Accelerated design of high-strength refractory multi-principal element alloys from first-principles calculations
To rapidly develop high-strength refractory multi-principal element alloys (RMPEAs), we systematically calculate elastic moduli and mechanical properties for a series of body-centered-cubic (bcc) RMPEAs using the first-principles method. By analyzing equiatomic V33Nb33Mo34 and V25Nb25Mo25X25 (X = Al...
Saved in:
Published in | Journal of materials research and technology Vol. 36; pp. 10520 - 10534 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
01.05.2025
Elsevier |
Subjects | |
Online Access | Get full text |
ISSN | 2238-7854 |
DOI | 10.1016/j.jmrt.2025.05.259 |
Cover
Abstract | To rapidly develop high-strength refractory multi-principal element alloys (RMPEAs), we systematically calculate elastic moduli and mechanical properties for a series of body-centered-cubic (bcc) RMPEAs using the first-principles method. By analyzing equiatomic V33Nb33Mo34 and V25Nb25Mo25X25 (X = Al, Ti, Zr, Hf, V, Nb, Ta, Cr, Mo, and W) bcc RMPEAs, we discover that the product of shear modulus (G) and electronegativity difference (δχ), i.e., G × δχ, accurately predicts yield strength (σy). This criterion outperforms other empirical parameters such as valence electron concentration (VEC), G, or δχ alone. Specifically, higher G × δχ correlates with higher σy. The σy of V25Nb25Mo25Cr25 exceeds that of other equiatomic alloys, agreeing with existing experiments, thereby validating the reliability of our approach. Following the G × δχ criterion, we further design non-equiatomic V50-xNb50-xMoxCrx bcc RMPEAs based on V25Nb25Mo25Cr25. We identify V15Nb15Mo35Cr35 as a target RMPEA, which exhibits the highest σy and good high-temperature softening resistance among all considered bcc RMPEAs. The universality of the G × δχ criterion is confirmed not only by current calculations but also by available experiments, as evidenced by the maximum Pearson correlation coefficient between σy and G × δχ. This work provides an effective paradigm for discovering high-strength bcc refractory alloys by strategically optimizing the G × δχ metric.
TheG×δχcriterion accelerates the discovery of high-strength bcc RMPEAs. By systematically investigating equiatomic V33Nb33Mo34 and V25Nb25Mo25X25 bcc RMPEAs, it is revealed that the product of shear modulus (G) and electronegativity difference (δχ), i.e., G × δχ, serves as an effective predictor of yield strength (σy). Specifically, higher G × δχ correlates with higher σy. The σy of V25Nb25Mo25Cr25 surpasses that of other equiatomic alloys, agreeing with existing experiments. Guided by the G × δχ criterion, we identify V15Nb15Mo35Cr35 as a target RMPEA, which exhibits the highest σy among all considered bcc RMPEAs. Additionally, the observed decrease in σy may partially arise from the reduction in ΔσNb and ΔσCr. Importantly, the universality of the proposed G × δχ criterion is validated by both our calculations and existing experiments ranging from ternary to senary alloys, including Ti–Zr-based, Ti–Zr-Hf-based, V–Nb-based, and V–Nb–Mo-based systems. [Display omitted] |
---|---|
AbstractList | To rapidly develop high-strength refractory multi-principal element alloys (RMPEAs), we systematically calculate elastic moduli and mechanical properties for a series of body-centered-cubic (bcc) RMPEAs using the first-principles method. By analyzing equiatomic V33Nb33Mo34 and V25Nb25Mo25X25 (X = Al, Ti, Zr, Hf, V, Nb, Ta, Cr, Mo, and W) bcc RMPEAs, we discover that the product of shear modulus (G) and electronegativity difference (δχ), i.e., G × δχ, accurately predicts yield strength (σy). This criterion outperforms other empirical parameters such as valence electron concentration (VEC), G, or δχ alone. Specifically, higher G × δχ correlates with higher σy. The σy of V25Nb25Mo25Cr25 exceeds that of other equiatomic alloys, agreeing with existing experiments, thereby validating the reliability of our approach. Following the G × δχ criterion, we further design non-equiatomic V50-xNb50-xMoxCrx bcc RMPEAs based on V25Nb25Mo25Cr25. We identify V15Nb15Mo35Cr35 as a target RMPEA, which exhibits the highest σy and good high-temperature softening resistance among all considered bcc RMPEAs. The universality of the G × δχ criterion is confirmed not only by current calculations but also by available experiments, as evidenced by the maximum Pearson correlation coefficient between σy and G × δχ. This work provides an effective paradigm for discovering high-strength bcc refractory alloys by strategically optimizing the G × δχ metric. To rapidly develop high-strength refractory multi-principal element alloys (RMPEAs), we systematically calculate elastic moduli and mechanical properties for a series of body-centered-cubic (bcc) RMPEAs using the first-principles method. By analyzing equiatomic V33Nb33Mo34 and V25Nb25Mo25X25 (X = Al, Ti, Zr, Hf, V, Nb, Ta, Cr, Mo, and W) bcc RMPEAs, we discover that the product of shear modulus (G) and electronegativity difference (δχ), i.e., G × δχ, accurately predicts yield strength (σy). This criterion outperforms other empirical parameters such as valence electron concentration (VEC), G, or δχ alone. Specifically, higher G × δχ correlates with higher σy. The σy of V25Nb25Mo25Cr25 exceeds that of other equiatomic alloys, agreeing with existing experiments, thereby validating the reliability of our approach. Following the G × δχ criterion, we further design non-equiatomic V50-xNb50-xMoxCrx bcc RMPEAs based on V25Nb25Mo25Cr25. We identify V15Nb15Mo35Cr35 as a target RMPEA, which exhibits the highest σy and good high-temperature softening resistance among all considered bcc RMPEAs. The universality of the G × δχ criterion is confirmed not only by current calculations but also by available experiments, as evidenced by the maximum Pearson correlation coefficient between σy and G × δχ. This work provides an effective paradigm for discovering high-strength bcc refractory alloys by strategically optimizing the G × δχ metric. TheG×δχcriterion accelerates the discovery of high-strength bcc RMPEAs. By systematically investigating equiatomic V33Nb33Mo34 and V25Nb25Mo25X25 bcc RMPEAs, it is revealed that the product of shear modulus (G) and electronegativity difference (δχ), i.e., G × δχ, serves as an effective predictor of yield strength (σy). Specifically, higher G × δχ correlates with higher σy. The σy of V25Nb25Mo25Cr25 surpasses that of other equiatomic alloys, agreeing with existing experiments. Guided by the G × δχ criterion, we identify V15Nb15Mo35Cr35 as a target RMPEA, which exhibits the highest σy among all considered bcc RMPEAs. Additionally, the observed decrease in σy may partially arise from the reduction in ΔσNb and ΔσCr. Importantly, the universality of the proposed G × δχ criterion is validated by both our calculations and existing experiments ranging from ternary to senary alloys, including Ti–Zr-based, Ti–Zr-Hf-based, V–Nb-based, and V–Nb–Mo-based systems. [Display omitted] |
Author | Sun, Jun Liu, Pengjing Ding, Xiangdong Fu, Yuling Zhang, Hualei |
Author_xml | – sequence: 1 givenname: Yuling surname: Fu fullname: Fu, Yuling – sequence: 2 givenname: Pengjing surname: Liu fullname: Liu, Pengjing – sequence: 3 givenname: Hualei orcidid: 0009-0005-4209-3924 surname: Zhang fullname: Zhang, Hualei email: hualei@xjtu.edu.cn – sequence: 4 givenname: Xiangdong surname: Ding fullname: Ding, Xiangdong email: dingxd@mail.xjtu.edu.cn – sequence: 5 givenname: Jun surname: Sun fullname: Sun, Jun |
BookMark | eNp9kE1r3DAQhnVIoWmaP9CT_oDdkWxZMvQSQj8CgV7as5Cl0a6MbC2SUth_X2236bGngWGel3eed-RmTzsS8oFBz4BNH9d-3XLtOXDRg-i5mG_ILeeD6qQS41tyX8oKAEzMEyh2S04P1mLEbCo66rCEw06Tp8dwOHalZtwP9Ugz-mxsTflMt5dYQ3fKYbfhZCJt7IZ7pSbGdC7U57RRH3KprzcRC7Um2pdoakh7eU_eeBML3v-dd-Tnl88_Hr91z9-_Pj0-PHeWz6x28-KYH0YpzGjbL5ItfhynYeJK-AEmAWYBRONHrpRVy4TOCZQwSubY4rgb7sjTNdcls-pWZjP5rJMJ-s8i5YM2uQYbUTdOKA7LIJUbgcvZSD9J5MwMHGEWLYtfs2xOpTQb__IY6It2veqLdn3RrkHopr1Bn64Qti9_Bcy62IC7RRcy2tpqhP_hvwGjiJGj |
