Accelerated design of high-strength refractory multi-principal element alloys from first-principles calculations

To rapidly develop high-strength refractory multi-principal element alloys (RMPEAs), we systematically calculate elastic moduli and mechanical properties for a series of body-centered-cubic (bcc) RMPEAs using the first-principles method. By analyzing equiatomic V33Nb33Mo34 and V25Nb25Mo25X25 (X = Al...

Full description

Saved in:
Bibliographic Details
Published inJournal of materials research and technology Vol. 36; pp. 10520 - 10534
Main Authors Fu, Yuling, Liu, Pengjing, Zhang, Hualei, Ding, Xiangdong, Sun, Jun
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.05.2025
Elsevier
Subjects
Online AccessGet full text
ISSN2238-7854
DOI10.1016/j.jmrt.2025.05.259

Cover

Abstract To rapidly develop high-strength refractory multi-principal element alloys (RMPEAs), we systematically calculate elastic moduli and mechanical properties for a series of body-centered-cubic (bcc) RMPEAs using the first-principles method. By analyzing equiatomic V33Nb33Mo34 and V25Nb25Mo25X25 (X = Al, Ti, Zr, Hf, V, Nb, Ta, Cr, Mo, and W) bcc RMPEAs, we discover that the product of shear modulus (G) and electronegativity difference (δχ), i.e., G × δχ, accurately predicts yield strength (σy). This criterion outperforms other empirical parameters such as valence electron concentration (VEC), G, or δχ alone. Specifically, higher G × δχ correlates with higher σy. The σy of V25Nb25Mo25Cr25 exceeds that of other equiatomic alloys, agreeing with existing experiments, thereby validating the reliability of our approach. Following the G × δχ criterion, we further design non-equiatomic V50-xNb50-xMoxCrx bcc RMPEAs based on V25Nb25Mo25Cr25. We identify V15Nb15Mo35Cr35 as a target RMPEA, which exhibits the highest σy and good high-temperature softening resistance among all considered bcc RMPEAs. The universality of the G × δχ criterion is confirmed not only by current calculations but also by available experiments, as evidenced by the maximum Pearson correlation coefficient between σy and G × δχ. This work provides an effective paradigm for discovering high-strength bcc refractory alloys by strategically optimizing the G × δχ metric. TheG×δχcriterion accelerates the discovery of high-strength bcc RMPEAs. By systematically investigating equiatomic V33Nb33Mo34 and V25Nb25Mo25X25 bcc RMPEAs, it is revealed that the product of shear modulus (G) and electronegativity difference (δχ), i.e., G × δχ, serves as an effective predictor of yield strength (σy). Specifically, higher G × δχ correlates with higher σy. The σy of V25Nb25Mo25Cr25 surpasses that of other equiatomic alloys, agreeing with existing experiments. Guided by the G × δχ criterion, we identify V15Nb15Mo35Cr35 as a target RMPEA, which exhibits the highest σy among all considered bcc RMPEAs. Additionally, the observed decrease in σy may partially arise from the reduction in ΔσNb and ΔσCr. Importantly, the universality of the proposed G × δχ criterion is validated by both our calculations and existing experiments ranging from ternary to senary alloys, including Ti–Zr-based, Ti–Zr-Hf-based, V–Nb-based, and V–Nb–Mo-based systems. [Display omitted]
AbstractList To rapidly develop high-strength refractory multi-principal element alloys (RMPEAs), we systematically calculate elastic moduli and mechanical properties for a series of body-centered-cubic (bcc) RMPEAs using the first-principles method. By analyzing equiatomic V33Nb33Mo34 and V25Nb25Mo25X25 (X = Al, Ti, Zr, Hf, V, Nb, Ta, Cr, Mo, and W) bcc RMPEAs, we discover that the product of shear modulus (G) and electronegativity difference (δχ), i.e., G × δχ, accurately predicts yield strength (σy). This criterion outperforms other empirical parameters such as valence electron concentration (VEC), G, or δχ alone. Specifically, higher G × δχ correlates with higher σy. The σy of V25Nb25Mo25Cr25 exceeds that of other equiatomic alloys, agreeing with existing experiments, thereby validating the reliability of our approach. Following the G × δχ criterion, we further design non-equiatomic V50-xNb50-xMoxCrx bcc RMPEAs based on V25Nb25Mo25Cr25. We identify V15Nb15Mo35Cr35 as a target RMPEA, which exhibits the highest σy and good high-temperature softening resistance among all considered bcc RMPEAs. The universality of the G × δχ criterion is confirmed not only by current calculations but also by available experiments, as evidenced by the maximum Pearson correlation coefficient between σy and G × δχ. This work provides an effective paradigm for discovering high-strength bcc refractory alloys by strategically optimizing the G × δχ metric.
