UWB System for Indoor Positioning and Tracking With Arbitrary Target Orientation, Optimal Anchor Location, and Adaptive NLOS Mitigation

The Ultra-wideband (UWB) system for indoor positioning and tracking with the characteristics of arbitrary target orientation, optimal anchor location, and adaptive non-line-of-sight (NLOS) mitigation characteristics is proposed and implemented by introducing the circularly polarized antenna, the gen...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on vehicular technology Vol. 69; no. 9; pp. 9304 - 9314
Main Authors Chen, Yu-Yao, Huang, Shih-Ping, Wu, Ting-Wei, Tsai, Wei-Ting, Liou, Chong-Yi, Mao, Shau-Gang
Format Journal Article
LanguageEnglish
Published New York IEEE 01.09.2020
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN0018-9545
1939-9359
DOI10.1109/TVT.2020.2972578

Cover

Abstract The Ultra-wideband (UWB) system for indoor positioning and tracking with the characteristics of arbitrary target orientation, optimal anchor location, and adaptive non-line-of-sight (NLOS) mitigation characteristics is proposed and implemented by introducing the circularly polarized antenna, the genetic algorithm (GA), and the machine learning method. The time-domain characteristic of the UWB system using the proposed circularly polarized antennas with wide bandwidth and omnidirectional radiation is investigated by transient response. Contrary to UWB system using the conventional linearly polarized antenna, the pulse distortion is insignificant and is verified by the measured antenna performance with high signal fidelity (>0.98) and low standard deviation (STD) of time delay (<0.05 ns). By considering the NLOS electromagnetic wave propagation models, the locations of the anchors in the UWB system are effectively optimized by using the proposed GA to minimize the average root-mean-square error (RMSE) of each tag location in the dense multipath area. By optimizing the three anchor locations, the average RMSE of tag location is minimized to 36.72 cm for a 45 m 2 area with concrete walls and pillars. The adaptive NLOS mitigation is investigated by using and optimizing machine learning models, including deep neural network (DNN), convolutional neural network (CNN) and long short-term memory (LSTM). The three-anchor UWB system for a 45 m 2 area is established to track an autonomous vehicle in severe NLOS environment by using the proposed circularly polarized antenna combined with the optimized LSTM model, achieving the measured positioning error of 26.1 cm. Moreover, the measured result of 20-30 cm positioning error with concrete walls, pillars and walking humans is demonstrated and analyzed.
AbstractList The Ultra-wideband (UWB) system for indoor positioning and tracking with the characteristics of arbitrary target orientation, optimal anchor location, and adaptive non-line-of-sight (NLOS) mitigation characteristics is proposed and implemented by introducing the circularly polarized antenna, the genetic algorithm (GA), and the machine learning method. The time-domain characteristic of the UWB system using the proposed circularly polarized antennas with wide bandwidth and omnidirectional radiation is investigated by transient response. Contrary to UWB system using the conventional linearly polarized antenna, the pulse distortion is insignificant and is verified by the measured antenna performance with high signal fidelity (>0.98) and low standard deviation (STD) of time delay (<0.05 ns). By considering the NLOS electromagnetic wave propagation models, the locations of the anchors in the UWB system are effectively optimized by using the proposed GA to minimize the average root-mean-square error (RMSE) of each tag location in the dense multipath area. By optimizing the three anchor locations, the average RMSE of tag location is minimized to 36.72 cm for a 45 m2 area with concrete walls and pillars. The adaptive NLOS mitigation is investigated by using and optimizing machine learning models, including deep neural network (DNN), convolutional neural network (CNN) and long short-term memory (LSTM). The three-anchor UWB system for a 45 m2 area is established to track an autonomous vehicle in severe NLOS environment by using the proposed circularly polarized antenna combined with the optimized LSTM model, achieving the measured positioning error of 26.1 cm. Moreover, the measured result of 20-30 cm positioning error with concrete walls, pillars and walking humans is demonstrated and analyzed.