Cites_doi | 10.1126/sciadv.adp7670 10.1103/PhysRevLett.77.3865 10.1080/21663831.2019.1584592 10.1016/j.actamat.2016.08.081 10.1038/s41578-019-0121-4 10.1016/j.jmrt.2024.05.253 10.1080/14786437708235994 10.1016/j.actamat.2018.05.050 10.1016/j.matdes.2015.06.072 10.1080/14786440808520496 10.1016/j.actamat.2020.08.005 10.1016/j.msea.2016.07.102 10.1016/j.jmrt.2024.02.064 10.1038/s41467-024-45639-8 10.1038/nmat3134 10.1016/j.matdes.2022.110820 10.1016/j.jmst.2024.03.027 10.1016/j.actamat.2008.06.006 10.3390/e18050189 10.1179/mst.1992.8.4.345 10.1016/j.jallcom.2022.164186 10.1016/j.intermet.2011.01.004 10.1016/j.msea.2003.10.257 10.1002/andp.19123441404 10.1016/j.jmrt.2024.09.014 10.1016/j.jallcom.2016.10.014 10.1016/j.jallcom.2021.159190 10.1016/j.actamat.2014.04.033 10.1103/PhysRevB.2.3952 10.1016/j.jmst.2022.07.031 10.1016/j.intermet.2010.05.014 10.1016/j.intermet.2017.01.007 10.1016/j.jallcom.2019.151685 10.1088/0370-1298/65/5/307 10.1016/0022-5088(77)90222-3 10.1016/j.actamat.2011.01.048 10.1016/j.actamat.2019.06.006 10.1016/j.msea.2022.143554 10.1103/PhysRevB.5.2382 10.1038/s41524-024-01457-6 10.1002/adma.202102401 10.1016/j.actamat.2019.12.015 10.1016/j.actamat.2019.11.026 10.1016/j.corsci.2022.110805 10.1103/PhysRevLett.112.115503 10.1557/jmr.2018.153 10.1002/adma.202004029 10.1016/j.actamat.2021.116917 10.1038/s41524-023-00993-x 10.1103/PhysRevB.73.104203 10.1016/j.intermet.2015.03.013 10.1016/j.matlet.2016.03.133 10.1007/BF00540987 10.1063/1.3587228 10.1016/j.actamat.2023.118784 10.1088/0959-5309/52/1/305 10.1038/s41467-019-10012-7 10.1002/adem.200300567 10.1016/j.actamat.2022.118132 10.1007/s10659-014-9506-1 10.1038/s41524-017-0024-0 10.1016/j.jallcom.2018.02.251 10.1080/21663831.2021.2024615 10.1016/j.intermet.2015.02.020 10.1016/j.jallcom.2011.02.171 10.1016/j.actamat.2019.10.015 10.1016/j.actamat.2017.10.058 10.1016/j.actamat.2019.06.032 10.1016/j.jmrt.2024.09.131 10.1103/PhysRev.156.809 10.1126/sciadv.aaz4748 10.1016/j.jallcom.2014.01.237 10.1103/PhysRevLett.107.205504 10.1016/j.jmst.2022.08.046 10.1016/j.intermet.2018.01.017 10.2307/2685263 10.1016/j.jmst.2023.07.077 10.1103/PhysRevB.64.014107 10.1016/j.ijrmhm.2022.105993 10.1063/1.555564 10.1016/0001-6160(72)90085-5 10.1007/s11837-012-0366-5 10.1016/S1002-0071(12)60080-X 10.1016/j.matdes.2022.110430 10.1016/j.jmst.2021.11.076 10.1103/PhysRevB.109.024102 10.1007/s00339-023-07255-z 10.1088/0959-5309/59/2/309 10.1038/ncomms6178 10.1016/j.jallcom.2012.01.086 10.1016/j.actamat.2017.11.029 10.1016/j.commatsci.2016.11.035 10.1016/j.jssc.2012.03.014 10.1016/j.jallcom.2023.173349 10.1016/j.ijplas.2024.103881 10.1007/s40195-019-00921-3 10.1557/jmr.2018.237 10.1016/j.jallcom.2018.05.067 10.1103/PhysRevB.81.184105 10.1016/j.scriptamat.2020.09.027 10.1007/BF00540988 10.1038/s41467-024-51387-6 |
ContentType | Journal Article |
Copyright | 2025 The Author(s) |
Copyright_xml | – notice: 2025 The Author(s) |
DBID | 6I. AAFTH AAYXX CITATION DOA |
DOI | 10.1016/j.jmrt.2025.05.259 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef DOAJ |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EndPage | 10534 |
ExternalDocumentID | oai_doaj_org_article_e705820b378d40279a7f67e21a32e095 10_1016_j_jmrt_2025_05_259 S2238785425014152 |
GroupedDBID | 0R~ 4.4 457 5VS 6I. AAEDT AAEDW AAFTH AAIKJ AALRI AAXUO AAYWO ABMAC ABXRA ACGFS ADBBV ADCUG ADEZE ADVLN AEXQZ AFJKZ AFTJW AGHFR AITUG ALMA_UNASSIGNED_HOLDINGS AMRAJ BCNDV EBS EJD FDB FNPLU GROUPED_DOAJ GX1 HH5 HZ~ IPNFZ IXB KQ8 M41 O9- OK1 RIG ROL SSZ AAYXX CITATION |
ID | FETCH-LOGICAL-c291t-9bd1f3475a4c02571bf44636285f30650ab0eeaf4288c8b6edd5e70471d1bd2d3 |
IEDL.DBID | IXB |
ISSN | 2238-7854 |
IngestDate | Wed Aug 27 01:31:50 EDT 2025 Thu Aug 14 00:20:37 EDT 2025 Sat Sep 13 17:01:32 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | High-entropy alloys Mechanical properties Solid solution strengthening Ab initio calculations Alloy design |
Language | English |
License | This is an open access article under the CC BY license. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c291t-9bd1f3475a4c02571bf44636285f30650ab0eeaf4288c8b6edd5e70471d1bd2d3 |
ORCID | 0009-0005-4209-3924 |
OpenAccessLink | https://www.sciencedirect.com/science/article/pii/S2238785425014152 |
PageCount | 15 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_e705820b378d40279a7f67e21a32e095 crossref_primary_10_1016_j_jmrt_2025_05_259 elsevier_sciencedirect_doi_10_1016_j_jmrt_2025_05_259 |
PublicationCentury | 2000 |
PublicationDate | May-June 2025 2025-05-00 2025-05-01 |
PublicationDateYYYYMMDD | 2025-05-01 |
PublicationDate_xml | – month: 05 year: 2025 text: May-June 2025 |
PublicationDecade | 2020 |
PublicationTitle | Journal of materials research and technology |
PublicationYear | 2025 |
Publisher | Elsevier B.V Elsevier |
Publisher_xml | – name: Elsevier B.V – name: Elsevier |
References | Pugh (bib85) 1954; 45 Shittu, Rietema, Juhasz, Ellyson, Elder, Bocklund, Sims, Li, Henderson, Berry, Samanta, Voisin, Baker, McCall, Perron, McKeown (bib95) 2024; 977 Wang, Shang, Wang, Han, Darling, Wu, Xie, Senkov, Li, Hui, Dahmen, Liaw, Kecskes, Liu (bib43) 2017; 3 Lu, Hu, Yang (bib61) 2008; 56 Meng, Gao, Liu, Yu (bib18) 2022; 33 Cardarelli (bib47) 2018 Yao, Qiao, Gao, Hawk, Ma, Zhou (bib88) 2016; 18 Yao, Qiao, Gao, Hawk, Ma, Zhou, Zhang (bib44) 2016; 674 Laplanche, Gadaud, Bärsch, Demtröder, Reinhart, Schreuer, George (bib94) 2018; 746 Guo, Yan, Jia, Yang, Li, Zuo (bib25) 2024; 109 Perdew, Burke, Ernzerhof (bib70) 1996; 77 Varshni (bib96) 1970; 2 Senkov, Rao, Butler, Chaput (bib36) 2019; 808 Feng, Feng, Gao, Zhang, Neuefeind, Poplawsky, Ren, An, Widom, Liaw (bib4) 2021; 33 Chen, Zhou, Wang, Liu, Lv, Yang, Xu, Liu (bib15) 2018; 760 Lee, Kim, Chou, Musicó, Gao, An, Song, Chou, Keppens, Chen, Liaw (bib90) 2020; 6 Han, Wu, Zong, Shen, Zhang, Lou, Dong, Zeng, Peng, Hou, Lu, Xiong, Yan, Gou, Yang, Du, Yuan, Zhang, Jiao, Liu, Jiang, Wang, Rempel, Zhang, Zeng, Lu (bib48) 2024; 15 Gyorffy (bib68) 1972; 5 Deshmukh, Ranganathan (bib50) 2025; 204 Wang, Xu (bib35) 2018; 95 Vitos (bib66) 2001; 64 Lee, Chou, Kim, Gao, An, Brechtl, Zhang, Chen, Poplawsky, Song, Ren, Chou, Liaw (bib42) 2020; 32 Tian, Vitos, Lizárraga (bib58) 2021; 5 Zhang, Li, Obbard, Wang, Wang, Hao, Yang (bib75) 2011; 59 Cantor, Chang, Knight, Vincent (bib6) 2004; 375–377 Oh, Kim, Odbadrakh, Ryu, Yoon, Mu, Körmann, Ikeda, Tasan, Raabe, Egami, Park (bib41) 2019; 10 Wang, Ma, Xu, Cheng (bib89) 2021; 191 Rodgers, Nicewander, Blouin (bib107) 1988; 42 Senkov, Wilks, Miracle, Chuang, Liaw (bib10) 2010; 18 Wu, Cai, Chen, Wang, Si, Wang, Wang, Hui (bib45) 2015; 83 Zhuo, Xie, Chen (bib12) 2024; 33 Vitos (bib69) 2007 Miracle, Senkov (bib8) 2017; 122 Ge, Tian, Wang (bib16) 2017; 128 Wu, Liu, Zhang, Li, Zhao (bib53) 2024; 40 Vela, Acemi, Singh, Kirk, Trehern, Norris, Johnson, Karaman, Arróyave (bib21) 2023; 248 Liu, Zhang, Zhang, Wang, Chen, Zhang, Li (bib102) 2017; 694 Zhang, Yang, Liaw (bib106) 2012; 64 Razumovskiy, Ruban, Korzhavyi (bib98) 2011; 107 Juan, Tsai, Tsai, Lin, Wang, Yang, Chen, Lin, Yeh (bib100) 2015; 62 He, Li, Zhao, Zhang, Zhang, Wang, Cheng (bib55) 2024; 33 Shi, Zhu, Zhang, Sun, Ahuja (bib51) 2018; 144 Woo, Huang, Yeh, Choo, Lee, Tu (bib99) 2015; 62 Poletti, Battezzati (bib49) 2014; 75 Wang, Bai, Tang, Li, Liu, Jia, Ye, Zhu (bib29) 2021; 868 Schönecker, Li, Wei, Nozaki, Kato, Vitos, Li (bib30) 2022; 215 Liu, Zhang, Hu, Ding, Sun (bib28) 2024; 29 Gao, Gao, Yang, Zhang (bib56) 2024; 10 Senkov, Wilks, Scott, Miracle (bib11) 2011; 19 Chen, Zhuo (bib13) 2023; 110 Rao, Baruffi, De Luca, Leinenbach, Curtin (bib104) 2022; 237 Huang, Vitos, Kwon, Johansson, Ahuja (bib59) 2006; 73 Zhang, Punkkinen, Johansson, Vitos (bib57) 2012; 85 Debye (bib71) 1912; 344 Qi, Chrzan (bib27) 2014; 112 Greaves, Greer, Lakes, Rouxel (bib86) 2011; 10 Borges, Ritchie, Asta (bib109) 2024; 10 Tian, Varga, Chen, Shen, Vitos (bib91) 2014; 599 Qiao, Ramanujan, Zhu (bib108) 2023; 211 Gypen, Deruyttere (bib81) 1977; 12 Yuan, Wu, Yang, Liang, Lei, Huang, Wang, Liu, An, Wu, Lu (bib23) 2019; 7 Zhang, Punkkinen, Johansson, Hertzman, Vitos (bib60) 2010; 81 Labusch (bib79) 1972; 20 Tong, Zhao, Bei, Egami, Zhang, Zhang (bib92) 2020; 183 Juan, Tseng, Hsu, Tsai, Tsai, Lin, Chen, Lin, Yeh (bib37) 2016; 175 Pettifor (bib87) 1992; 8 Guo, Ng, Lu, Liu (bib22) 2011; 109 Nabarro (bib34) 1947; 59 George, Curtin, Tasan (bib7) 2020; 188 Stoica, Stoica, Miller, Ma (bib97) 2014; 5 Hill (bib72) 1952; 65 Gypen, Deruyttere (bib82) 1977; 12 Soven (bib67) 1967; 156 Yeh, Chen, Lin, Gan, Chin, Shun, Tsau, Chang (bib5) 2004; 6 Zhang, Cai, Sun, Huang, Lu, Wang, Hu, Vitos, Ding (bib77) 2022; 121 Tsuru, Han, Matsuura, Chen, Kishida, Iobzenko, Rao, Woodward, George, Inui (bib52) 2024; 15 George, Raabe, Ritchie (bib9) 2019; 4 Wu, Zhang, Li, Liu, Zhao, Liu (bib54) 2024; 30 Guo, Liu (bib24) 2011; 21 Han, Chen, Zhao, Fan, Yang, Shao, Yao (bib101) 2017; 84 Peierls (bib33) 1940; 52 Xiong, Guo, Zhan, Liu, Cao (bib3) 2023; 142 Hu, Guo, Guo, Luo, Wang (bib40) 2022; 906 Zheng, Lü, Wu, Chen, Guo (bib19) 2022; 850 Cui, Wei, Hu, Feng, Gong (bib84) 2012; 191 Knowles, Howie (bib74) 2014; 120 Feng, Kim, Yu, Chen, Chen, Liaw, An (bib17) 2022; 219 Perepezko (bib1) 2009; 326 Chen, Qin, Zheng, Wang, Su, Chiu, Ding, Guo, Fu (bib26) 2018; 144 Yan, Zhang, Zhang, Liu, Yu, Hu, Yang, Zhang (bib38) 2023; 139 Lai, Vogel, Zhao, Wang, Yi, You, Tong, Li, Yu, Wang (bib93) 2022; 10 Zhang, Sun, Lu, Dong, Ding, Wang, Vitos (bib62) 2018; 155 Qiao, Jiang, Jiao, Lu, Cao, Li (bib105) 2019; 32 Senkov, Miracle, Chaput, Couzinie (bib2) 2018; 33 Huang, Tian, Vitos (bib65) 2018; 33 Coury, Kaufman, Clarke (bib46) 2019; 175 Senkov, Scott, Senkova, Miracle, Woodward (bib32) 2011; 509 Nabarro (bib80) 1977; 35 Huang, Li, Eriksson, Vitos (bib64) 2020; 199 Lei, Sun, Yang, Wen (bib78) 2024; 173 Tandoc, Hu, Qi, Liaw (bib31) 2023; 9 Sun, Zhuo, Chen, Zhan, Jiang (bib14) 2024; 130 Ledbetter (bib73) 1977; 6 Senkov, Gorsse, Miracle (bib103) 2019; 175 Xu, Zhang, Ding, Sun (bib63) 2024; 179 Maresca, Curtin (bib20) 2020; 182 Gypen, Deruyttere (bib83) 1977; 56 Wen, Wang, Zhang, Antonov, Xue, Lookman, Su (bib39) 2021; 212 Kuramoto, Nagasako, Furuta, Horita (bib76) 2013; 577 Zhang (10.1016/j.jmrt.2025.05.259_bib62) 2018; 155 Liu (10.1016/j.jmrt.2025.05.259_bib102) 2017; 694 Senkov (10.1016/j.jmrt.2025.05.259_bib11) 2011; 19 Guo (10.1016/j.jmrt.2025.05.259_bib25) 2024; 109 Shi (10.1016/j.jmrt.2025.05.259_bib51) 