A Low Complexity, High Throughput DoA Estimation Chip Design for Adaptive Beamforming

Direction of Arrival (DoA) estimation is essential to adaptive beamforming widely used in many radar and wireless communication systems. Although many estimation algorithms have been investigated, most of them focus on the performance enhancement aspect but overlook the computing complexity or the h...

Full description

Saved in:
Bibliographic Details
Published inElectronics (Basel) Vol. 9; no. 4; p. 641
Main Authors Chen, Kuan-Ting, Ma, Wei-Hsuan, Hwang, Yin-Tsung, Chang, Kuan-Ying
Format Journal Article
LanguageEnglish
Published 01.04.2020
Online AccessGet full text
ISSN2079-9292
2079-9292
DOI10.3390/electronics9040641

Cover

Abstract Direction of Arrival (DoA) estimation is essential to adaptive beamforming widely used in many radar and wireless communication systems. Although many estimation algorithms have been investigated, most of them focus on the performance enhancement aspect but overlook the computing complexity or the hardware implementation issues. In this paper, a low-complexity yet effective DoA estimation algorithm and the corresponding hardware accelerator chip design are presented. The proposed algorithm features a combination of signal sub-space projection and parallel matching pursuit techniques, i.e., applying signal projection first before performing matching pursuit from a codebook. This measure helps minimize the interference from noise sub-space and makes the matching process free of extra orthogonalization computations. The computing complexity can thus be reduced significantly. In addition, estimations of all signal sources can be performed in parallel without going through a successive update process. To facilitate an efficient hardware implementation, the computing scheme of the estimation algorithm is also optimized. The most critical part of the algorithm, i.e., calculating the projection matrix, is largely simplified and neatly accomplished by using QR decomposition. In addition, the proposed scheme supports parallel matches of all signal sources from a beamforming codebook to improve the processing throughput. The algorithm complexity analysis shows that the proposed scheme outperforms other well-known estimation algorithms significantly under various system configurations. The performance simulation results further reveal that, subject to a beamforming codebook with a 5° angular resolution, the Root Mean Square (RMS) error of angle estimations is only 0.76° when Signal to Noise Ratio (SNR) = 20 dB. The estimation accuracy outpaces other matching pursuit based approaches and is close to that of the classic Estimation of Signal Parameters Via Rotational Invariance Techniques (ESPRIT) scheme but requires only one fifth of its computing complexity. In developing the hardware accelerator design, pipelined Coordinate Rotation Digital Computer (CORDIC) processors consisting of simple adders and shifters are employed to implement the basic trigonometric operations needed in QR decomposition. A systolic array architecture is developed as the computing kernel for QR decomposition. Other computing modules are also realized using various linear systolic arrays and chained together seamlessly to maximize the computing throughput. A Taiwan Semiconductor Manufacturing Company (TSMC) 40 nm CMOS process was chosen as the implementation technology. The gate count of the chip design is 454.4k, featuring a core size of 0.76 mm 2 , and can operate up to 333 MHz. This suggests that one DoA estimation, with up to three signal sources, can be performed every 2.38 μs.
AbstractList Direction of Arrival (DoA) estimation is essential to adaptive beamforming widely used in many radar and wireless communication systems. Although many estimation algorithms have been investigated, most of them focus on the performance enhancement aspect but overlook the computing complexity or the hardware implementation issues. In this paper, a low-complexity yet effective DoA estimation algorithm and the corresponding hardware accelerator chip design are presented. The proposed algorithm features a combination of signal sub-space projection and parallel matching pursuit techniques, i.e., applying signal projection first before performing matching pursuit from a codebook. This measure helps minimize the interference from noise sub-space and makes the matching process free of extra orthogonalization computations. The computing complexity can thus be reduced significantly. In addition, estimations of all signal sources can be performed in parallel without going through a successive update process. To facilitate an efficient hardware implementation, the computing scheme of the estimation algorithm is also optimized. The most critical part of the algorithm, i.e., calculating the projection matrix, is largely simplified and neatly accomplished by using QR decomposition. In addition, the proposed scheme supports parallel matches of all signal sources from a beamforming codebook to improve the processing throughput. The algorithm complexity analysis shows that the proposed scheme outperforms other well-known estimation algorithms significantly under various system configurations. The performance simulation results further reveal that, subject to a beamforming codebook with a 5° angular resolution, the Root Mean Square (RMS) error of angle estimations is only 0.76° when Signal to Noise Ratio (SNR) = 20 dB. The estimation accuracy outpaces other matching pursuit based approaches and is close to that of the classic Estimation of Signal Parameters Via Rotational Invariance Techniques (ESPRIT) scheme but requires only one fifth of its computing complexity. In developing the hardware accelerator design, pipelined Coordinate Rotation Digital Computer (CORDIC) processors consisting of simple adders and shifters are employed to implement the basic trigonometric operations needed in QR decomposition. A systolic array architecture is developed as the computing kernel for QR decomposition. Other computing modules are also realized using various linear systolic arrays and chained together seamlessly to maximize the computing throughput. A Taiwan Semiconductor Manufacturing Company (TSMC) 40 nm CMOS process was chosen as the implementation technology. The gate count of the chip design is 454.4k, featuring a core size of 0.76 mm 2 , and can operate up to 333 MHz. This suggests that one DoA estimation, with up to three signal sources, can be performed every 2.38 μs.