The Ultra-wideband (UWB) system for indoor positioning and tracking with the characteristics of arbitrary target orientation, optimal anchor location, and adaptive non-line-of-sight (NLOS) mitigation characteristics is proposed and implemented by introducing the circularly polarized antenna, the genetic algorithm (GA), and the machine learning method. The time-domain characteristic of the UWB system using the proposed circularly polarized antennas with wide bandwidth and omnidirectional radiation is investigated by transient response. Contrary to UWB system using the conventional linearly polarized antenna, the pulse distortion is insignificant and is verified by the measured antenna performance with high signal fidelity (>0.98) and low standard deviation (STD) of time delay (<0.05 ns). By considering the NLOS electromagnetic wave propagation models, the locations of the anchors in the UWB system are effectively optimized by using the proposed GA to minimize the average root-mean-square error (RMSE) of each tag location in the dense multipath area. By optimizing the three anchor locations, the average RMSE of tag location is minimized to 36.72 cm for a 45 m 2 area with concrete walls and pillars. The adaptive NLOS mitigation is investigated by using and optimizing machine learning models, including deep neural network (DNN), convolutional neural network (CNN) and long short-term memory (LSTM). The three-anchor UWB system for a 45 m 2 area is established to track an autonomous vehicle in severe NLOS environment by using the proposed circularly polarized antenna combined with the optimized LSTM model, achieving the measured positioning error of 26.1 cm. Moreover, the measured result of 20-30 cm positioning error with concrete walls, pillars and walking humans is demonstrated and analyzed.
Author Mao, Shau-Gang
Chen, Yu-Yao
Huang, Shih-Ping
Liou, Chong-Yi
Tsai, Wei-Ting
Wu, Ting-Wei
Author_xml – sequence: 1
  givenname: Yu-Yao
  surname: Chen
  fullname: Chen, Yu-Yao
  email: yuyaochen.tw@gmail.com
  organization: Graduate Institute of Communication Engineering, National Taiwan University, Taipei, Taiwan
– sequence: 2
  givenname: Shih-Ping
  surname: Huang
  fullname: Huang, Shih-Ping
  email: sphuang.tw@gmail.com
  organization: Graduate Institute of Communication Engineering, National Taiwan University, Taipei, Taiwan
– sequence: 3
  givenname: Ting-Wei
  surname: Wu
  fullname: Wu, Ting-Wei
  email: sgmao601@gmail.com
  organization: Graduate Institute of Communication Engineering, National Taiwan University, Taipei, Taiwan
– sequence: 4
  givenname: Wei-Ting
  orcidid: 0000-0002-2417-9637
  surname: Tsai
  fullname: Tsai, Wei-Ting
  email: sgmao@ieee.org
  organization: Graduate Institute of Communication Engineering, National Taiwan University, Taipei, Taiwan
– sequence: 5
  givenname: Chong-Yi
  surname: Liou
