTjZsvQBSJCWSHwFe6xCFoE0UYBRhkNg7fKUy6y4k-7kilWscqM9sLq5Xyfvb9PYALva5MIjogs9waF-dL980emuvyka21KHk2SEcZlJ0uVp7j0GS-Op4EW1gMgt2LslQjZaflnQQ5OGQq8xy6G8qyNVU-UsQO-0yeQKz3bq6oJLPw21bDvX3PyAb_3fhx3DkzUw27vjiKRxg_Qwe_wI-eAI_VjeXrAMsZ2S5sne1aejxwUdxURtW1IaRMtP2Op3drNs7GrBcu0R9tnQh5GyxWfvspfqCLUj-fLXT1iRUN2zaaP_DDjQ2xb2VrWw-XXxks3UH7tHUz2E1ebu8ug58WYZAcxW1QRGjQuRkmvM4DQXnutIpFkTyqsiMFEZVWMRcY5KGZUVfdIFVmERYikxEVRqfQq9uajwDJg1KmZZGIY8TmYqSJG-hhIqVqeJYmz6MdpTKtccst6UzvuTu7BKqnGibW9rmnrZ9eLPvcd_hdTzQ9sSSat_OU6kPgx0z5H5Df8u5xXGTUvHwxb97vYRHduwu_GwAvXazxXOyV9rylWPUn3ud51M |
| linkProvider | IEEE |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB6VcgAOFCgVW1rwgQtSs5s4dhIfS9VqC_tAIkt7ixJ7IlZAUm2zF_4Af5ux413xEuKUKPFLmvHM2DPzDcArHWKS0CYKMIowEPYOX6nUugvJfq5J5RoH6jOdJeOFeHstr3fgZJsLg4gu-AyH9tX58k2r1_aqbGRLHWY8vQN3pRBC9tlaW5-BEL4-XkRbmAyDjVMyVKP8Y05HQR4OuUotj_6ihFxVlT9EsdMvF3sw3aysDyv5PFx31VB_-w208X-X_ggeekOTnfac8Rh2sHkCD36CH9yH74urN6yHLGdku7LLxrT0eO_juKgNKxvDSJ1pe6HOrpbdJxqwWrpUfZa7IHI2Xy19_lJzwuYkgb7aaRsSqys2abX_YQc6NeWNla5sNpl_YNNlD-_RNk9hcXGen40DX5gh0FxFXVDGqBA5Gec8lmHCua61xJKIXpepyRKjaixjrlHIsKrpiy6xDkWEVZImUS3jA9ht2gafAcsMZpmsjEIei0wmFcneUiUqVqaOY20GMNpQqtAetdwWz_hSuNNLqAqibWFpW3jaDuD1tsdNj9jxj7b7llTbdp5KAzjaMEPht_RtwS2SW5YpHh7-vddLuDfOp5Nicjl79xzu23n6YLQj2O1Wazwm66WrXjim_QG7I-qg |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=UWB+System+for+Indoor+Positioning+and+Tracking+With+Arbitrary+Target+Orientation%2C+Optimal+Anchor+Location%2C+and+Adaptive+NLOS+Mitigation&rft.jtitle=IEEE+transactions+on+vehicular+technology&rft.au=Chen%2C+Yu-Yao&rft.au=Huang%2C+Shih-Ping&rft.au=Wu%2C+Ting-Wei&rft.au=Tsai%2C+Wei-Ting&rft.date=2020-09-01&rft.pub=IEEE&rft.issn=0018-9545&rft.volume=69&rft.issue=9&rft.spage=9304&rft.epage=9314&rft_id=info:doi/10.1109%2FTVT.2020.2972578&rft.externalDocID=8989827 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0018-9545&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0018-9545&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0018-9545&client=summon |