Author Chen, Kuan-Ting
Hwang, Yin-Tsung
Chang, Kuan-Ying
Ma, Wei-Hsuan
Author_xml – sequence: 1
  givenname: Kuan-Ting
  surname: Chen
  fullname: Chen, Kuan-Ting
– sequence: 2
  givenname: Wei-Hsuan
  surname: Ma
  fullname: Ma, Wei-Hsuan
– sequence: 3
  givenname: Yin-Tsung
  orcidid: 0000-0001-9233-0477
  surname: Hwang
  fullname: Hwang, Yin-Tsung
– sequence: 4
  givenname: Kuan-Ying
  surname: Chang
  fullname: Chang, Kuan-Ying
BookMark eNqNkNFKwzAUhoNMcM69gFd5AKtJk63JZe2mEwbebNclzdI20iYlSZ19e6vzQhTEc3MO5_Adfr5LMDHWKACuMbolhKM71SgZnDVaeo4oWlJ8BqYxSnjEYx5Pvs0XYO79CxqLY8IImoJ9Crf2CDPbdo1602G4gRtd1XBXO9tXddcHuLIpXPugWxG0NTCrdQdXyuvKwNI6mB5EF_SrgvdKtOOi1aa6AuelaLyaf_UZ2D-sd9km2j4_PmXpNpIxxyESqKCEUYIKVixjOgYqKC2kVKWkHCUJxgumElSQhcKY8mS8c6xKjEvJGJMHMgPk9Lc3nRiOomnyzo1B3ZBjlH_IyX_LGan4RElnvXeq_B_EfkBSh08jwQnd_IW-A10jgQE
CitedBy_id crossref_primary_10_3390_electronics10060738
crossref_primary_10_3390_electronics11010121
Cites_doi 10.1109/78.650250
10.1049/iet-cds.2010.0143
10.1155/WCN.2005.197
10.1109/29.45540
10.1109/TVT.2007.909251
10.1109/VLSID.2007.177
10.1109/TCSI.2008.925380
10.3390/s130911167
10.1109/LAWP.2015.2473664
10.1109/ACCESS.2018.2820122
10.1109/ICASSP.1991.150519
10.1109/78.258082
10.1109/TSP.2013.2243442
10.1016/0165-1684(94)00122-G
10.1109/29.32276
10.1109/TIT.2007.909108
10.1109/LCOMM.2019.2952595
10.1109/LCOMM.2019.2953851
10.1007/978-3-662-39778-7
10.1109/78.622959
10.1109/ACCESS.2019.2926335
10.1109/29.17564
10.1109/APCAP.2018.8538168
10.1109/EuCAP.2014.6902343
10.1109/iWEM.2018.8536605
10.1049/el.2011.3657
10.1109/78.839978
ContentType Journal Article
DBID AAYXX
CITATION
ADTOC
UNPAY
DOI 10.3390/electronics9040641
DatabaseName CrossRef
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
DatabaseTitleList CrossRef
Database_xml – sequence: 1
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2079-9292
ExternalDocumentID 10.3390/electronics9040641
10_3390_electronics9040641
GroupedDBID 5VS
8FE
8FG
AAYXX
ADMLS
AFKRA
ALMA_UNASSIGNED_HOLDINGS
ARAPS
BENPR
BGLVJ
CCPQU
CITATION
HCIFZ
IAO
KQ8
MODMG
M~E
OK1
P62
PHGZM
PHGZT
PIMPY
PQGLB
PROAC
ADTOC
IPNFZ
ITC
RIG
UNPAY
ID FETCH-LOGICAL-c291t-a0b438430b8b624830b44bccefc490771158e70b35e1149730b91ef11fc888cd3
IEDL.DBID UNPAY
ISSN 2079-9292
IngestDate Sun Oct 26 04:09:34 EDT 2025
Thu Oct 16 04:31:14 EDT 2025
Thu Apr 24 23:01:28 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
License cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c291t-a0b438430b8b624830b44bccefc490771158e70b35e1149730b91ef11fc888cd3
ORCID 0000-0001-9233-0477
OpenAccessLink https://proxy.k.utb.cz/login?url=https://www.mdpi.com/2079-9292/9/4/641/pdf?version=1587355710
ParticipantIDs unpaywall_primary_10_3390_electronics9040641
crossref_primary_10_3390_electronics9040641
crossref_citationtrail_10_3390_electronics9040641
PublicationCentury 2000
PublicationDate 2020-04-01
PublicationDateYYYYMMDD 2020-04-01
PublicationDate_xml – month: 04
