YOLOv5-Fog: A Multiobjective Visual Detection Algorithm for Fog Driving Scenes Based on Improved YOLOv5

With the rapid development of deep learning in recent years, the level of automatic driving perception has also increased substantially. However, automatic driving perception under adverse conditions, such as fog, remains a significant obstacle. The existing fog-oriented detection algorithms are una...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on instrumentation and measurement Vol. 71; pp. 1 - 12
Main Authors Wang, Hai, Xu, Yansong, He, Youguo, Cai, Yingfeng, Chen, Long, Li, Yicheng, Sotelo, Miguel Angel, Li, Zhixiong
Format Journal Article
LanguageEnglish
Published New York IEEE 2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN0018-9456
1557-9662
DOI10.1109/TIM.2022.3196954

Cover

Abstract With the rapid development of deep learning in recent years, the level of automatic driving perception has also increased substantially. However, automatic driving perception under adverse conditions, such as fog, remains a significant obstacle. The existing fog-oriented detection algorithms are unable to simultaneously address the detection accuracy and detection speed. Based on improved YOLOv5, this work provides a multiobject detection network for fog driving scenes. We construct a synthetic fog dataset by using the dataset of a virtual scene and the depth information of the image. Second, we present a detection network for driving in fog based on improved YOLOv5. The ResNeXt model, which has been modified by structural re-parameterization, serves as the model's backbone. We build a new feature enhancement module (FEM) in response to the lack of features in fog scene images and use the attention mechanism to help the detection network pay more attention to the more useful features in the fog scenes. The test results show that the proposed fog multitarget detection network outperforms the original YOLOv5 in terms of detection accuracy and speed. The accuracy of the Real-world Task-driven Testing Set (RTTS) public dataset is 77.8%, and the detection speed is 31 frames/s, which is 14 frames faster as compared with the original YOLOv5.
AbstractList With the rapid development of deep learning in recent years, the level of automatic driving perception has also increased substantially. However, automatic driving perception under adverse conditions, such as fog, remains a significant obstacle. The existing fog-oriented detection algorithms are unable to simultaneously address the detection accuracy and detection speed. Based on improved YOLOv5, this work provides a multiobject detection network for fog driving scenes. We construct a synthetic fog dataset by using the dataset of a virtual scene and the depth information of the image. Second, we present a detection network for driving in fog based on improved YOLOv5. The ResNeXt model, which has been modified by structural re-parameterization, serves as the model’s backbone. We build a new feature enhancement module (FEM) in response to the lack of features in fog scene images and use the attention mechanism to help the detection network pay more attention to the more useful features in the fog scenes. The test results show that the proposed fog multitarget detection network outperforms the original YOLOv5 in terms of detection accuracy and speed. The accuracy of the Real-world Task-driven Testing Set (RTTS) public dataset is 77.8%, and the detection speed is 31 frames/s, which is 14 frames faster as compared with the original YOLOv5.
Author Li, Yicheng
Xu, Yansong
He, Youguo
Chen, Long
Wang, Hai
Sotelo, Miguel Angel
Cai, Yingfeng
Li, Zhixiong
Author_xml – sequence: 1
  givenname: Hai
  orcidid: 0000-0002-9136-8091
  surname: Wang
  fullname: Wang, Hai
  email: wanghai1019@163.com
  organization: School of Automotive and Traffic Engineering, Jiangsu University, Zhenjiang, China
– sequence: 2
  givenname: Yansong