  fullname: Liou, Chong-Yi
  email: yichenchen.tw@gmail.com
  organization: Graduate Institute of Communication Engineering, National Taiwan University, Taipei, Taiwan
– sequence: 6
  givenname: Shau-Gang
  orcidid: 0000-0002-2417-9637
  surname: Mao
  fullname: Mao, Shau-Gang
  email: sgmao@ntu.edu.tw
  organization: Graduate Institute of Communication Engineering, National Taiwan University, Taipei, Taiwan
BookMark eNp9UEtLAzEQDlLB-rgLXgJe3ZpkN7ubYy2-oFrBVY9Lmp20qTWp2Sj0F_i3zdriwYPMYZj5HsN8-6hnnQWEjikZUErEefVcDRhhZMBEwXhR7qA-FalIRMpFD_UJoWUieMb30H7bLuKYZYL20dfTywV-XLcB3rB2Ht_axsX24FoTjLPGzrC0Da68VK_d8GLCHA_91AQv_RpX0s8g4Ik3YIPsFGd4sgrmTS7x0Kp5tBo7tQU6o2EjI_wJ-H48ecR38cjsBz1Eu1ouWzja9gP0dHVZjW6S8eT6djQcJ4oJGhKZggBgZclYyknOmNKKg8xzoWXRlHkjNMiUKcg4meq4URI0yShM8yKnmqcH6HTju_Lu_QPaUC_ch7fxZM0yTmlZCkYiK9-wlHdt60HXymzei2-bZU1J3YVex9DrLvR6G3oUkj_ClY9h-PV_kpONxADAL70UsViRfgNb05CS
CODEN ITVTAB
CitedBy_id crossref_primary_10_53600_ajesa_1354785
crossref_primary_10_1109_TCOMM_2022_3173003
crossref_primary_10_1109_JIOT_2023_3330166
crossref_primary_10_1109_JIOT_2024_3373795
crossref_primary_10_1109_TCOMM_2023_3277039
crossref_primary_10_1109_TIM_2022_3193705
crossref_primary_10_1016_j_phycom_2021_101328
crossref_primary_10_1109_TIM_2022_3205690
crossref_primary_10_1109_JSEN_2024_3398789
crossref_primary_10_1109_TVT_2024_3439335
crossref_primary_10_1109_JIOT_2022_3155736
crossref_primary_10_3390_s21196447
crossref_primary_10_1109_JSAC_2022_3157397
crossref_primary_10_1109_TVT_2022_3172863
crossref_primary_10_1109_LSENS_2021_3083480
crossref_primary_10_1109_JSEN_2023_3310480
crossref_primary_10_1109_TIM_2022_3146925
crossref_primary_10_1109_JIOT_2022_3219454
crossref_primary_10_1109_TVT_2022_3187978
crossref_primary_10_1109_TCSII_2023_3330073
crossref_primary_10_1109_TIM_2025_3548180
crossref_primary_10_1109_TII_2022_3217533
crossref_primary_10_1007_s42154_022_00187_z
crossref_primary_10_1016_j_energy_2023_128514
crossref_primary_10_1109_TCOMM_2022_3145408
crossref_primary_10_1016_j_ifacol_2021_11_289
crossref_primary_10_1007_s11235_022_00945_8
crossref_primary_10_1109_TIM_2024_3462984
Cites_doi 10.1109/JSYST.2017.2766690
10.1109/ACCESS.2018.2882379
10.1109/LCOMM.2014.021214.132662
10.1109/TVT.2019.2910307
10.1109/JSEN.2015.2472978
10.1109/LAWP.2014.2340472
10.1109/MWC.2017.1600374
10.1109/JPHOT.2018.2841831
10.1109/TIM.2015.2506239
10.1109/JSEN.2017.2762428
10.1109/JSAC.2010.100907
10.1109/TIM.2017.2681398
10.1109/JSEE.2015.00130
10.1109/ACCESS.2018.2817800
10.1109/TVT.2015.2508501
10.1109/ACCESS.2017.2743213
10.1109/TENCON.2009.5395935
10.1109/TAP.2006.879189
10.1109/TVT.2015.2403868
10.1109/TVT.2019.2906485
10.1109/JIOT.2017.2782479
10.1109/ACCESS.2018.2871960
10.1109/TIM.2010.2047987
10.1109/TIM.2014.2308995
10.1109/ACCESS.2019.2899736
10.1109/WIMOB.2007.4390815
10.1109/MWSYM.2019.8701018
10.1109/JIOT.2016.2558659
10.1109/TVT.2016.2545523