  year: 2020
  text: 2020-04-01
  day: 01
PublicationDecade 2020
PublicationTitle Electronics (Basel)
PublicationYear 2020
References Sylvie (ref_8) 1995; 42
Mallat (ref_12) 1994; 41
Unlersen (ref_28) 2018; 33
Hwang (ref_25) 2011; 5
Tropp (ref_15) 2007; 53
Zhang (ref_11) 2020; 24
Wang (ref_18) 2013; 13
ref_17
Zheng (ref_9) 2012; 48
ref_16
Rao (ref_4) 1989; 37
Karabulut (ref_14) 2005; 2005
Hussain (ref_31) 2019; 7
Yan (ref_2) 2013; 61
Marius (ref_5) 2000; 48
ref_24
Hussain (ref_30) 2018; 6
McClure (ref_13) 1997; 45
Chung (ref_22) 1997; 45
ref_21
ref_20
Richard (ref_7) 1989; 37
Petre (ref_1) 1989; 37
Zaharov (ref_27) 2008; 55
ref_3
Lin (ref_10) 2016; 15
ref_29
Lin (ref_23) 2008; 57
ref_26
ref_6
Aghababaiyan (ref_19) 2020; 24
References_xml – volume: 45
  start-page: 2912
  year: 1997
  ident: ref_13
  article-title: Matching pursuits with a wave-based dictionary
  publication-title: IEEE Trans. Signal Process.
  doi: 10.1109/78.650250
– volume: 5
  start-page: 424
  year: 2011
  ident: ref_25
  article-title: Design and Implementation of a High Throughput Fully-Parallel Complex-Valued QR Factorization Chip
  publication-title: IET Circ. Devices Syst.
  doi: 10.1049/iet-cds.2010.0143
– ident: ref_3
– ident: ref_26
– volume: 2005
  start-page: 618605
  year: 2005
  ident: ref_14
  article-title: Estimation of directions of arrival by matching pursuit (EDAMP)
  publication-title: Eurasip J. Wirel. Commun. Netw.
  doi: 10.1155/WCN.2005.197
– volume: 33
  start-page: 450
  year: 2018
  ident: ref_28
  article-title: FPGA based fast Bartlett, “DoA estimator for ULA antenna using parallel computing”
  publication-title: Appl. Comput. Electromagn. Soc. J.
– volume: 37
  start-page: 1939
  year: 1989
  ident: ref_4
  article-title: Performance analysis of root-MUSIC
  publication-title: IEEE Trans. Acoust. Speech Signal Process.
  doi: 10.1109/29.45540
– volume: 57
  start-page: 1387
  year: 2008
  ident: ref_23
  article-title: Analysis and Architecture Design of a Downlink M-Modification MC-CDMA System Using the Tomlinson–Harashima Precoding Technique
  publication-title: IEEE Trans. Veh. Technol.
  doi: 10.1109/TVT.2007.909251
– ident: ref_24
  doi: 10.1109/VLSID.2007.177
– volume: 55
  start-page: 3317
  year: 2008
  ident: ref_27
  article-title: SMI-MVDR beamformer implementations for large antenna array and small sample size
  publication-title: IEEE Trans. Circ. Syst. I Reg. Pap.
  doi: 10.1109/TCSI.2008.925380
– volume: 13
  start-page: 11167
  year: 2013
  ident: ref_18
  article-title: High Resolution Direction of Arrival (DOA) Estimation Based on Improved Orthogonal Matching Pursuit (OMP) Algorithm by Iterative Local Searching
  publication-title: Sensors
  doi: 10.3390/s130911167
– volume: 15
  start-page: 770
  year: 2016
  ident: ref_10
  article-title: Time-Frequency Multi-Invariance ESPRIT for DOA Estimation
  publication-title: IEEE Antennas Wirel. Propag. Lett.