2018; 144 Han (10.1016/j.jmrt.2025.05.259_bib101) 2017; 84 Wang (10.1016/j.jmrt.2025.05.259_bib89) 2021; 191 Vela (10.1016/j.jmrt.2025.05.259_bib21) 2023; 248 Feng (10.1016/j.jmrt.2025.05.259_bib4) 2021; 33 Wang (10.1016/j.jmrt.2025.05.259_bib29) 2021; 868 Kuramoto (10.1016/j.jmrt.2025.05.259_bib76) 2013; 577 Juan (10.1016/j.jmrt.2025.05.259_bib100) 2015; 62 Zhuo (10.1016/j.jmrt.2025.05.259_bib12) 2024; 33 Cui (10.1016/j.jmrt.2025.05.259_bib84) 2012; 191 Yeh (10.1016/j.jmrt.2025.05.259_bib5) 2004; 6 Zhang (10.1016/j.jmrt.2025.05.259_bib77) 2022; 121 Wang (10.1016/j.jmrt.2025.05.259_bib43) 2017; 3 Huang (10.1016/j.jmrt.2025.05.259_bib65) 2018; 33 Meng (10.1016/j.jmrt.2025.05.259_bib18) 2022; 33 Tandoc (10.1016/j.jmrt.2025.05.259_bib31) 2023; 9 Gypen (10.1016/j.jmrt.2025.05.259_bib82) 1977; 12 Wang (10.1016/j.jmrt.2025.05.259_bib35) 2018; 95 Rao (10.1016/j.jmrt.2025.05.259_bib104) 2022; 237 Han (10.1016/j.jmrt.2025.05.259_bib48) 2024; 15 Tian (10.1016/j.jmrt.2025.05.259_bib58) 2021; 5 Yan (10.1016/j.jmrt.2025.05.259_bib38) 2023; 139 Chen (10.1016/j.jmrt.2025.05.259_bib13) 2023; 110 Hill (10.1016/j.jmrt.2025.05.259_bib72) 1952; 65 Borges (10.1016/j.jmrt.2025.05.259_bib109) 2024; 10 Senkov (10.1016/j.jmrt.2025.05.259_bib32) 2011; 509 Xiong (10.1016/j.jmrt.2025.05.259_bib3) 2023; 142 Xu (10.1016/j.jmrt.2025.05.259_bib63) 2024; 179 Soven (10.1016/j.jmrt.2025.05.259_bib67) 1967; 156 Debye (10.1016/j.jmrt.2025.05.259_bib71) 1912; 344 Senkov (10.1016/j.jmrt.2025.05.259_bib2) 2018; 33 Gypen (10.1016/j.jmrt.2025.05.259_bib81) 1977; 12 Cantor (10.1016/j.jmrt.2025.05.259_bib6) 2004; 375–377 Chen (10.1016/j.jmrt.2025.05.259_bib26) 2018; 144 Zhang (10.1016/j.jmrt.2025.05.259_bib75) 2011; 59 Feng (10.1016/j.jmrt.2025.05.259_bib17) 2022; 219 Liu (10.1016/j.jmrt.2025.05.259_bib28) 2024; 29 Yao (10.1016/j.jmrt.2025.05.259_bib44) 2016; 674 Guo (10.1016/j.jmrt.2025.05.259_bib24) 2011; 21 Senkov (10.1016/j.jmrt.2025.05.259_bib10) 2010; 18 Zheng (10.1016/j.jmrt.2025.05.259_bib19) 2022; 850 Tian (10.1016/j.jmrt.2025.05.259_bib91) 2014; 599 Lei (10.1016/j.jmrt.2025.05.259_bib78) 2024; 173 Juan (10.1016/j.jmrt.2025.05.259_bib37) 2016; 175 Yao (10.1016/j.jmrt.2025.05.259_bib88) 2016; 18 Qiao (10.1016/j.jmrt.2025.05.259_bib108) 2023; 211 Qi (10.1016/j.jmrt.2025.05.259_bib27) 2014; 112 Coury (10.1016/j.jmrt.2025.05.259_bib46) 2019; 175 Perdew (10.1016/j.jmrt.2025.05.259_bib70) 1996; 77 Zhang (10.1016/j.jmrt.2025.05.259_bib106) 2012; 64 Varshni (10.1016/j.jmrt.2025.05.259_bib96) 1970; 2 Nabarro (10.1016/j.jmrt.2025.05.259_bib34) 1947; 59 Gypen (10.1016/j.jmrt.2025.05.259_bib83) 1977; 56 Wen (10.1016/j.jmrt.2025.05.259_bib39) 2021; 212 Wu (10.1016/j.jmrt.2025.05.259_bib45) 2015; 83 Ledbetter (10.1016/j.jmrt.2025.05.259_bib73) 1977; 6 Schönecker (10.1016/j.jmrt.2025.05.259_bib30) 2022; 215 Maresca (10.1016/j.jmrt.2025.05.259_bib20) 2020; 182 Greaves (10.1016/j.jmrt.2025.05.259_bib86) 2011; 10 Senkov (10.1016/j.jmrt.2025.05.259_bib103) 2019; 175 Wu (10.1016/j.jmrt.2025.05.259_bib53) 2024; 40 Pettifor (10.1016/j.jmrt.2025.05.259_bib87) 1992; 8 Senkov (10.1016/j.jmrt.2025.05.259_bib36) 2019; 808 Yuan (10.1016/j.jmrt.2025.05.259_bib23) 2019; 7 Sun (10.1016/j.jmrt.2025.05.259_bib14) 2024; 130 Deshmukh (10.1016/j.jmrt.2025.05.259_bib50) 2025; 204 Oh (10.1016/j.jmrt.2025.05.259_bib41) 2019; 10 Miracle (10.1016/j.jmrt.2025.05.259_bib8) 2017; 122 Ge (10.1016/j.jmrt.2025.05.259_bib16) 2017; 128 Huang (10.1016/j.jmrt.2025.05.259_bib59) 2006; 73 Poletti (10.1016/j.jmrt.2025.05.259_bib49) 2014; 75 Huang (10.1016/j.jmrt.2025.05.259_bib64) 2020; 199 Zhang (10.1016/j.jmrt.2025.05.259_bib57) 2012; 85 Pugh (10.1016/j.jmrt.2025.05.259_bib85) 1954; 45 George (10.1016/j.jmrt.2025.05.259_bib9) 2019; 4 Perepezko (10.1016/j.jmrt.2025.05.259_bib1) 2009; 326 Rodgers (10.1016/j.jmrt.2025.05.259_bib107) 1988; 42 Qiao (10.1016/j.jmrt.2025.05.259_bib105) 2019; 32 Knowles (10.1016/j.jmrt.2025.05.259_bib74) 2014; 120 Lu (10.1016/j.jmrt.2025.05.259_bib61) 2008; 56 Zhang (10.1016/j.jmrt.2025.05.259_bib60) 2010; 81 Lee (10.1016/j.jmrt.2025.05.259_bib90) 2020; 6 Vitos (10.1016/j.jmrt.2025.05.259_bib66) 2001; 64 George (10.1016/j.jmrt.2025.05.259_bib7) 2020; 188 Razumovskiy (10.1016/j.jmrt.2025.05.259_bib98) 2011; 107 Cardarelli (10.1016/j.jmrt.2025.05.259_bib47) 2018 Shittu (10.1016/j.jmrt.2025.05.259_bib95) 2024; 977 Wu (10.1016/j.jmrt.2025.05.259_bib54) 2024; 30 Laplanche (10.1016/j.jmrt.2025.05.259_bib94) 2018; 746 He (10.1016/j.jmrt.2025.05.259_bib55) 2024; 33 Gyorffy (10.1016/j.jmrt.2025.05.259_bib68) 1972; 5 Hu (10.1016/j.jmrt.2025.05.259_bib40) 2022; 906 Peierls (10.1016/j.jmrt.2025.05.259_bib33) 1940; 52 Stoica (10.1016/j.jmrt.2025.05.259_bib97) 2014; 5 Gao (10.1016/j.jmrt.2025.05.259_bib56) 2024; 10 Guo (10.1016/j.jmrt.2025.05.259_bib22) 2011; 109 Labusch (10.1016/j.jmrt.2025.05.259_bib79) 1972; 20 Woo (10.1016/j.jmrt.2025.05.259_bib99) 2015; 62 Vitos (10.1016/j.jmrt.2025.05.259_bib69) 2007 Nabarro (10.1016/j.jmrt.2025.05.259_bib80) 1977; 35 Lai (10.1016/j.jmrt.2025.05.259_bib93) 2022; 10 Chen (10.1016/j.jmrt.2025.05.259_bib15) 2018; 760 Tsuru (10.1016/j.jmrt.2025.05.259_bib52) 2024; 15 Tong (10.1016/j.jmrt.2025.05.259_bib92) 2020; 183 Lee (10.1016/j.jmrt.2025.05.259_bib42) 2020; 32 |
References_xml | – volume: 33 year: 2021 ident: bib4 article-title: Superior high-temperature strength in a supersaturated refractory high-entropy alloy publication-title: Adv Mater – volume: 179 start-page: 174 year: 2024 end-page: 186 ident: bib63 article-title: Rapid design and screen high strength U-based high-entropy alloys from first-principles calculations publication-title: J Mater Sci Technol – volume: 45 start-page: 823 year: 1954 end-page: 843 ident: bib85 article-title: Relations between the elastic moduli and the plastic properties of polycrystalline pure metals publication-title: Philos Mag – volume: 509 start-page: 6043 year: 2011 end-page: 6048 ident: bib32 article-title: Microstructure and room temperature properties of a high-entropy TaNbHfZrTi alloy publication-title: J Alloys Compd – volume: 32 year: 2020 ident: bib42 article-title: Lattice-distortion-enhanced yield strength in a refractory high-entropy alloy publication-title: Adv Mater – volume: 77 start-page: 3865 year: 1996 end-page: 3868 ident: bib70 article-title: Generalized gradient approximation made simple publication-title: Phys Rev Lett – volume: 128 start-page: 185 year: 2017 end-page: 190 ident: bib16 article-title: Elastic and thermal properties of refractory high-entropy alloys from first-principles calculations publication-title: Comput Mater Sci – volume: 183 start-page: 172 year: 2020 end-page: 181 ident: bib92 article-title: Severe local lattice distortion in Zr- and/or Hf-containing refractory multi-principal element alloys publication-title: Acta Mater – year: 2007 ident: bib69 article-title: Computational quantum mechanics for materials engineers: the EMTO method and applications – volume: 10 start-page: 2090 year: 2019 ident: bib41 article-title: Engineering atomic-level complexity in high-entropy and complex concentrated alloys publication-title: Nat Commun – volume: 84 start-page: 153 year: 2017 end-page: 157 ident: bib101 article-title: Effect of Ti additions on mechanical properties of NbMoTaW and VNbMoTaW refractory high entropy alloys publication-title: Intermetallics – volume: 15 start-page: 7102 year: 2024 ident: bib48 article-title: Lightweight single-phase Al-based complex concentrated alloy with high specific strength publication-title: Nat Commun – volume: 85 year: 2012 ident: bib57 article-title: Elastic parameters of paramagnetic iron-based alloys from first-principles calculations publication-title: Phys Rev B – volume: 850 year: 2022 ident: bib19 article-title: Development of MoNbVTax refractory high entropy alloy with high strength at elevated temperature publication-title: Mater Sci Eng, A – volume: 204 start-page: 127 year: 2025 end-page: 151 ident: bib50 article-title: Recent advances in modelling structure-property correlations in high-entropy alloys publication-title: J Mater Sci Technol – volume: 62 start-page: 76 year: 2015 end-page: 83 ident: bib100 article-title: Enhanced mechanical properties of HfMoTaTiZr and HfMoNbTaTiZr refractory high-entropy alloys publication-title: Intermetallics – volume: 32 start-page: 925 year: 2019 end-page: 931 ident: bib105 article-title: A novel series of refractory high-entropy alloys Ti publication-title: Acta Metall Sin – volume: 64 start-page: 830 year: 2012 end-page: 838 ident: bib106 article-title: Alloy design and properties optimization of high-entropy alloys publication-title: Jom – volume: 6 start-page: 299 year: 2004 end-page: 303 ident: bib5 article-title: Nanostructured high-entropy alloys with multiple principal elements: novel alloy design concepts and outcomes publication-title: Adv Eng Mater – volume: 40 year: 2024 ident: bib53 article-title: First-principles calculation for mechanical properties of TiZrHfNbTa series refractory high-entropy alloys publication-title: Mater Today Commun – volume: 120 start-page: 87 year: 2014 end-page: 108 ident: bib74 article-title: The directional dependence of elastic stiffness and compliance