  orcidid: 0000-0002-9652-2780
  surname: Xu
  fullname: Xu, Yansong
  email: xu1157658889@163.com
  organization: School of Automotive and Traffic Engineering, Jiangsu University, Zhenjiang, China
– sequence: 3
  givenname: Youguo
  orcidid: 0000-0003-2648-0025
  surname: He
  fullname: He, Youguo
  email: hyg197715@163.com
  organization: Automotive Engineering Research Institute, Jiangsu University, Zhenjiang, China
– sequence: 4
  givenname: Yingfeng
  orcidid: 0000-0002-0633-9887
  surname: Cai
  fullname: Cai, Yingfeng
  email: caicaixiao0304@126.com
  organization: Automotive Engineering Research Institute, Jiangsu University, Zhenjiang, China
– sequence: 5
  givenname: Long
  orcidid: 0000-0002-2079-3867
  surname: Chen
  fullname: Chen, Long
  email: chenlong@ujs.edu.cn
  organization: Automotive Engineering Research Institute, Jiangsu University, Zhenjiang, China
– sequence: 6
  givenname: Yicheng
  orcidid: 0000-0003-2937-7162
  surname: Li
  fullname: Li, Yicheng
  email: liyucheng070@163.com
  organization: Automotive Engineering Research Institute, Jiangsu University, Zhenjiang, China
– sequence: 7
  givenname: Miguel Angel
  orcidid: 0000-0001-8809-2103
  surname: Sotelo
  fullname: Sotelo, Miguel Angel
  email: miguel.sotelo@uah.es
  organization: Department of Computer Engineering, University of Alcal, Alcal de Henares, Madrid, Spain
– sequence: 8
  givenname: Zhixiong
  orcidid: 0000-0003-4067-0669
  surname: Li
  fullname: Li, Zhixiong
  email: zhixiong.li@yonsei.ac.kr
  organization: Yonsei Frontier Laboratory, Yonsei University, Seoul, Republic of Korea
BookMark eNp9kM9PwjAYhhujiYDeTbw08Tzsj7VdvSGIkkA4iCaeljK-YclYsR0k_vd2gXjw4KlN-z7fm-_povPa1YDQDSV9Som-X0xmfUYY63OqpRbpGepQIVSipWTnqEMIzRKdCnmJuiFsCCFKpqqD1h_z6fwgkrFbP-ABnu2rxrrlBorGHgC_27A3FR5B0z64Gg-qtfO2-dzi0nkcITzy9mDrNX4toIaAH02AFY7JyXbn3SHejwVX6KI0VYDr09lDb-OnxfAlmc6fJ8PBNCmYpk1imFou00JwyAQpOdeKqZLprKSMrYiGQsn4LTMouDbSpKUAIQzjItXLuKHgPXR3nBvbv_YQmnzj9r6OlTlThFPOs7RNkWOq8C4ED2W-83Zr_HdOSd7qzKPOvNWZn3RGRP5BCtuYVkrjja3-A2-PoAWA3x6dCSqV4j-bUoI9
CODEN IEIMAO
CitedBy_id crossref_primary_10_1109_ACCESS_2025_3536496
crossref_primary_10_1117_1_JEI_33_2_023049
crossref_primary_10_1007_s10489_023_04616_2
crossref_primary_10_1007_s11063_024_11564_6
crossref_primary_10_1109_TIM_2024_3351240
crossref_primary_10_1109_ACCESS_2023_3275432
crossref_primary_10_1109_ACCESS_2023_3302909
crossref_primary_10_1109_TIM_2024_3379090
crossref_primary_10_1109_TIM_2023_3282677
crossref_primary_10_1038_s41598_024_80830_3
crossref_primary_10_1109_TIM_2023_3341122
crossref_primary_10_1109_TIM_2024_3497132
crossref_primary_10_1109_ACCESS_2023_3344666
crossref_primary_10_1109_TITS_2024_3394573
crossref_primary_10_1109_TITS_2022_3232153
crossref_primary_10_1109_TIM_2023_3318748
crossref_primary_10_56038_ejrnd_v4i4_595
crossref_primary_10_1109_ACCESS_2024_3481642
crossref_primary_10_1109_ACCESS_2024_3453298
crossref_primary_10_1109_TIM_2023_3271753
crossref_primary_10_1007_s00530_023_01243_2
crossref_primary_10_1109_TIM_2024_3425490
crossref_primary_10_1109_TIM_2022_3229717
crossref_primary_10_1109_TIM_2023_3318671
crossref_primary_10_1007_s11760_024_03785_y
crossref_primary_10_1109_JSTARS_2024_3417615
crossref_primary_10_1109_TIM_2024_3472860
crossref_primary_10_1117_1_JEI_33_5_053022
crossref_primary_10_1109_ACCESS_2023_3252021
crossref_primary_10_1109_TGRS_2024_3485682
crossref_primary_10_1109_JSEN_2025_3526670
Cites_doi 10.1609/aaai.v32i1.12317
10.1007/978-3-030-01264-9_45
10.1109/CVPR.2017.634
10.1609/aaai.v34i07.6865
10.1109/CVPR.2018.00913
10.1109/TNNLS.2018.2876865
10.1109/TIP.2018.2867951
10.1109/ITSC.2019.8917518
10.1109/CVPR.2018.00907
10.1109/ICIP42928.2021.9506039
10.1109/TIP.2020.2975986
10.1109/CVPR.2018.00352
10.1109/CVPR.2018.00813
10.1109/TIM.2022.3165251
10.1109/TIP.2016.2598681
10.1109/CVPR.2018.00484
10.1109/TITS.2021.3059674
10.1109/CVPR42600.2020.00223
10.1109/CVPR42600.2020.00271