  doi: 10.1109/LAWP.2015.2473664
– volume: 6
  start-page: 17666
  year: 2018
  ident: ref_30
  article-title: FPGA Hardware Implementation of DOA Estimation Algorithm Employing LU Decomposition
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2018.2820122
– ident: ref_6
– ident: ref_21
  doi: 10.1109/ICASSP.1991.150519
– volume: 41
  start-page: 3397
  year: 1994
  ident: ref_12
  article-title: Matching pursuit with time-frequency dictionaries
  publication-title: IEEE Trans. Signal Process.
  doi: 10.1109/78.258082
– volume: 61
  start-page: 1915
  year: 2013
  ident: ref_2
  article-title: Low-complexity DOA estimation based on compressed MUSIC and its performance analysis
  publication-title: IEEE Trans. Signal Process.
  doi: 10.1109/TSP.2013.2243442
– volume: 42
  start-page: 121
  year: 1995
  ident: ref_8
  article-title: The propagator method for source bearing estimation
  publication-title: Signal Process.
  doi: 10.1016/0165-1684(94)00122-G
– volume: 37
  start-page: 984
  year: 1989
  ident: ref_7
  article-title: ESPRIT-estimation of signal parameters via rotational invariance techniques
  publication-title: IEEE Trans. Acoust. Speech Signal Process.
  doi: 10.1109/29.32276
– volume: 53
  start-page: 4655
  year: 2007
  ident: ref_15
  article-title: Signal recovery from random measurements via orthogonal matching pursuit
  publication-title: IEEE Trans. Inf. Theory
  doi: 10.1109/TIT.2007.909108
– volume: 24
  start-page: 354
  year: 2020
  ident: ref_19
  article-title: High-Precision OMP-Based Direction of Arrival Estimation Scheme for Hybrid Non-Uniform Array
  publication-title: IEEE Commun. Lett.
  doi: 10.1109/LCOMM.2019.2952595
– volume: 24
  start-page: 339
  year: 2020
  ident: ref_11
  article-title: An Improved ESPRIT-Like Algorithm for Coherent Signals DOA Estimation
  publication-title: IEEE Commun. Lett.
  doi: 10.1109/LCOMM.2019.2953851
– ident: ref_20
  doi: 10.1007/978-3-662-39778-7
– volume: 45
  start-page: 2374
  year: 1997
  ident: ref_22
  article-title: The complex Householder transform
  publication-title: IEEE Trans. Signal Process.
  doi: 10.1109/78.622959
– volume: 7
  start-page: 88845
  year: 2019
  ident: ref_31
  article-title: FPGA-Based Hardware Implementation of Computationally Efficient Multi-Source DOA Estimation Algorithms
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2926335
– volume: 37
  start-page: 720
  year: 1989
  ident: ref_1
  article-title: MUSIC, maximum likelihood, and Cramer-Rao bound
  publication-title: IEEE Trans. Acoust. Speech Signal Process.
  doi: 10.1109/29.17564
– ident: ref_16
  doi: 10.1109/APCAP.2018.8538168
– ident: ref_29
  doi: 10.1109/EuCAP.2014.6902343
– ident: ref_17
  doi: 10.1109/iWEM.2018.8536605
– volume: 48
  start-page: 179
  year: 2012
  ident: ref_9
  article-title: Unitary ESPRIT algorithm for bistatic MIMO radar
  publication-title: Electron. Lett.
  doi: 10.1049/el.2011.3657
– volume: 48
  start-page: 1306
  year: 2000
  ident: ref_5
  article-title: Unitary root-MUSIC with a real-valued eigen decomposition: A theoretical and experimental performance study
  publication-title: IEEE Trans. Signal Process.
  doi: 10.1109/78.839978
SSID ssj0000913830
Score 2.1839674
Snippet Direction of Arrival (DoA) estimation is essential to adaptive beamforming widely used in many radar and wireless communication systems. Although many...