shear coefficients and shear moduli in cubic materials publication-title: J Elasticity – volume: 6 start-page: eaaz4748 year: 2020 ident: bib90 article-title: Temperature dependence of elastic and plastic deformation behavior of a refractory high-entropy alloy publication-title: Sci Adv – volume: 112 year: 2014 ident: bib27 article-title: Tuning ideal tensile strengths and intrinsic ductility of bcc refractory alloys publication-title: Phys Rev Lett – volume: 35 start-page: 613 year: 1977 end-page: 622 ident: bib80 article-title: The theory of solution hardening publication-title: Philos Mag – volume: 694 start-page: 869 year: 2017 end-page: 876 ident: bib102 article-title: Microstructure and mechanical properties of refractory HfMo publication-title: J Alloys Compd – volume: 9 start-page: 53 year: 2023 ident: bib31 article-title: Mining of lattice distortion, strength, and intrinsic ductility of refractory high entropy alloys publication-title: npj Comput Mater – volume: 42 start-page: 59 year: 1988 end-page: 66 ident: bib107 article-title: Thirteen ways to look at the correlation coefficient publication-title: Am Statistician – volume: 52 start-page: 34 year: 1940 end-page: 37 ident: bib33 article-title: The size of a dislocation publication-title: Proc Phys Soc – volume: 139 start-page: 232 year: 2023 end-page: 244 ident: bib38 article-title: Design and optimization of the composition and mechanical properties for non-equiatomic CoCrNi medium-entropy alloys publication-title: J Mater Sci Technol – volume: 599 start-page: 19 year: 2014 end-page: 25 ident: bib91 article-title: Ab initio design of elastically isotropic TiZrNbMoVx high-entropy alloys publication-title: J Alloys Compd – volume: 19 start-page: 698 year: 2011 end-page: 706 ident: bib11 article-title: Mechanical properties of Nb publication-title: Intermetallics – volume: 73 year: 2006 ident: bib59 article-title: Thermoelastic properties of random alloys from first-principles theory publication-title: Phys Rev B – volume: 62 start-page: 1 year: 2015 end-page: 6 ident: bib99 article-title: In-situ neutron diffraction studies on high-temperature deformation behavior in a CoCrFeMnNi high entropy alloy publication-title: Intermetallics – volume: 107 year: 2011 ident: bib98 article-title: Effect of temperature on the elastic anisotropy of pure Fe and Fe publication-title: Phys Rev Lett – volume: 188 start-page: 435 year: 2020 end-page: 474 ident: bib7 article-title: High entropy alloys: a focused review of mechanical properties and deformation mechanisms publication-title: Acta Mater – volume: 83 start-page: 651 year: 2015 end-page: 660 ident: bib45 article-title: Phase composition and solid solution strengthening effect in TiZrNbMoV high-entropy alloys publication-title: Mater Des – volume: 175 start-page: 66 year: 2019 end-page: 81 ident: bib46 article-title: Solid-solution strengthening in refractory high entropy alloys publication-title: Acta Mater – volume: 3 start-page: 23 year: 2017 ident: bib43 article-title: Atomic and electronic basis for the serrations of refractory high-entropy alloys publication-title: npj Comput Mater – volume: 248 year: 2023 ident: bib21 article-title: High-throughput exploration of the WMoVTaNbAl refractory multi-principal-element alloys under multiple-property constraints publication-title: Acta Mater – volume: 344 start-page: 789 year: 1912 end-page: 839 ident: bib71 article-title: Zur Theorie der spezifischen Wärmen publication-title: Ann Phys – volume: 577 start-page: S147 year: 2013 end-page: S150 ident: bib76 article-title: Strengthening the alloys with elastic softening in shear modulus publication-title: J Alloys Compd – volume: 746 start-page: 244 year: 2018 end-page: 255 ident: bib94 article-title: Elastic moduli and thermal expansion coefficients of medium-entropy subsystems of the CrMnFeCoNi high-entropy alloy publication-title: J Alloys Compd – volume: 10 start-page: 133 year: 2022 end-page: 140 ident: bib93 article-title: Design of BCC refractory multi-principal element alloys with superior mechanical properties publication-title: Mater Res Lett – volume: 5 start-page: 2382 year: 1972 end-page: 2384 ident: bib68 article-title: Coherent-potential approximation for a nonoverlapping-muffin-tin-potential model of random substitutional alloys publication-title: Phys Rev B – volume: 64 year: 2001 ident: bib66 article-title: Total-energy method based on the exact muffin-tin orbitals theory publication-title: Phys Rev B – volume: 121 start-page: 105 year: 2022 end-page: 116 ident: bib77 article-title: Solid solution strengthening of high-entropy alloys from first-principles study publication-title: J Mater Sci Technol – volume: 191 start-page: 147 year: 2012 end-page: 152 ident: bib84 article-title: First-principles study of the structural and elastic properties of Cr publication-title: J Solid State Chem – volume: 21 start-page: 433 year: 2011 end-page: 446 ident: bib24 article-title: Phase stability in high entropy alloys: formation of solid-solution phase or amorphous phase publication-title: Prog Nat Sci Mater Int – volume: 144 start-page: 853 year: 2018 end-page: 861 ident: bib51 article-title: Mapping the relationship among composition, stacking fault energy and ductility in Nb alloys: a first-principles study publication-title: Acta Mater – volume: 175 start-page: 284 year: 2016 end-page: 287 ident: bib37 article-title: Solution strengthening of ductile refractory HfMo publication-title: Mater Lett – volume: 182 start-page: 235 year: 2020 end-page: 249 ident: bib20 article-title: Mechanistic origin of high strength in refractory BCC high entropy alloys up to 1900K publication-title: Acta Mater – volume: 10 year: 2024 ident: bib109 article-title: Electronic descriptors for dislocation deformation behavior and intrinsic ductility in bcc high-entropy alloys publication-title: Sci Adv – volume: 15 start-page: 1706 year: 2024 ident: bib52 article-title: Intrinsic factors responsible for brittle versus ductile nature of refractory high-entropy alloys publication-title: Nat Commun – volume: 20 start-page: 917 year: 1972 end-page: 927 ident: bib79 article-title: Statistical theories of solid solution hardening publication-title: Acta Metall – volume: 59 start-page: 256 year: 1947 end-page: 272 ident: bib34 article-title: Dislocations in a simple cubic lattice publication-title: Proc Phys Soc – volume: 10 start-page: 823 year: 2011 end-page: 837 ident: bib86 article-title: Poisson's ratio and modern materials publication-title: Nat Mater – volume: 95 start-page: 59 year: 2018 end-page: 72 ident: bib35 article-title: (TiZrNbTa)-Mo high-entropy alloys: dependence of microstructure and mechanical properties on Mo concentration and modeling of solid solution strengthening publication-title: Intermetallics – volume: 760 start-page: 15 year: 2018 end-page: 30 ident: bib15 article-title: A review on fundamental of high entropy alloys with promising high–temperature properties publication-title: J Alloys Compd – volume: 215 year: 2022 ident: bib30 article-title: Harnessing elastic anisotropy to achieve low-modulus refractory high-entropy alloys for biomedical applications publication-title: Mater Des – volume: 59 start-page: 3081 year: 2011 end-page: 3090 ident: bib75 article-title: Elastic properties of Ti–24Nb–4Zr–8Sn single crystals with bcc crystal structure publication-title: Acta Mater – volume: 808 year: 2019 ident: bib36 article-title: Ductile Nb alloys with reduced density and cost publication-title: J Alloys Compd – volume: 18 start-page: 189 year: 2016 ident: bib88 article-title: MoNbTaV medium-entropy alloy publication-title: Entropy – volume: 18 start-page: 1758 year: 2010 end-page: 1765 ident: bib10 article-title: Refractory high-entropy alloys publication-title: Intermetallics – volume: 29 start-page: 3420 year: 2024 end-page: 3436 ident: bib28 article-title: First-principles design of high strength refractory high-entropy alloys publication-title: J Mater Res Technol – volume: 12 start-page: 1028 year: 1977 end-page: 1033 ident: bib81 article-title: Multi-component solid solution hardening - Part 1 Proposed model publication-title: J Mater Sci – volume: 4 start-page: 515 year: 2019 end-page: 534 ident: bib9 article-title: High-entropy alloys publication-title: Nat Rev Mater – volume: 109 year: 2011 ident: bib22 article-title: Effect of valence electron concentration on stability of fcc or bcc phase in high entropy alloys publication-title: J Appl Phys – volume: 130 start-page: 95 year: 2024 ident: bib14 article-title: Tensile behavior and microstructural evolution of TiMoZrV HEAs: a molecular dynamics study publication-title: Appl Phys A – volume: 2 start-page: 3952 year: 1970 end-page: 3958 ident: bib96 article-title: Temperature dependence of the elastic constants publication-title: Phys Rev B – volume: 219 year: 2022 ident: bib17 article-title: Elastic behavior of binary and ternary refractory multi-principal-element alloys publication-title: Mater Des – volume: 155 start-page: 12 year: 2018 end-page: 22 ident: bib62 article-title: Elastic properties of Al publication-title: Acta Mater – volume: 237 year: 2022 ident: bib104 article-title: Theory-guided design of high-strength, high-melting point, ductile, low-density, single-phase BCC high entropy alloys publication-title: Acta Mater – volume: 674 start-page: 203 year: 2016 end-page: 211 ident: bib44 article-title: NbTaV-(Ti,W) refractory high-entropy alloys: experiments and modeling publication-title: Mater Sci Eng, A – volume: 110 year: 2023 ident: bib13 article-title: Latest progress on refractory high entropy alloys: composition, fabrication, post processing, performance, simulation and prospect publication-title: Int J Refract Metals Hard Mater – volume: 56 start-page: 91 year: 1977 end-page: 101 ident: bib83 article-title: Multi-component intrinsic solid solution softening and hardening publication-title: Journal of the Less Common Metals – volume: 5 start-page: 5178 year: 2014 ident: bib97 article-title: Temperature-dependent elastic anisotropy and mesoscale deformation in a nanostructured ferritic alloy publication-title: Nat Commun – volume: 10 start-page: 256 year: 2024 ident: bib56 article-title: Data-driven design of novel lightweight refractory high-entropy alloys with superb hardness and corrosion resistance publication-title: npj Comput Mater – volume: 375–377 start-page: 213 year: 2004 end-page: 218 ident: bib6 article-title: Microstructural development in equiatomic multicomponent alloys publication-title: Mater Sci Eng, A – volume: 109 year: 2024 ident: bib25 article-title: Correlations between valence electron concentration and the phase stability, intrinsic strength, and deformation mechanism in fcc multicomponent alloys publication-title: Phys Rev B – volume: 156 start-page: 809 year: 1967 end-page: 813 ident: bib67 article-title: Coherent-potential model of substitutional disordered alloys publication-title: Phys Rev – volume: 8 start-page: 345 year: 1992 end-page: 349 ident: bib87 article-title: Theoretical predictions of structure and related properties of intermetallics publication-title: Mater Sci Technol – volume: 5 year: 2021 ident: bib58 article-title: Temperature effects on the elastic and thermodynamic properties of Al publication-title: Phys Rev Mater – volume: 211 year: 2023 ident: bib108 article-title: Machine learning accelerated design of a family of Al publication-title: Corros Sci – volume: 977 year: 2024 ident: bib95 article-title: Microstructural, phase, and thermophysical stability of CrMoNbV refractory multi-principal element alloys publication-title: J Alloys Compd – volume: 122 start-page: 448 year: 2017 end-page: 511 ident: bib8 article-title: A critical review of high entropy alloys and related concepts publication-title: Acta Mater – volume: 33 year: 2022 ident: bib18 article-title: MoNbV, MoNbVTi and MoNbVTiHf multicomponent refractory alloys—compositional modulated mechanical properties investigating publication-title: Mater Today Commun – volume: 7 start-page: 225 year: 2019 end-page: 231 ident: bib23 article-title: Formation, structure and properties of biocompatible TiZrHfNbTa high-entropy alloys publication-title: Mater Res Lett – volume: 56 start-page: 4913 year: 2008 end-page: 4920 ident: bib61 article-title: Composition-dependent elastic properties and electronic structures of off-stoichiometric TiNi from first-principles calculations publication-title: Acta Mater – year: 2018 ident: bib47 article-title: Materials handbook – volume: 65 start-page: 349 year: 1952 end-page: 354 ident: bib72 article-title: The elastic behaviour of a crystalline aggregate publication-title: Proc Phys Soc – volume: 868 year: 2021 ident: bib29 article-title: Effect of the valence electron concentration on the yield strength of Ti-Zr-Nb-V high-entropy alloys publication-title: J Alloys Compd – volume: 906 year: 2022 ident: bib40 article-title: Effect of Mo on high-temperature strength of refractory complex concentrated alloys: a perspective of electronegativity difference publication-title: J Alloys Compd – volume: 33 start-page: 3092 year: 2018 end-page: 3128 ident: bib2 article-title: Development and exploration of refractory high entropy alloys—a review publication-title: J Mater Res – volume: 212 year: 2021 ident: bib39 article-title: Modeling solid solution strengthening in high entropy alloys using machine learning publication-title: Acta Mater – volume: 142 start-page: 196 year: 2023 end-page: 215 ident: bib3 article-title: Refractory high-entropy alloys: a focused review of preparation methods and properties publication-title: J Mater Sci Technol – volume: 12 start-page: 1034 year: 1977 end-page: 1038 ident: bib82 article-title: Multi-component solid solution hardening - Part 2 Agreement with experimental results publication-title: J Mater Sci – volume: 173 year: 2024 ident: bib78 article-title: A computational mechanical constitutive modeling method based on thermally-activated microstructural evolution and strengthening mechanisms publication-title: Int J Plast – volume: 175 start-page: 394 year: 2019 end-page: 405 ident: bib103 article-title: High temperature strength of refractory complex concentrated alloys publication-title: Acta Mater – volume: 6 start-page: 1181 year: 1977 end-page: 1203 ident: bib73 article-title: Elastic properties of zinc: a compilation and a review publication-title: J Phys Chem Ref Data – volume: 33 start-page: 260 year: 2024 end-page: 286 ident: bib55 article-title: Machine learning-assisted design of high-entropy alloys with superior mechanical properties publication-title: J Mater Res Technol – volume: 81 year: 2010 ident: bib60 article-title: Single-crystal elastic constants of ferromagnetic bcc Fe-based random alloys from first-principles theory publication-title: Phys Rev B – volume: 199 start-page: 53 year: 2020 end-page: 62 ident: bib64 article-title: Chemical ordering controlled thermo-elasticity of AlTiVCr1-xNbx high-entropy alloys publication-title: Acta Mater – volume: 191 start-page: 131 year: 2021 end-page: 136 ident: bib89 article-title: Designing V publication-title: Scr Mater – volume: 33 start-page: 1097 year: 2024 end-page: 1129 ident: bib12 article-title: A review on recent progress of refractory high entropy alloys: from fundamental research to engineering applications publication-title: J Mater Res Technol – volume: 30 start-page: 8854 year: 2024 end-page: 8861 ident: bib54 article-title: Prediction of NbTaTiZr-based high-entropy alloys with high strength or ductility: first-principles calculations publication-title: J Mater Res Technol – volume: 326 start-page: 1068 year: 2009 end-page: 1069 ident: bib1 article-title: The hotter the engine, the better publication-title: Sci Technol Humanit – volume: 33 start-page: 2938 year: 2018 end-page: 2953 ident: bib65 article-title: Elasticity of high-entropy alloys from ab initio theory publication-title: J Mater Res – volume: 75 start-page: 297 year: 2014 end-page: 306 ident: bib49 article-title: Electronic and thermodynamic criteria for the occurrence of high entropy alloys in metallic systems publication-title: Acta Mater – volume: 144 start-page: 129 year: 2018 end-page: 137 ident: bib26 article-title: Composition design of high entropy alloys using the valence electron concentration to balance strength and ductility publication-title: Acta Mater – volume: 10 year: 2024 ident: 10.1016/j.jmrt.2025.05.259_bib109 article-title: Electronic descriptors for dislocation deformation behavior and intrinsic ductility in bcc high-entropy alloys publication-title: Sci Adv doi: 10.1126/sciadv.adp7670 – volume: 77 start-page: 3865 year: 1996 ident: 10.1016/j.jmrt.2025.05.259_bib70 article-title: Generalized gradient approximation made simple publication-title: Phys Rev Lett doi: 10.1103/PhysRevLett.77.3865 – volume: 7 start-page: 225 year: 2019 ident: 10.1016/j.jmrt.2025.05.259_bib23 article-title: Formation, structure and properties of biocompatible TiZrHfNbTa high-entropy alloys publication-title: Mater Res Lett doi: 10.1080/21663831.2019.1584592 – volume: 122 start-page: 448 year: 2017 ident: 10.1016/j.jmrt.2025.05.259_bib8 article-title: A critical review of high entropy alloys and related concepts publication-title: Acta Mater doi: 10.1016/j.actamat.2016.08.081 – volume: 4 start-page: 515 year: 2019 ident: 10.1016/j.jmrt.2025.05.259_bib9 article-title: High-entropy alloys publication-title: Nat Rev Mater doi: 10.1038/s41578-019-0121-4 – volume: 30 start-page: 8854 year: 2024 ident: 10.1016/j.jmrt.2025.05.259_bib54 article-title: Prediction of NbTaTiZr-based high-entropy alloys with high strength or ductility: first-principles calculations publication-title: J Mater Res Technol doi: 10.1016/j.jmrt.2024.05.253 – volume: 35 start-page: 613 year: 1977 ident: 10.1016/j.jmrt.2025.05.259_bib80 article-title: The theory of solution hardening publication-title: Philos Mag doi: 10.1080/14786437708235994 – volume: 155 start-page: 12 year: 2018 ident: 10.1016/j.jmrt.2025.05.259_bib62 article-title: Elastic properties of AlxCrMnFeCoNi (0 ≤ x ≤ 5) high-entropy alloys from ab initio theory publication-title: Acta Mater doi: 10.1016/j.actamat.2018.05.050 – volume: 83 start-page: 651 year: 2015 ident: 10.1016/j.jmrt.2025.05.259_bib45 article-title: Phase composition and solid solution