10.1109/TPAMI.2010.168
10.1109/CVPR46437.2021.01352
10.1007/s41095-022-0271-y
10.1109/CVPR.2017.690
10.1109/CVPR.2017.106
10.1007/978-3-030-01234-2_1
10.1109/tits.2022.3170551
10.1109/CVPR.2017.667
10.1109/tits.2022.3177615
10.1109/TPAMI.2020.2977911
10.1109/TFUZZ.2021.3052092
10.1109/TIM.2021.3065438
10.1109/TITS.2021.3052908
10.1109/ICCV.2019.00741
10.1007/s42154-021-00154-0
10.1109/tnnls.2021.3080261
10.1063/1.3037551
10.1007/978-3-030-58548-8_28
10.1007/978-3-030-58568-6_45
10.1109/ICCV.2017.324
10.1109/MIM.2014.6825388
10.1007/s42154-021-00157-x
10.1109/CVPR.2016.182
10.1109/ICCVW54120.2021.00312
10.1109/CVPR.2018.00343
10.1016/j.isatra.2021.03.015
10.1109/ICCV.2017.511
10.1109/CVPR42600.2020.00185
10.1109/TPAMI.2015.2389824
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
DBID 97E
RIA
RIE
AAYXX
CITATION
7SP
7U5
8FD
L7M
DOI 10.1109/TIM.2022.3196954
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Electronics & Communications Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
Electronics & Communications Abstracts
DatabaseTitleList Solid State and Superconductivity Abstracts

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Xplore
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Physics
EISSN 1557-9662
EndPage 12
ExternalDocumentID 10_1109_TIM_2022_3196954
9851677
Genre orig-research
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: U20A20333; 52072160; 51875255
  funderid: 10.13039/501100001809
– fundername: Key Research and Development Program of Jiangsu Province
  grantid: BE2019010-2; BE2020083-3
– fundername: Jiangsu Province’s Six Talent Peaks
  grantid: TD-GDZB-022
  funderid: 10.13039/501100010014
– fundername: Narodowego Centrum Nauki Poland
  grantid: 2020/37/K/ST8/02748
– fundername: Zhenjiang Key Research and Development Program
  grantid: GY2020006
GroupedDBID -~X
0R~
29I
4.4
5GY
5VS
6IK
85S
8WZ
97E
A6W
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACIWK
ACNCT
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
F5P
HZ~
H~9
IAAWW
IBMZZ
ICLAB
IDIHD
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
RIA
RIE
RNS
TN5
TWZ
VH1
VJK
AAYXX
CITATION
7SP
7U5
8FD
L7M
ID FETCH-LOGICAL-c291t-a27bb4c53e850f339727f298f122d09ec76b4c68ec39a6a4f5e55a23549b01853
IEDL.DBID RIE
ISSN 0018-9456
IngestDate Mon Jun 30 10:10:36 EDT 2025
Wed Oct 01 03:46:39 EDT 2025
Thu Apr 24 23:01:22 EDT 2025
Wed Aug 27 02:23:00 EDT 2025
IsPeerReviewed true
IsScholarly true
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c291t-a27bb4c53e850f339727f298f122d09ec76b4c68ec39a6a4f5e55a23549b01853
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-9136-8091
0000-0002-0633-9887
0000-0003-4067-0669
0000-0003-2937-7162
0000-0002-9652-2780
0000-0001-8809-2103
0000-0002-2079-3867
0000-0003-2648-0025
PQID 2703133845
PQPubID 85462
PageCount 12
ParticipantIDs ieee_primary_9851677
crossref_primary_10_1109_TIM_2022_3196954
proquest_journals_2703133845
crossref_citationtrail_10_1109_TIM_2022_3196954
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20220000
2022-00-00
20220101
PublicationDateYYYYMMDD 2022-01-01
PublicationDate_xml – year: 2022
  text: 20220000
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on instrumentation and measurement
PublicationTitleAbbrev TIM
PublicationYear 2022
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref12
ref15
Gregor (ref43)
ref53
Zhang (ref27)
ref52
Redmon (ref13) 2018
ref55
ref10
ref17
ref16
ref19
ref18
Ren (ref11); 28
ref51
ref50
ref46
ref45
ref48
ref47
ref42
ref41
ref44
ref49
ref8
ref7
ref9
ref4
ref3
ref6
ref5
ref40
Bochkovskiy (ref14) 2020
ref35
ref34
ref37
ref36
ref31
ref30
ref33
ref32
ref2
ref1
ref39
ref38
ref24
ref23
ref26
Wrenninge (ref54) 2018
ref25
ref20
ref22
ref21
ref28
ref29
References_xml – ident: ref32
  doi: 10.1609/aaai.v32i1.12317
– ident: ref17
  doi: 10.1007/978-3-030-01264-9_45
– ident: ref51
  doi: 10.1109/CVPR.2017.634
– start-page: 1462
  volume-title: Proc. Int. Conf. Mach. Learn.