10.1109/TVT.2018.2883810
10.1109/TVT.2015.2396640
10.1109/LCOMM.2009.090093
10.1109/ACCESS.2019.2904201
10.1109/TVT.2012.2207749
10.1109/TWC.2017.2777457
10.1109/INFOCOM.2014.6847959
10.1109/LSENS.2019.2897924
10.3846/1392-1541.2009.35.18-22
10.1109/MNET.2019.1800305
10.1109/JSEN.2016.2639530
10.1029/2011RS004683
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020
DBID 97E
RIA
RIE
AAYXX
CITATION
7SP
8FD
FR3
KR7
L7M
DOI 10.1109/TVT.2020.2972578
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Electronics & Communications Abstracts
Technology Research Database
Engineering Research Database
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Civil Engineering Abstracts
Engineering Research Database
Technology Research Database
Advanced Technologies Database with Aerospace
Electronics & Communications Abstracts
DatabaseTitleList Civil Engineering Abstracts

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Xplore
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1939-9359
EndPage 9314
ExternalDocumentID 10_1109_TVT_2020_2972578
8989827
Genre orig-research
GrantInformation_xml – fundername: Ministry of Education in Taiwan
– fundername: Center for Electronics Technology Integration
  grantid: NTU-107L900503
– fundername: Ministry of Science and Technology, Taiwan
  funderid: 10.13039/501100004663
– fundername: National Taiwan University
  funderid: 10.13039/501100006477
GroupedDBID -~X
.DC
0R~
29I
3EH
4.4
5GY
5VS
6IK
97E
AAIKC
AAJGR
AAMNW
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ACNCT
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
HZ~
H~9
IAAWW
IBMZZ
ICLAB
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
MS~
O9-
OCL
P2P
RIA
RIE
RNS
RXW
TAE
TN5
VH1
AAYXX
CITATION
7SP
8FD
FR3
KR7
L7M
ID FETCH-LOGICAL-c291t-a3e9ee28822350622cfc5ea669fa7d86d9fea32ce450bf7d8caef041eb6761f53
IEDL.DBID RIE
ISSN 0018-9545
IngestDate Mon Jun 30 10:14:23 EDT 2025
Wed Oct 01 01:47:56 EDT 2025
Thu Apr 24 22:58:50 EDT 2025
Wed Aug 27 02:30:35 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 9
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c291t-a3e9ee28822350622cfc5ea669fa7d86d9fea32ce450bf7d8caef041eb6761f53
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-2417-9637
PQID 2451188920
PQPubID 85454
PageCount 11
ParticipantIDs proquest_journals_2451188920
crossref_citationtrail_10_1109_TVT_2020_2972578
crossref_primary_10_1109_TVT_2020_2972578
ieee_primary_8989827
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-09-01
PublicationDateYYYYMMDD 2020-09-01
PublicationDate_xml – month: 09
  year: 2020
  text: 2020-09-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on vehicular technology
PublicationTitleAbbrev TVT
PublicationYear 2020
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref35
ref13
ref34
ref12
ref37
ref15
ref36
ref14
ref31
ref30
ref33
ref11
ref32
ref10
ref2
ref1
ref39