To rapidly develop high-strength refractory multi-principal element alloys (RMPEAs), we systematically calculate elastic moduli and mechanical properties for a series of body-centered-cubic (bcc) RMPEAs using the first-principles method. By analyzing equiatomic V33Nb33Mo34 and V25Nb25Mo25X25 (X = Al, Ti, Zr, Hf, V, Nb, Ta, Cr, Mo, and W) bcc RMPEAs, we discover that the product of shear modulus (G) and electronegativity difference (δχ), i.e., G × δχ, accurately predicts yield strength (σy). This criterion outperforms other empirical parameters such as valence electron concentration (VEC), G, or δχ alone. Specifically, higher G × δχ correlates with higher σy. The σy of V25Nb25Mo25Cr25 exceeds that of other equiatomic alloys, agreeing with existing experiments, thereby validating the reliability of our approach. Following the G × δχ criterion, we further design non-equiatomic V50-xNb50-xMoxCrx bcc RMPEAs based on V25Nb25Mo25Cr25. We identify V15Nb15Mo35Cr35 as a target RMPEA, which exhibits the highest σy and good high-temperature softening resistance among all considered bcc RMPEAs. The universality of the G × δχ criterion is confirmed not only by current calculations but also by available experiments, as evidenced by the maximum Pearson correlation coefficient between σy and G × δχ. This work provides an effective paradigm for discovering high-strength bcc refractory alloys by strategically optimizing the G × δχ metric. TheG×δχcriterion accelerates the discovery of high-strength bcc RMPEAs. By systematically investigating equiatomic V33Nb33Mo34 and V25Nb25Mo25X25 bcc RMPEAs, it is revealed that the product of shear modulus (G) and electronegativity difference (δχ), i.e., G × δχ, serves as an effective predictor of yield strength (σy). Specifically, higher G × δχ correlates with higher σy. The σy of V25Nb25Mo25Cr25 surpasses that of other equiatomic alloys, agreeing with existing experiments. Guided by the G × δχ criterion, we identify V15Nb15Mo35Cr35 as a target RMPEA, which exhibits the highest σy among all considered bcc RMPEAs. Additionally, the observed decrease in σy may partially arise from the reduction in ΔσNb and ΔσCr. Importantly, the universality of the proposed G × δχ criterion is validated by both our calculations and existing experiments ranging from ternary to senary alloys, including Ti–Zr-based, Ti–Zr-Hf-based, V–Nb-based, and V–Nb–Mo-based systems. [Display omitted]
Author Sun, Jun
Liu, Pengjing
Ding, Xiangdong
Fu, Yuling
Zhang, Hualei
Author_xml – sequence: 1
  givenname: Yuling
  surname: Fu
  fullname: Fu, Yuling
– sequence: 2
  givenname: Pengjing
  surname: Liu
  fullname: Liu, Pengjing
– sequence: 3
  givenname: Hualei
  orcidid: 0009-0005-4209-3924
  surname: Zhang
  fullname: Zhang, Hualei
  email: hualei@xjtu.edu.cn
– sequence: 4