strengthening effect in TiZrNbMoV high-entropy alloys publication-title: Mater Des doi: 10.1016/j.matdes.2015.06.072 – volume: 45 start-page: 823 year: 1954 ident: 10.1016/j.jmrt.2025.05.259_bib85 article-title: Relations between the elastic moduli and the plastic properties of polycrystalline pure metals publication-title: Philos Mag doi: 10.1080/14786440808520496 – year: 2018 ident: 10.1016/j.jmrt.2025.05.259_bib47 – volume: 199 start-page: 53 year: 2020 ident: 10.1016/j.jmrt.2025.05.259_bib64 article-title: Chemical ordering controlled thermo-elasticity of AlTiVCr1-xNbx high-entropy alloys publication-title: Acta Mater doi: 10.1016/j.actamat.2020.08.005 – volume: 674 start-page: 203 year: 2016 ident: 10.1016/j.jmrt.2025.05.259_bib44 article-title: NbTaV-(Ti,W) refractory high-entropy alloys: experiments and modeling publication-title: Mater Sci Eng, A doi: 10.1016/j.msea.2016.07.102 – volume: 29 start-page: 3420 year: 2024 ident: 10.1016/j.jmrt.2025.05.259_bib28 article-title: First-principles design of high strength refractory high-entropy alloys publication-title: J Mater Res Technol doi: 10.1016/j.jmrt.2024.02.064 – volume: 15 start-page: 1706 year: 2024 ident: 10.1016/j.jmrt.2025.05.259_bib52 article-title: Intrinsic factors responsible for brittle versus ductile nature of refractory high-entropy alloys publication-title: Nat Commun doi: 10.1038/s41467-024-45639-8 – volume: 10 start-page: 823 year: 2011 ident: 10.1016/j.jmrt.2025.05.259_bib86 article-title: Poisson's ratio and modern materials publication-title: Nat Mater doi: 10.1038/nmat3134 – volume: 219 year: 2022 ident: 10.1016/j.jmrt.2025.05.259_bib17 article-title: Elastic behavior of binary and ternary refractory multi-principal-element alloys publication-title: Mater Des doi: 10.1016/j.matdes.2022.110820 – volume: 204 start-page: 127 year: 2025 ident: 10.1016/j.jmrt.2025.05.259_bib50 article-title: Recent advances in modelling structure-property correlations in high-entropy alloys publication-title: J Mater Sci Technol doi: 10.1016/j.jmst.2024.03.027 – volume: 56 start-page: 4913 year: 2008 ident: 10.1016/j.jmrt.2025.05.259_bib61 article-title: Composition-dependent elastic properties and electronic structures of off-stoichiometric TiNi from first-principles calculations publication-title: Acta Mater doi: 10.1016/j.actamat.2008.06.006 – volume: 18 start-page: 189 year: 2016 ident: 10.1016/j.jmrt.2025.05.259_bib88 article-title: MoNbTaV medium-entropy alloy publication-title: Entropy doi: 10.3390/e18050189 – volume: 8 start-page: 345 year: 1992 ident: 10.1016/j.jmrt.2025.05.259_bib87 article-title: Theoretical predictions of structure and related properties of intermetallics publication-title: Mater Sci Technol doi: 10.1179/mst.1992.8.4.345 – volume: 906 year: 2022 ident: 10.1016/j.jmrt.2025.05.259_bib40 article-title: Effect of Mo on high-temperature strength of refractory complex concentrated alloys: a perspective of electronegativity difference publication-title: J Alloys Compd doi: 10.1016/j.jallcom.2022.164186 – volume: 19 start-page: 698 year: 2011 ident: 10.1016/j.jmrt.2025.05.259_bib11 article-title: Mechanical properties of Nb25Mo25Ta25W25 and V20Nb20Mo20Ta20W20 refractory high entropy alloys publication-title: Intermetallics doi: 10.1016/j.intermet.2011.01.004 – volume: 375–377 start-page: 213 year: 2004 ident: 10.1016/j.jmrt.2025.05.259_bib6 article-title: Microstructural development in equiatomic multicomponent alloys publication-title: Mater Sci Eng, A doi: 10.1016/j.msea.2003.10.257 – volume: 344 start-page: 789 year: 1912 ident: 10.1016/j.jmrt.2025.05.259_bib71 article-title: Zur Theorie der spezifischen Wärmen publication-title: Ann Phys doi: 10.1002/andp.19123441404 – volume: 33 start-page: 260 year: 2024 ident: 10.1016/j.jmrt.2025.05.259_bib55 article-title: Machine learning-assisted design of high-entropy alloys with superior mechanical properties publication-title: J Mater Res Technol doi: 10.1016/j.jmrt.2024.09.014 – volume: 326 start-page: 1068 year: 2009 ident: 10.1016/j.jmrt.2025.05.259_bib1 article-title: The hotter the engine, the better publication-title: Sci Technol Humanit – volume: 694 start-page: 869 year: 2017 ident: 10.1016/j.jmrt.2025.05.259_bib102 article-title: Microstructure and mechanical properties of refractory HfMo0.5NbTiV0.5Six high-entropy composites publication-title: J Alloys Compd doi: 10.1016/j.jallcom.2016.10.014 – volume: 868 year: 2021 ident: 10.1016/j.jmrt.2025.05.259_bib29 article-title: Effect of the valence electron concentration on the yield strength of Ti-Zr-Nb-V high-entropy alloys publication-title: J Alloys Compd doi: 10.1016/j.jallcom.2021.159190 – volume: 75 start-page: 297 year: 2014 ident: 10.1016/j.jmrt.2025.05.259_bib49 article-title: Electronic and thermodynamic criteria for the occurrence of high entropy alloys in metallic systems publication-title: Acta Mater doi: 10.1016/j.actamat.2014.04.033 – volume: 2 start-page: 3952 year: 1970 ident: 10.1016/j.jmrt.2025.05.259_bib96 article-title: Temperature dependence of the elastic constants publication-title: Phys Rev B doi: 10.1103/PhysRevB.2.3952 – volume: 139 start-page: 232 year: 2023 ident: 10.1016/j.jmrt.2025.05.259_bib38 article-title: Design and optimization of the composition and mechanical properties for non-equiatomic CoCrNi medium-entropy alloys publication-title: J Mater Sci Technol doi: 10.1016/j.jmst.2022.07.031 – volume: 18 start-page: 1758 year: 2010 ident: 10.1016/j.jmrt.2025.05.259_bib10 article-title: Refractory high-entropy alloys publication-title: Intermetallics doi: 10.1016/j.intermet.2010.05.014 – volume: 5 year: 2021 ident: 10.1016/j.jmrt.2025.05.259_bib58 article-title: Temperature effects on the elastic and thermodynamic properties of Al1-xLix and Al1-xCrx alloys from first principles publication-title: Phys Rev Mater – volume: 84 start-page: 153 year: 2017 ident: 10.1016/j.jmrt.2025.05.259_bib101 article-title: Effect of Ti additions on mechanical properties of NbMoTaW and VNbMoTaW refractory high entropy alloys publication-title: Intermetallics doi: 10.1016/j.intermet.2017.01.007 – volume: 808 year: 2019 ident: 10.1016/j.jmrt.2025.05.259_bib36 article-title: Ductile Nb alloys with reduced density and cost publication-title: J Alloys Compd doi: 10.1016/j.jallcom.2019.151685 – volume: 65 start-page: 349 year: 1952 ident: 10.1016/j.jmrt.2025.05.259_bib72 article-title: The elastic behaviour of a crystalline aggregate publication-title: Proc Phys Soc doi: 10.1088/0370-1298/65/5/307 – volume: 56 start-page: 91 year: 1977 ident: 10.1016/j.jmrt.2025.05.259_bib83 article-title: Multi-component intrinsic solid solution softening and hardening publication-title: Journal of the Less Common Metals doi: 10.1016/0022-5088(77)90222-3 – volume: 59 start-page: 3081 year: 2011 ident: 10.1016/j.jmrt.2025.05.259_bib75 article-title: Elastic properties of Ti–24Nb–4Zr–8Sn single crystals with bcc crystal structure publication-title: Acta Mater doi: 10.1016/j.actamat.2011.01.048 – volume: 175 start-page: 66 year: 2019 ident: 10.1016/j.jmrt.2025.05.259_bib46 article-title: Solid-solution strengthening in refractory high entropy alloys publication-title: Acta Mater doi: 10.1016/j.actamat.2019.06.006 – volume: 850 year: 2022 ident: 10.1016/j.jmrt.2025.05.259_bib19 article-title: Development of MoNbVTax refractory high entropy alloy with high strength at elevated temperature publication-title: Mater Sci Eng, A doi: 10.1016/j.msea.2022.143554 – volume: 40 year: 2024 ident: 10.1016/j.jmrt.2025.05.259_bib53 article-title: First-principles calculation for mechanical properties of TiZrHfNbTa series refractory high-entropy alloys publication-title: Mater Today Commun – volume: 5 start-page: 2382 year: 1972 ident: 10.1016/j.jmrt.2025.05.259_bib68 article-title: Coherent-potential approximation for a nonoverlapping-muffin-tin-potential model of random substitutional alloys publication-title: Phys Rev B doi: 10.1103/PhysRevB.5.2382 – volume: 10 start-page: 256 year: 2024 ident: 10.1016/j.jmrt.2025.05.259_bib56 article-title: Data-driven design of novel lightweight refractory high-entropy alloys with superb hardness and corrosion resistance publication-title: npj Comput Mater doi: 10.1038/s41524-024-01457-6 – volume: 33 year: 2021 ident: 10.1016/j.jmrt.2025.05.259_bib4 article-title: Superior high-temperature strength in a supersaturated refractory high-entropy alloy publication-title: Adv Mater doi: 10.1002/adma.202102401 – volume: 188 start-page: 435 year: 2020 ident: 10.1016/j.jmrt.2025.05.259_bib7 article-title: High entropy alloys: a focused review of mechanical properties and deformation mechanisms publication-title: Acta Mater doi: 10.1016/j.actamat.2019.12.015 – volume: 183 start-page: 172 year: 2020 ident: 10.1016/j.jmrt.2025.05.259_bib92 article-title: Severe local lattice distortion in Zr- and/or Hf-containing refractory multi-principal element alloys publication-title: Acta Mater doi: 10.1016/j.actamat.2019.11.026 – volume: 211 year: 2023 ident: 10.1016/j.jmrt.2025.05.259_bib108 article-title: Machine learning accelerated design of a family of AlxCrFeNi medium entropy alloys with superior high temperature mechanical and oxidation properties