ref17
ref38
ref16
ref19
ref18
melanie (ref44) 1998
(ref41) 0
ref24
ref23
ref26
ref25
ref20
ref42
ref22
ref21
ref28
ref27
ref29
zhang (ref43) 2019
ref8
ref7
ref9
ref4
ref3
ref6
ref5
ref40
References_xml – year: 1998
  ident: ref44
  publication-title: An Introduction to Genetic Algorithms
– ident: ref9
  doi: 10.1109/JSYST.2017.2766690
– ident: ref23
  doi: 10.1109/ACCESS.2018.2882379
– year: 0
  ident: ref41
  article-title: DWM1000 datasheet
– ident: ref11
  doi: 10.1109/LCOMM.2014.021214.132662
– ident: ref18
  doi: 10.1109/TVT.2019.2910307
– ident: ref8
  doi: 10.1109/JSEN.2015.2472978
– ident: ref21
  doi: 10.1109/LAWP.2014.2340472
– ident: ref30
  doi: 10.1109/MWC.2017.1600374
– ident: ref15
  doi: 10.1109/JPHOT.2018.2841831
– ident: ref17
  doi: 10.1109/TIM.2015.2506239
– ident: ref26
  doi: 10.1109/JSEN.2017.2762428
– ident: ref36
  doi: 10.1109/JSAC.2010.100907
– ident: ref34
  doi: 10.1109/TIM.2017.2681398
– ident: ref24
  doi: 10.1109/JSEE.2015.00130
– ident: ref38
  doi: 10.1109/ACCESS.2018.2817800
– ident: ref14
  doi: 10.1109/TVT.2015.2508501
– ident: ref31
  doi: 10.1109/ACCESS.2017.2743213
– ident: ref39
  doi: 10.1109/TENCON.2009.5395935
– ident: ref40
  doi: 10.1109/TAP.2006.879189
– ident: ref28
  doi: 10.1109/TVT.2015.2403868
– ident: ref19
  doi: 10.1109/TVT.2019.2906485
– ident: ref25
  doi: 10.1109/JIOT.2017.2782479
– ident: ref5
  doi: 10.1109/ACCESS.2018.2871960
– ident: ref16
  doi: 10.1109/TIM.2010.2047987
– ident: ref13
  doi: 10.1109/TIM.2014.2308995
– ident: ref4
  doi: 10.1109/ACCESS.2019.2899736
– ident: ref6
  doi: 10.1109/WIMOB.2007.4390815
– ident: ref35
  doi: 10.1109/MWSYM.2019.8701018
– ident: ref27
  doi: 10.1109/JIOT.2016.2558659
– ident: ref3
  doi: 10.1109/TVT.2016.2545523
– ident: ref37
  doi: 10.1109/TVT.2018.2883810
– ident: ref10
  doi: 10.1109/TVT.2015.2396640
– ident: ref42
  doi: 10.1109/LCOMM.2009.090093
– year: 2019
  ident: ref43
  article-title: Dive into deep learning
– ident: ref22
  doi: 10.1109/ACCESS.2019.2904201
– ident: ref32
  doi: 10.1109/TVT.2012.2207749
– ident: ref20
  doi: 10.1109/TWC.2017.2777457
– ident: ref7
  doi: 10.1109/INFOCOM.2014.6847959
– ident: ref12
  doi: 10.1109/LSENS.2019.2897924
– ident: ref2
  doi: 10.3846/1392-1541.2009.35.18-22
– ident: ref29
  doi: 10.1109/MNET.2019.1800305
– ident: ref33
  doi: 10.1109/JSEN.2016.2639530
– ident: ref1
  doi: 10.1029/2011RS004683
SSID ssj0014491
Score 2.5469398
Snippet The Ultra-wideband (UWB) system for indoor positioning and tracking with the characteristics of arbitrary target orientation, optimal anchor location, and...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 9304
SubjectTerms Adaptive systems
Anchors
Antenna measurements
Antennas
Artificial neural networks
Bandwidths
Circular polarization
circularly polarized
CNN
Delay effects
Electromagnetic radiation
Error analysis
genetic algorithm