SourceID unpaywall
crossref
SourceType Open Access Repository
Enrichment Source
Index Database
StartPage 641
Title A Low Complexity, High Throughput DoA Estimation Chip Design for Adaptive Beamforming
URI https://www.mdpi.com/2079-9292/9/4/641/pdf?version=1587355710
UnpaywallVersion publishedVersion
Volume 9
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 2079-9292
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000913830
  issn: 2079-9292
  databaseCode: KQ8
  dateStart: 20120101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVEBS
  databaseName: Inspec with Full Text
  customDbUrl:
  eissn: 2079-9292
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913830
  issn: 2079-9292
  databaseCode: ADMLS
  dateStart: 20170101
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text
  providerName: EBSCOhost
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2079-9292
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000913830
  issn: 2079-9292
  databaseCode: M~E
  dateStart: 20120101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: ProQuest Central (subscription)
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 2079-9292
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000913830
  issn: 2079-9292
  databaseCode: BENPR
  dateStart: 20120301
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Technology Collection
  customDbUrl:
  eissn: 2079-9292
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000913830
  issn: 2079-9292
  databaseCode: 8FG
  dateStart: 20120301
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/technologycollection1
  providerName: ProQuest
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8JAEN4oHNSDbyM-yB68SWm33T72ZCpCiFHiARI8ke5uG4lYGikSPPjbnaUFUROj3nqY3TSZ6cz3Nd_MIHQmpOdFFD4kSqWlUWZIjTOTaBJKp0kiImmmtmg5zQ697trdXJszymWVQMX7syRtGi7ToH6bOtOp7lCiJzK6eMl_JBHbc6FauqrBqujYAMULqNhp3fn3aqHc_GjWKGMBtdc_FsuMGMSuQ8mnYrQ2jpNgOgkGg6UK09jK1qiOZoMJlbDksTpOeVW8fhnb-O-X30abOfbEfhYsO2gljHfRxtJEwj3U8fHNcIJVllCTMtNpBSslCG5n63yScYqvhj6uQ2LIeh5x7aGf4KuZDgQDAMa-DBKVQvFlGDwpRAz37qNOo96uNbV884ImTEZSLTA4-I9aBve4Y1IPHijlQoSRAHe6LsBIL3QNbtkh8CkGWYIzEkaERAIYtZDWASrEwzg8RJgx23UtKQ1pAxmxBdxlcZsC7rA4jwxeQmTugp7Ix5Kr7RiDHtAT5bbed7eV0PniTJIN5fjRurLw7C_Mj_5mfozWTUXBZ2KeE1RIn8fhKeCUlJfR6u1bvZzH5Dvm3-Xr
linkProvider Unpaywall
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF6kPagH32J9sQdvNk022Tz2JLEPRKR4aKGeSnY3wWJNg00s9dc7m6S1Koh6y2F2Ccxk5vvCNzMIXQjpeRGFD4lSaWmUGVLjzCSahNJpkohIWqgtus5Nn94O7EGpzZmWskqg4qM8SZuGyzSo36bOdKo7lOiJjK5eyx9JxPZcqJauarCqOjZA8Qqq9rv3_oNaKLc4WjTKWEDt9Y_FMlMGsetQ8qkYrWdxEsxnwXi8UmE628Ua1Wk-mFAJS54aWcob4u3L2MZ_v_wO2iqxJ_aLYNlFa2G8hzZXJhLuo76P7yYzrLKEmpSZzutYKUFwr1jnk2Qpbk183IbEUPQ84ubjKMGtXAeCAQBjXwaJSqH4OgyeFSKGew9Qv9PuNW-0cvOCJkxGUi0wOPiPWgb3uGNSDx4o5UKEkQB3ui7ASC90DW7ZIfApBlmCMxJGhEQCGLWQ1iGqxJM4PEKYMdt1LSkNaQMZsQXcZXGbAu6wOI8MXkNk4YKhKMeSq-0Y4yHQE-W24Xe31dDl8kxSDOX40bq-9OwvzI__Zn6CNkxFwXMxzymqpC9ZeAY4JeXnZTS-A4fo5Lo
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Low+Complexity%2C+High+Throughput+DoA+Estimation+Chip+Design+for+Adaptive+Beamforming&rft.jtitle=Electronics+%28Basel%29&rft.au=Chen%2C+Kuan-Ting&rft.au=Ma%2C+Wei-Hsuan&rft.au=Hwang%2C+Yin-Tsung&rft.au=Chang%2C+Kuan-Ying&rft.date=2020-04-01&rft.issn=2079-9292&rft.eissn=2079-9292&rft.volume=9&rft.issue=4&rft.spage=641&rft_id=info:doi/10.3390%2Felectronics9040641&rft.externalDBID=n%2Fa&rft.externalDocID=10_3390_electronics9040641
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2079-9292&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2079-9292&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2079-9292&client=summon