  givenname: Xiangdong
  surname: Ding
  fullname: Ding, Xiangdong
  email: dingxd@mail.xjtu.edu.cn
– sequence: 5
  givenname: Jun
  surname: Sun
  fullname: Sun, Jun
BookMark eNp9kE1r3DAQhnVIoWmaP9CT_oDdkWxZMvQSQj8CgV7as5Cl0a6MbC2SUth_X2236bGngWGel3eed-RmTzsS8oFBz4BNH9d-3XLtOXDRg-i5mG_ILeeD6qQS41tyX8oKAEzMEyh2S04P1mLEbCo66rCEw06Tp8dwOHalZtwP9Ugz-mxsTflMt5dYQ3fKYbfhZCJt7IZ7pSbGdC7U57RRH3KprzcRC7Um2pdoakh7eU_eeBML3v-dd-Tnl88_Hr91z9-_Pj0-PHeWz6x28-KYH0YpzGjbL5ItfhynYeJK-AEmAWYBRONHrpRVy4TOCZQwSubY4rgb7sjTNdcls-pWZjP5rJMJ-s8i5YM2uQYbUTdOKA7LIJUbgcvZSD9J5MwMHGEWLYtfs2xOpTQb__IY6It2veqLdn3RrkHopr1Bn64Qti9_Bcy62IC7RRcy2tpqhP_hvwGjiJGj
Cites_doi 10.1126/sciadv.adp7670
10.1103/PhysRevLett.77.3865
10.1080/21663831.2019.1584592
10.1016/j.actamat.2016.08.081
10.1038/s41578-019-0121-4
10.1016/j.jmrt.2024.05.253
10.1080/14786437708235994
10.1016/j.actamat.2018.05.050
10.1016/j.matdes.2015.06.072
10.1080/14786440808520496
10.1016/j.actamat.2020.08.005
10.1016/j.msea.2016.07.102
10.1016/j.jmrt.2024.02.064
10.1038/s41467-024-45639-8
10.1038/nmat3134
10.1016/j.matdes.2022.110820
10.1016/j.jmst.2024.03.027
10.1016/j.actamat.2008.06.006
10.3390/e18050189
10.1179/mst.1992.8.4.345
10.1016/j.jallcom.2022.164186
10.1016/j.intermet.2011.01.004
10.1016/j.msea.2003.10.257
10.1002/andp.19123441404
10.1016/j.jmrt.2024.09.014
10.1016/j.jallcom.2016.10.014
10.1016/j.jallcom.2021.159190
10.1016/j.actamat.2014.04.033
10.1103/PhysRevB.2.3952
10.1016/j.jmst.2022.07.031
10.1016/j.intermet.2010.05.014
10.1016/j.intermet.2017.01.007
10.1016/j.jallcom.2019.151685
10.1088/0370-1298/65/5/307
10.1016/0022-5088(77)90222-3
10.1016/j.actamat.2011.01.048
10.1016/j.actamat.2019.06.006
10.1016/j.msea.2022.143554
10.1103/PhysRevB.5.2382
10.1038/s41524-024-01457-6
10.1002/adma.202102401
10.1016/j.actamat.2019.12.015
10.1016/j.actamat.2019.11.026
10.1016/j.corsci.2022.110805
10.1103/PhysRevLett.112.115503
10.1557/jmr.2018.153
10.1002/adma.202004029
10.1016/j.actamat.2021.116917
10.1038/s41524-023-00993-x
10.1103/PhysRevB.73.104203
10.1016/j.intermet.2015.03.013
10.1016/j.matlet.2016.03.133
10.1007/BF00540987
10.1063/1.3587228
10.1016/j.actamat.2023.118784
10.1088/0959-5309/52/1/305
10.1038/s41467-019-10012-7
10.1002/adem.200300567
10.1016/j.actamat.2022.118132
10.1007/s10659-014-9506-1
10.1038/s41524-017-0024-0
10.1016/j.jallcom.2018.02.251
10.1080/21663831.2021.2024615
10.1016/j.intermet.2015.02.020
10.1016/j.jallcom.2011.02.171
10.1016/j.actamat.2019.10.015
10.1016/j.actamat.2017.10.058
10.1016/j.actamat.2019.06.032
10.1016/j.jmrt.2024.09.131
10.1103/PhysRev.156.809
10.1126/sciadv.aaz4748
10.1016/j.jallcom.2014.01.237
10.1103/PhysRevLett.107.205504
10.1016/j.jmst.2022.08.046
10.1016/j.intermet.2018.01.017
10.2307/2685263
10.1016/j.jmst.2023.07.077
10.1103/PhysRevB.64.014107
10.1016/j.ijrmhm.2022.105993
10.1063/1.555564