publication-title: Corros Sci doi: 10.1016/j.corsci.2022.110805 – volume: 112 year: 2014 ident: 10.1016/j.jmrt.2025.05.259_bib27 article-title: Tuning ideal tensile strengths and intrinsic ductility of bcc refractory alloys publication-title: Phys Rev Lett doi: 10.1103/PhysRevLett.112.115503 – volume: 33 start-page: 3092 year: 2018 ident: 10.1016/j.jmrt.2025.05.259_bib2 article-title: Development and exploration of refractory high entropy alloys—a review publication-title: J Mater Res doi: 10.1557/jmr.2018.153 – volume: 32 year: 2020 ident: 10.1016/j.jmrt.2025.05.259_bib42 article-title: Lattice-distortion-enhanced yield strength in a refractory high-entropy alloy publication-title: Adv Mater doi: 10.1002/adma.202004029 – volume: 212 year: 2021 ident: 10.1016/j.jmrt.2025.05.259_bib39 article-title: Modeling solid solution strengthening in high entropy alloys using machine learning publication-title: Acta Mater doi: 10.1016/j.actamat.2021.116917 – volume: 9 start-page: 53 year: 2023 ident: 10.1016/j.jmrt.2025.05.259_bib31 article-title: Mining of lattice distortion, strength, and intrinsic ductility of refractory high entropy alloys publication-title: npj Comput Mater doi: 10.1038/s41524-023-00993-x – volume: 73 year: 2006 ident: 10.1016/j.jmrt.2025.05.259_bib59 article-title: Thermoelastic properties of random alloys from first-principles theory publication-title: Phys Rev B doi: 10.1103/PhysRevB.73.104203 – volume: 62 start-page: 76 year: 2015 ident: 10.1016/j.jmrt.2025.05.259_bib100 article-title: Enhanced mechanical properties of HfMoTaTiZr and HfMoNbTaTiZr refractory high-entropy alloys publication-title: Intermetallics doi: 10.1016/j.intermet.2015.03.013 – volume: 175 start-page: 284 year: 2016 ident: 10.1016/j.jmrt.2025.05.259_bib37 article-title: Solution strengthening of ductile refractory HfMoxNbTaTiZr high-entropy alloys publication-title: Mater Lett doi: 10.1016/j.matlet.2016.03.133 – volume: 12 start-page: 1028 year: 1977 ident: 10.1016/j.jmrt.2025.05.259_bib81 article-title: Multi-component solid solution hardening - Part 1 Proposed model publication-title: J Mater Sci doi: 10.1007/BF00540987 – volume: 109 year: 2011 ident: 10.1016/j.jmrt.2025.05.259_bib22 article-title: Effect of valence electron concentration on stability of fcc or bcc phase in high entropy alloys publication-title: J Appl Phys doi: 10.1063/1.3587228 – volume: 248 year: 2023 ident: 10.1016/j.jmrt.2025.05.259_bib21 article-title: High-throughput exploration of the WMoVTaNbAl refractory multi-principal-element alloys under multiple-property constraints publication-title: Acta Mater doi: 10.1016/j.actamat.2023.118784 – volume: 52 start-page: 34 year: 1940 ident: 10.1016/j.jmrt.2025.05.259_bib33 article-title: The size of a dislocation publication-title: Proc Phys Soc doi: 10.1088/0959-5309/52/1/305 – volume: 10 start-page: 2090 year: 2019 ident: 10.1016/j.jmrt.2025.05.259_bib41 article-title: Engineering atomic-level complexity in high-entropy and complex concentrated alloys publication-title: Nat Commun doi: 10.1038/s41467-019-10012-7 – volume: 6 start-page: 299 year: 2004 ident: 10.1016/j.jmrt.2025.05.259_bib5 article-title: Nanostructured high-entropy alloys with multiple principal elements: novel alloy design concepts and outcomes publication-title: Adv Eng Mater doi: 10.1002/adem.200300567 – volume: 237 year: 2022 ident: 10.1016/j.jmrt.2025.05.259_bib104 article-title: Theory-guided design of high-strength, high-melting point, ductile, low-density, single-phase BCC high entropy alloys publication-title: Acta Mater doi: 10.1016/j.actamat.2022.118132 – volume: 120 start-page: 87 year: 2014 ident: 10.1016/j.jmrt.2025.05.259_bib74 article-title: The directional dependence of elastic stiffness and compliance shear coefficients and shear moduli in cubic materials publication-title: J Elasticity doi: 10.1007/s10659-014-9506-1 – volume: 3 start-page: 23 year: 2017 ident: 10.1016/j.jmrt.2025.05.259_bib43 article-title: Atomic and electronic basis for the serrations of refractory high-entropy alloys publication-title: npj Comput Mater doi: 10.1038/s41524-017-0024-0 – volume: 746 start-page: 244 year: 2018 ident: 10.1016/j.jmrt.2025.05.259_bib94 article-title: Elastic moduli and thermal expansion coefficients of medium-entropy subsystems of the CrMnFeCoNi high-entropy alloy publication-title: J Alloys Compd doi: 10.1016/j.jallcom.2018.02.251 – volume: 10 start-page: 133 year: 2022 ident: 10.1016/j.jmrt.2025.05.259_bib93 article-title: Design of BCC refractory multi-principal element alloys with superior mechanical properties publication-title: Mater Res Lett doi: 10.1080/21663831.2021.2024615 – volume: 62 start-page: 1 year: 2015 ident: 10.1016/j.jmrt.2025.05.259_bib99 article-title: In-situ neutron diffraction studies on high-temperature deformation behavior in a CoCrFeMnNi high entropy alloy publication-title: Intermetallics doi: 10.1016/j.intermet.2015.02.020 – volume: 509 start-page: 6043 year: 2011 ident: 10.1016/j.jmrt.2025.05.259_bib32 article-title: Microstructure and room temperature properties of a high-entropy TaNbHfZrTi alloy publication-title: J Alloys Compd doi: 10.1016/j.jallcom.2011.02.171 – volume: 182 start-page: 235 year: 2020 ident: 10.1016/j.jmrt.2025.05.259_bib20 article-title: Mechanistic origin of high strength in refractory BCC high entropy alloys up to 1900K publication-title: Acta Mater doi: 10.1016/j.actamat.2019.10.015 – volume: 144 start-page: 129 year: 2018 ident: 10.1016/j.jmrt.2025.05.259_bib26 article-title: Composition design of high entropy alloys using the valence electron concentration to balance strength and ductility publication-title: Acta Mater doi: 10.1016/j.actamat.2017.10.058 – volume: 33 year: 2022 ident: 10.1016/j.jmrt.2025.05.259_bib18 article-title: MoNbV, MoNbVTi and MoNbVTiHf multicomponent refractory alloys—compositional modulated mechanical properties investigating publication-title: Mater Today Commun – volume: 175 start-page: 394 year: 2019 ident: 10.1016/j.jmrt.2025.05.259_bib103 article-title: High temperature strength of refractory complex concentrated alloys publication-title: Acta Mater doi: 10.1016/j.actamat.2019.06.032 – volume: 33 start-page: 1097 year: 2024 ident: 10.1016/j.jmrt.2025.05.259_bib12 article-title: A review on recent progress of refractory high entropy alloys: from fundamental research to engineering applications publication-title: J Mater Res Technol doi: 10.1016/j.jmrt.2024.09.131 – volume: 156 start-page: 809 year: 1967 ident: 10.1016/j.jmrt.2025.05.259_bib67 article-title: Coherent-potential model of substitutional disordered alloys publication-title: Phys Rev doi: 10.1103/PhysRev.156.809 – volume: 6 start-page: eaaz4748 year: 2020 ident: 10.1016/j.jmrt.2025.05.259_bib90 article-title: Temperature dependence of elastic and plastic deformation behavior of a refractory high-entropy alloy publication-title: Sci Adv doi: 10.1126/sciadv.aaz4748 – volume: 599 start-page: 19 year: 2014 ident: 10.1016/j.jmrt.2025.05.259_bib91 article-title: Ab initio design of elastically isotropic TiZrNbMoVx high-entropy alloys publication-title: J Alloys Compd doi: 10.1016/j.jallcom.2014.01.237 – volume: 107 year: 2011 ident: 10.1016/j.jmrt.2025.05.259_bib98 article-title: Effect of temperature on the elastic anisotropy of pure Fe and Fe0.9Cr0.1 random alloy publication-title: Phys Rev Lett doi: 10.1103/PhysRevLett.107.205504 – volume: 142 start-page: 196 year: 2023 ident: 10.1016/j.jmrt.2025.05.259_bib3 article-title: Refractory high-entropy alloys: a focused review of preparation methods and properties publication-title: J Mater Sci Technol doi: 10.1016/j.jmst.2022.08.046 – volume: 95 start-page: 59 year: 2018 ident: 10.1016/j.jmrt.2025.05.259_bib35 article-title: (TiZrNbTa)-Mo high-entropy alloys: dependence of microstructure and mechanical properties on Mo concentration and modeling of solid solution strengthening publication-title: Intermetallics doi: 10.1016/j.intermet.2018.01.017 – volume: 42 start-page: 59 year: 1988 ident: 10.1016/j.jmrt.2025.05.259_bib107 article-title: Thirteen ways to look at the correlation coefficient publication-title: Am Statistician doi: 10.2307/2685263 – volume: 179 start-page: 174 year: 2024 ident: 10.1016/j.jmrt.2025.05.259_bib63 article-title: Rapid design and screen high strength U-based high-entropy alloys from first-principles calculations publication-title: J Mater Sci Technol doi: 10.1016/j.jmst.2023.07.077 – volume: 64 year: 2001 ident: 10.1016/j.jmrt.2025.05.259_bib66 article-title: Total-energy method based on the exact muffin-tin orbitals theory publication-title: Phys Rev B doi: 10.1103/PhysRevB.64.014107 – volume: 110 year: 2023 ident: 10.1016/j.jmrt.2025.05.259_bib13 article-title: Latest progress on refractory high entropy alloys: composition, fabrication, post processing, performance, simulation and prospect publication-title: Int J Refract Metals Hard Mater doi: 10.1016/j.ijrmhm.2022.105993 – volume: 6 start-page: 1181 year: 1977 ident: 10.1016/j.jmrt.2025.05.259_bib73 article-title: Elastic properties of zinc: a compilation and a review publication-title: J Phys Chem Ref Data doi: 10.1063/1.555564 – volume: 20 start-page: 917 year: 1972 ident: 