  ident: ref43
  article-title: Draw: A recurrent neural network for image generation
– ident: ref22
  doi: 10.1609/aaai.v34i07.6865
– ident: ref36
  doi: 10.1109/CVPR.2018.00913
– ident: ref9
  doi: 10.1109/TNNLS.2018.2876865
– ident: ref29
  doi: 10.1109/TIP.2018.2867951
– ident: ref53
  doi: 10.1109/ITSC.2019.8917518
– ident: ref49
  doi: 10.1109/CVPR.2018.00907
– ident: ref6
  doi: 10.1109/ICIP42928.2021.9506039
– ident: ref33
  doi: 10.1109/TIP.2020.2975986
– ident: ref26
  doi: 10.1109/CVPR.2018.00352
– ident: ref42
  doi: 10.1109/CVPR.2018.00813
– ident: ref28
  doi: 10.1109/TIM.2022.3165251
– start-page: 785
  volume-title: Proc. Asian Conf. Mach. Learn.
  ident: ref27
  article-title: Domain adaptive YOLO for one-stage cross-domain detection
– ident: ref30
  doi: 10.1109/TIP.2016.2598681
– ident: ref44
  doi: 10.1109/CVPR.2018.00484
– ident: ref10
  doi: 10.1109/TITS.2021.3059674
– ident: ref21
  doi: 10.1109/CVPR42600.2020.00223
– ident: ref55
  doi: 10.1109/CVPR42600.2020.00271
– ident: ref19
  doi: 10.1109/TPAMI.2010.168
– year: 2020
  ident: ref14
  article-title: YOLOv4: Optimal speed and accuracy of object detection
  publication-title: arXiv:2004.10934
– ident: ref50
  doi: 10.1109/CVPR46437.2021.01352
– ident: ref37
  doi: 10.1007/s41095-022-0271-y
– ident: ref12
  doi: 10.1109/CVPR.2017.690
– ident: ref35
  doi: 10.1109/CVPR.2017.106
– ident: ref45
  doi: 10.1007/978-3-030-01234-2_1
– ident: ref2
  doi: 10.1109/tits.2022.3170551
– ident: ref46
  doi: 10.1109/CVPR.2017.667
– ident: ref1
  doi: 10.1109/tits.2022.3177615
– year: 2018
  ident: ref13
  article-title: YOLOv3: An incremental improvement
  publication-title: arXiv:1804.02767
– ident: ref25
  doi: 10.1109/TPAMI.2020.2977911
– ident: ref39
  doi: 10.1109/TFUZZ.2021.3052092
– ident: ref7
  doi: 10.1109/TIM.2021.3065438
– year: 2018
  ident: ref54
  article-title: Synscapes: A photorealistic synthetic dataset for street scene parsing
  publication-title: arXiv:1810.08705
– ident: ref16
  doi: 10.1109/TITS.2021.3052908
– ident: ref20
  doi: 10.1109/ICCV.2019.00741
– ident: ref8
  doi: 10.1007/s42154-021-00154-0
– volume: 28
  start-page: 1
  volume-title: Proc. Adv. Neural Inf. Process. Syst.