Genetic algorithms
indoor tracking
Linear polarization
LSTM
Machine learning
Neural networks
NLOS
Optimization
Root-mean-square errors
Target tracking
Time domain analysis
Time lag
Tracking
Transient response
Ultra wideband antennas
Ultra-wideband
Ultrawideband
Wave propagation
wireless positioning
Title UWB System for Indoor Positioning and Tracking With Arbitrary Target Orientation, Optimal Anchor Location, and Adaptive NLOS Mitigation
URI https://ieeexplore.ieee.org/document/8989827
https://www.proquest.com/docview/2451188920
Volume 69
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Xplore
  customDbUrl:
  eissn: 1939-9359
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014491
  issn: 0018-9545
  databaseCode: RIE
  dateStart: 19670101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9swDCbanLZD160rmi0ddNhlQJ3Ysi1Lx7RY0A15DFiy9mbYEo0G2-wicy77A_vbo2Ql2AvFTjZsvQBSJCWSHwFe6xCFoE0UYBRhkNg7fKUy6y4k-7kilWscqM9sLq5Xyfvb9PYALva5MIjogs9waF-dL980emuvyka21KHk2SEcZlJ0uVp7j0GS-Op4EW1gMgt2LslQjZaflnQQ5OGQq8xy6G8qyNVU-UsQO-0yeQKz3bq6oJLPw21bDvX3PyAb_3fhx3DkzUw27vjiKRxg_Qwe_wI-eAI_VjeXrAMsZ2S5sne1aejxwUdxURtW1IaRMtP2Op3drNs7GrBcu0R9tnQh5GyxWfvspfqCLUj-fLXT1iRUN2zaaP_DDjQ2xb2VrWw-XXxks3UH7tHUz2E1ebu8ug58WYZAcxW1QRGjQuRkmvM4DQXnutIpFkTyqsiMFEZVWMRcY5KGZUVfdIFVmERYikxEVRqfQq9uajwDJg1KmZZGIY8TmYqSJG-hhIqVqeJYmz6MdpTKtccst6UzvuTu7BKqnGibW9rmnrZ9eLPvcd_hdTzQ9sSSat_OU6kPgx0z5H5Df8u5xXGTUvHwxb97vYRHduwu_GwAvXazxXOyV9rylWPUn3ud51M
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB6VcgAOFCgVW1rwgQtSs5s4dhIfS9VqC_tAIkt7ixJ7IlZAUm2zF_4Af5ux413xEuKUKPFLmvHM2DPzDcArHWKS0CYKMIowEPYOX6nUugvJfq5J5RoH6jOdJeOFeHstr3fgZJsLg4gu-AyH9tX58k2r1_aqbGRLHWY8vQN3pRBC9tlaW5-BEL4-XkRbmAyDjVMyVKP8Y05HQR4OuUotj_6ihFxVlT9EsdMvF3sw3aysDyv5PFx31VB_-w208X-X_ggeekOTnfac8Rh2sHkCD36CH9yH74urN6yHLGdku7LLxrT0eO_juKgNKxvDSJ1pe6HOrpbdJxqwWrpUfZa7IHI2Xy19_lJzwuYkgb7aaRsSqys2abX_YQc6NeWNla5sNpl_YNNlD-_RNk9hcXGen40DX5gh0FxFXVDGqBA5Gec8lmHCua61xJKIXpepyRKjaixjrlHIsKrpiy6xDkWEVZImUS3jA9ht2gafAcsMZpmsjEIei0wmFcneUiUqVqaOY20GMNpQqtAetdwWz_hSuNNLqAqibWFpW3jaDuD1tsdNj9jxj7b7llTbdp5KAzjaMEPht_RtwS2SW5YpHh7-vddLuDfOp5Nicjl79xzu23n6YLQj2O1Wazwm66WrXjim_QG7I-qg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=UWB+System+for+Indoor+Positioning+and+Tracking+With+Arbitrary+Target+Orientation%2C+Optimal+Anchor+Location%2C+and+Adaptive+NLOS+Mitigation&rft.jtitle=IEEE+transactions+on+vehicular+technology&rft.au=Chen%2C+Yu-Yao&rft.au=Huang%2C+Shih-Ping&rft.au=Wu%2C+Ting-Wei&rft.au=Tsai%2C+Wei-Ting&rft.date=2020-09-01&rft.pub=IEEE&rft.issn=0018-9545&rft.volume=69&rft.issue=9&rft.spage=9304&rft.epage=9314&rft_id=info:doi/10.1109%2FTVT.2020.2972578&rft.externalDocID=8989827
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0018-9545&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0018-9545&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0018-9545&client=summon