10.1016/j.jmrt.2025.05.259_bib79 article-title: Statistical theories of solid solution hardening publication-title: Acta Metall doi: 10.1016/0001-6160(72)90085-5 – volume: 64 start-page: 830 year: 2012 ident: 10.1016/j.jmrt.2025.05.259_bib106 article-title: Alloy design and properties optimization of high-entropy alloys publication-title: Jom doi: 10.1007/s11837-012-0366-5 – volume: 85 year: 2012 ident: 10.1016/j.jmrt.2025.05.259_bib57 article-title: Elastic parameters of paramagnetic iron-based alloys from first-principles calculations publication-title: Phys Rev B – volume: 21 start-page: 433 year: 2011 ident: 10.1016/j.jmrt.2025.05.259_bib24 article-title: Phase stability in high entropy alloys: formation of solid-solution phase or amorphous phase publication-title: Prog Nat Sci Mater Int doi: 10.1016/S1002-0071(12)60080-X – volume: 215 year: 2022 ident: 10.1016/j.jmrt.2025.05.259_bib30 article-title: Harnessing elastic anisotropy to achieve low-modulus refractory high-entropy alloys for biomedical applications publication-title: Mater Des doi: 10.1016/j.matdes.2022.110430 – volume: 121 start-page: 105 year: 2022 ident: 10.1016/j.jmrt.2025.05.259_bib77 article-title: Solid solution strengthening of high-entropy alloys from first-principles study publication-title: J Mater Sci Technol doi: 10.1016/j.jmst.2021.11.076 – volume: 109 year: 2024 ident: 10.1016/j.jmrt.2025.05.259_bib25 article-title: Correlations between valence electron concentration and the phase stability, intrinsic strength, and deformation mechanism in fcc multicomponent alloys publication-title: Phys Rev B doi: 10.1103/PhysRevB.109.024102 – volume: 130 start-page: 95 year: 2024 ident: 10.1016/j.jmrt.2025.05.259_bib14 article-title: Tensile behavior and microstructural evolution of TiMoZrV HEAs: a molecular dynamics study publication-title: Appl Phys A doi: 10.1007/s00339-023-07255-z – volume: 59 start-page: 256 year: 1947 ident: 10.1016/j.jmrt.2025.05.259_bib34 article-title: Dislocations in a simple cubic lattice publication-title: Proc Phys Soc doi: 10.1088/0959-5309/59/2/309 – volume: 5 start-page: 5178 year: 2014 ident: 10.1016/j.jmrt.2025.05.259_bib97 article-title: Temperature-dependent elastic anisotropy and mesoscale deformation in a nanostructured ferritic alloy publication-title: Nat Commun doi: 10.1038/ncomms6178 – year: 2007 ident: 10.1016/j.jmrt.2025.05.259_bib69 – volume: 577 start-page: S147 year: 2013 ident: 10.1016/j.jmrt.2025.05.259_bib76 article-title: Strengthening the alloys with elastic softening in shear modulus C′ publication-title: J Alloys Compd doi: 10.1016/j.jallcom.2012.01.086 – volume: 144 start-page: 853 year: 2018 ident: 10.1016/j.jmrt.2025.05.259_bib51 article-title: Mapping the relationship among composition, stacking fault energy and ductility in Nb alloys: a first-principles study publication-title: Acta Mater doi: 10.1016/j.actamat.2017.11.029 – volume: 128 start-page: 185 year: 2017 ident: 10.1016/j.jmrt.2025.05.259_bib16 article-title: Elastic and thermal properties of refractory high-entropy alloys from first-principles calculations publication-title: Comput Mater Sci doi: 10.1016/j.commatsci.2016.11.035 – volume: 191 start-page: 147 year: 2012 ident: 10.1016/j.jmrt.2025.05.259_bib84 article-title: First-principles study of the structural and elastic properties of Cr2AlX (X=N, C) compounds publication-title: J Solid State Chem doi: 10.1016/j.jssc.2012.03.014 – volume: 977 year: 2024 ident: 10.1016/j.jmrt.2025.05.259_bib95 article-title: Microstructural, phase, and thermophysical stability of CrMoNbV refractory multi-principal element alloys publication-title: J Alloys Compd doi: 10.1016/j.jallcom.2023.173349 – volume: 173 year: 2024 ident: 10.1016/j.jmrt.2025.05.259_bib78 article-title: A computational mechanical constitutive modeling method based on thermally-activated microstructural evolution and strengthening mechanisms publication-title: Int J Plast doi: 10.1016/j.ijplas.2024.103881 – volume: 32 start-page: 925 year: 2019 ident: 10.1016/j.jmrt.2025.05.259_bib105 article-title: A novel series of refractory high-entropy alloys Ti2ZrHf0.5VNbx with high specific yield strength and good ductility publication-title: Acta Metall Sin doi: 10.1007/s40195-019-00921-3 – volume: 33 start-page: 2938 year: 2018 ident: 10.1016/j.jmrt.2025.05.259_bib65 article-title: Elasticity of high-entropy alloys from ab initio theory publication-title: J Mater Res doi: 10.1557/jmr.2018.237 – volume: 760 start-page: 15 year: 2018 ident: 10.1016/j.jmrt.2025.05.259_bib15 article-title: A review on fundamental of high entropy alloys with promising high–temperature properties publication-title: J Alloys Compd doi: 10.1016/j.jallcom.2018.05.067 – volume: 81 year: 2010 ident: 10.1016/j.jmrt.2025.05.259_bib60 article-title: Single-crystal elastic constants of ferromagnetic bcc Fe-based random alloys from first-principles theory publication-title: Phys Rev B doi: 10.1103/PhysRevB.81.184105 – volume: 191 start-page: 131 year: 2021 ident: 10.1016/j.jmrt.2025.05.259_bib89 article-title: Designing VxNbMoTa refractory high-entropy alloys with improved properties for high-temperature applications publication-title: Scr Mater doi: 10.1016/j.scriptamat.2020.09.027 – volume: 12 start-page: 1034 year: 1977 ident: 10.1016/j.jmrt.2025.05.259_bib82 article-title: Multi-component solid solution hardening - Part 2 Agreement with experimental results publication-title: J Mater Sci doi: 10.1007/BF00540988 – volume: 15 start-page: 7102 year: 2024 ident: 10.1016/j.jmrt.2025.05.259_bib48 article-title: Lightweight single-phase Al-based complex concentrated alloy with high specific strength publication-title: Nat Commun doi: 10.1038/s41467-024-51387-6 |
SSID | ssj0001596081 |
Score | 2.3298843 |
Snippet | To rapidly develop high-strength refractory multi-principal element alloys (RMPEAs), we systematically calculate elastic moduli and mechanical properties for a... |
SourceID | doaj crossref elsevier |
SourceType | Open Website Index Database Publisher |
StartPage | 10520 |
SubjectTerms | Ab initio calculations Alloy design High-entropy alloys Mechanical properties Solid solution strengthening |
SummonAdditionalLinks | – databaseName: DOAJ dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwELYQEwyIpygveWBDFk7iRzIWRFUxMFGpmxXHNrSCtmrD0H_PXZygTLCwRpad3Dn57uLvviPktszxeCZT8Ip7xYS2GUP5WyYCt4CXvFSRbfGixhPxPJXTXqsv5IRFeeBouHuvuQSUspnOHeQ6uih1UNqnSZmlHuID_PrygveSqVgfDJF506EU4C9nOpeirZiJ5K755xqJlKlE2c4UhUp7qNSI9_fAqQc4o0Ny0EaKdBjv8Ijs-MUx2e_pB56Q1bCqADZQ7cFR13Ax6DJQlCBmWASyeKvfKSy2bprqbGnDHmSr-H8d5vaRO07x8H27oVhqQsMM4sFuzIffUHBi1fb42pySyejp9XHM2hYKrEqLpGaFdUnIhJalqOBpdWKDQImwNJcBe8bz0nLvywBJSF7lVnnnJFgcEMsl1qUuOyO7i-XCnxNqUXaGO68KZQX40HqnHbZVh3S84LIakLvOhGYVlTJMRyGbGzS4QYMbLg0YfEAe0Mo_I1HlurkAvjet781fvh8Q2fnItAFDDARgqtkvi1_8x-KXZA-njOTHK7Jbr7_8NQQotb1p9uI3n1ng5w priority: 102 providerName: Directory of Open Access Journals |
Title | Accelerated design of high-strength refractory multi-principal element alloys from first-principles calculations |
URI | https://dx.doi.org/10.1016/j.jmrt.2025.05.259 https://doaj.org/article/e705820b378d40279a7f67e21a32e095 |
Volume | 36 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELYqJhgQT1EelQc2ZDUvx8nYVlQVAwtU6mbFsVNSQRqlYei_585JICwMjLH8SM6O787-7jtC7pMIr2f8EH5xE7JAKJ8h_S0LMkeBvnSSsEFbPIeLZfC04qsBmXWxMAirbPf-Zk-3u3VbMm6lOS7zfPwCii0SEYdFh2BFjvswRpViEN9q-nPOwsFGt7lKsT7DBm3sTAPz2nxUCKn0OBJ4ekhZ2tNPlsa_p6Z6qmd-Qo5bm5FOmtc6JQNTnJGjHpPgOSknaQoKBHkfNNUWlUG3GUUyYobhIMW6fqMwWGXT6-ypxRGysjlph75NgyKneA2_31EMOqFZDpZhV-fd7ChMZ9pm-9pdkOX88XW2YG0yBZZ6sVuzWGk38wPBkyCFrxWuygIkC_MinmH2eCdRjjFJBu5IlEYqNFpzIxzQXdpV2tP-JTkotoW5IlQhAY2jTRiHKoDZVEYLjQnWwTGPHZ4OyUMnQlk2nBmyA5NtJApcosClwyUIfEimKOXvmsh3bQu21Vq2Ey7hTTjYKsoXkQaPV8SJyEJhPDfxPQNW4pDwbo7kr-UDXeV_DH79z3Y35BCfGuTjLTmoq09zB9ZJrUbWqx_ZRfgFwSfjwQ |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELYqGIAB8RTl6YENWXUejpOxrahaKF1opW5WHDulFbRVG4b-e-7ygLIwsCZ-5ezcne3vviPkPg7xesYL4Be3AfOl9hjS3zI_5RrsJY-DAm0xCLoj_2ksxjXSrmJhEFZZ6v5Cp-faunzSKKXZWE6njVcwbKEMBSw6BCsK0MO74A1wXNq9cevnoEWAk54nK8UKDGuUwTMFzmv2sUJMpSuQwdNFztItA5Xz-G_ZqS3b0zkih6XTSJvFuI5Jzc5PyMEWleApWTaTBCwIEj8YanJYBl2kFNmIGcaDzCfZG4XOVnl-nQ3NgYRsWRy1Q9u2gJFTvIffrClGndB0Cq5hVebdrinMZ1Km-1qfkVHncdjusjKbAkvcyMlYpI2Ter4UsZ_A10pHpz6yhbmhSDF9PI81tzZOYT8SJqEOrDHCSg7GyzjauMY7JzvzxdxeEKqRgYYbG0SB9mE6tTXSYIZ12JlHXCR18lCJUC0L0gxVoclmCgWuUOCKCwUCr5MWSvm7JBJe5w8Wq4kqZ1zBSAQ4K9qToYEtr4ximQbSuk7suRbcxDoR1RypX-sHmpr-0fnlP-vdkb3u8KWv-r3B8xXZxzcFDPKa7GSrT3sDrkqmb_Ol-AXmHuXv |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Accelerated+design+of+high-strength+refractory+multi-principal+element+alloys+from+first-principles+calculations&rft.jtitle=Journal+of+materials+research+and+technology&rft.au=Fu%2C+Yuling&rft.au=Liu%2C+Pengjing&rft.au=Zhang%2C+Hualei&rft.au=Ding%2C+Xiangdong&rft.date=2025-05-01&rft.pub=Elsevier+B.V&rft.issn=2238-7854&rft.volume=36&rft.spage=10520&rft.epage=10534&rft_id=info:doi/10.1016%2Fj.jmrt.2025.05.259&rft.externalDocID=S2238785425014152 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2238-7854&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2238-7854&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2238-7854&client=summon |