  ident: ref11
  article-title: Faster R-CNN: Towards real-time object detection with region proposal networks
– ident: ref5
  doi: 10.1109/tnnls.2021.3080261
– ident: ref47
  doi: 10.1063/1.3037551
– ident: ref18
  doi: 10.1007/978-3-030-58548-8_28
– ident: ref24
  doi: 10.1007/978-3-030-58568-6_45
– ident: ref48
  doi: 10.1109/ICCV.2017.324
– ident: ref3
  doi: 10.1109/MIM.2014.6825388
– ident: ref38
  doi: 10.1007/s42154-021-00157-x
– ident: ref52
  doi: 10.1109/CVPR.2016.182
– ident: ref15
  doi: 10.1109/ICCVW54120.2021.00312
– ident: ref31
  doi: 10.1109/CVPR.2018.00343
– ident: ref41
  doi: 10.1016/j.isatra.2021.03.015
– ident: ref23
  doi: 10.1109/ICCV.2017.511
– ident: ref40
  doi: 10.1109/tits.2022.3170551
– ident: ref4
  doi: 10.1109/CVPR42600.2020.00185
– ident: ref34
  doi: 10.1109/TPAMI.2015.2389824
SSID ssj0007647
Score 2.5662396
Snippet With the rapid development of deep learning in recent years, the level of automatic driving perception has also increased substantially. However, automatic...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1
SubjectTerms 2-D object detection
Accuracy
Algorithms
Atmospheric modeling
autonomous driving
Autonomous vehicles
complex traffic conditions
Datasets
Detection algorithms
Feature extraction
Fog
Machine learning
Meteorology
Object detection
Parameterization
Perception
Training
Virtual reality
Title YOLOv5-Fog: A Multiobjective Visual Detection Algorithm for Fog Driving Scenes Based on Improved YOLOv5
URI https://ieeexplore.ieee.org/document/9851677
https://www.proquest.com/docview/2703133845
Volume 71
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Xplore
  customDbUrl:
  eissn: 1557-9662
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0007647
  issn: 0018-9456
  databaseCode: RIE
  dateStart: 19630101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LTxsxEB4BUiU4QMtDBGjlAxckNtn12t64t7Q0AgTlwENwWq0dO00JWZRsOPTXd2xvIloQ4mZpx15LMx5_33g8BthXrLAp8v_IKssiJoWOiiJREYJn5eArMgCf5ftTHF-z01t-uwCH87swxhiffGaarunP8nulnrpQWUsiPBBZtgiLWVuEu1pzr5sJFupjJriAERXMjiRj2bo6OUciSGnTmZvk7J8tyL-p8sIR-92luwbns3mFpJL75rRSTf3nv5KN7534R1itYSbpBLv4BAtmtA4rz4oPrsMHn_ypJxvQv7s4u3jiUbfsfyUd4u_klup3cIXkZjCZ4lBHpvJZWyPSGfbL8aD69UAQ8BLsRI7GAxeXIJfaeU7yDXfGHkHJELHAdvjBJlx3f1x9P47qBxgiTWVSRQXNlGKap6bNY5sidKGZpbJtE0p7sTQ6E_hZtI1OZSEKZrnhvKApck4VOyCwBUujcmS2gRiLOIIaYTnKIUdUXCVacIuGrJCE8ga0ZjrJdV2d3D2SMcw9S4lljlrMnRbzWosNOJj3eAyVOd6Q3XBKmcvV-mjA3kzteb10Jzl1Ff2RuDO-83qvXVh2Y4c4zB4sVeOp-YzIpFJfvEn-Be513RA
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LTxsxEB5Rqqrl0AdQEUpbH3qp1E12vbY35pYWotAmcGio6Gm1duwQHlmUbDjw6xnbm6gPVPVmacdrSzMef994PAb4oFhhU-T_kVWWRUwKHRVFoiIEz8rBV2QAPsv3WPRO2dczfrYGn1Z3YYwxPvnMNF3Tn-WPSr1wobKWRHggsuwRPOaMMR5ua638biZYqJCZ4BJGXLA8lIxla3g0QCpIadMZnOTst03Iv6rylyv2-0v3BQyWMwtpJZfNRaWa-u6Poo3_O_WX8LwGmqQTLOMVrJnpJmz8Un5wE5749E8934Lxz5P-yS2PuuV4n3SIv5VbqovgDMmPyXyBvzowlc_bmpLO1bicTarza4KQl2AncjCbuMgE-a6d7ySfcW8cEZQMMQtshwG24bR7OPzSi-onGCJNZVJFBc2UYpqnps1jmyJ4oZmlsm0TSkexNDoT-Fm0jU5lIQpmueG8oCmyThU7KPAa1qfl1OwAMRaRBDXCcpRDlqi4SrTgFk1ZIQ3lDWgtdZLruj65eybjKvc8JZY5ajF3WsxrLTbg46rHTajN8Q_ZLaeUlVytjwbsLdWe14t3nlNX0x-pO-O7D_d6D097w0E_7x8df3sDz9w4ISqzB-vVbGHeIk6p1DtvnvesW-Bd
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=YOLOv5-Fog%3A+A+Multiobjective+Visual+Detection+Algorithm+for+Fog+Driving+Scenes+Based+on+Improved+YOLOv5&rft.jtitle=IEEE+transactions+on+instrumentation+and+measurement&rft.au=Wang%2C+Hai&rft.au=Xu%2C+Yansong&rft.au=He%2C+Youguo&rft.au=Cai%2C+Yingfeng&rft.date=2022&rft.issn=0018-9456&rft.eissn=1557-9662&rft.volume=71&rft.spage=1&rft.epage=12&rft_id=info:doi/10.1109%2FTIM.2022.3196954&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TIM_2022_3196954
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0018-9456&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0018-9456&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0018-9456&client=summon