10.1016/0001-6160(72)90085-5
10.1007/s11837-012-0366-5
10.1016/S1002-0071(12)60080-X
10.1016/j.matdes.2022.110430
10.1016/j.jmst.2021.11.076
10.1103/PhysRevB.109.024102
10.1007/s00339-023-07255-z
10.1088/0959-5309/59/2/309
10.1038/ncomms6178
10.1016/j.jallcom.2012.01.086
10.1016/j.actamat.2017.11.029
10.1016/j.commatsci.2016.11.035
10.1016/j.jssc.2012.03.014
10.1016/j.jallcom.2023.173349
10.1016/j.ijplas.2024.103881
10.1007/s40195-019-00921-3
10.1557/jmr.2018.237
10.1016/j.jallcom.2018.05.067
10.1103/PhysRevB.81.184105
10.1016/j.scriptamat.2020.09.027
10.1007/BF00540988
10.1038/s41467-024-51387-6
ContentType Journal Article
Copyright 2025 The Author(s)
Copyright_xml – notice: 2025 The Author(s)
DBID 6I.
AAFTH
AAYXX
CITATION
DOA
DOI 10.1016/j.jmrt.2025.05.259
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
DOAJ
DatabaseTitle CrossRef
DatabaseTitleList

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EndPage 10534
ExternalDocumentID oai_doaj_org_article_e705820b378d40279a7f67e21a32e095
10_1016_j_jmrt_2025_05_259
S2238785425014152
GroupedDBID 0R~
4.4
457
5VS
6I.
AAEDT
AAEDW
AAFTH
AAIKJ
AALRI
AAXUO
AAYWO
ABMAC
ABXRA
ACGFS
ADBBV
ADCUG
ADEZE
ADVLN
AEXQZ
AFJKZ
AFTJW
AGHFR
AITUG
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
BCNDV
EBS
EJD
FDB
FNPLU
GROUPED_DOAJ
GX1
HH5
HZ~
IPNFZ
IXB
KQ8
M41
O9-
OK1
RIG
ROL
SSZ
AAYXX
CITATION
ID FETCH-LOGICAL-c291t-9bd1f3475a4c02571bf44636285f30650ab0eeaf4288c8b6edd5e70471d1bd2d3
IEDL.DBID IXB
ISSN 2238-7854
IngestDate Wed Aug 27 01:31:50 EDT 2025
Thu Aug 14 00:20:37 EDT 2025
Sat Sep 13 17:01:32 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords High-entropy alloys
Mechanical properties
Solid solution strengthening
Ab initio calculations
Alloy design
Language English
License This is an open access article under the CC BY license.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c291t-9bd1f3475a4c02571bf44636285f30650ab0eeaf4288c8b6edd5e70471d1bd2d3
ORCID 0009-0005-4209-3924
OpenAccessLink https://www.sciencedirect.com/science/article/pii/S2238785425014152
PageCount 15
ParticipantIDs doaj_primary_oai_doaj_org_article_e705820b378d40279a7f67e21a32e095
crossref_primary_10_1016_j_jmrt_2025_05_259
elsevier_sciencedirect_doi_10_1016_j_jmrt_2025_05_259
PublicationCentury 2000
PublicationDate May-June 2025
2025-05-00
2025-05-01
PublicationDateYYYYMMDD 2025-05-01
PublicationDate_xml – month: 05
  year: 2025
  text: May-June 2025
PublicationDecade 2020
PublicationTitle Journal of materials research and technology
PublicationYear 2025
Publisher Elsevier B.V
Elsevier
Publisher_xml – name: Elsevier B.V
– name: Elsevier
References Pugh (bib85) 1954; 45
Shittu, Rietema, Juhasz, Ellyson, Elder, Bocklund, Sims, Li, Henderson, Berry, Samanta, Voisin, Baker, McCall, Perron, McKeown (bib95) 2024; 977
Wang, Shang, Wang, Han, Darling, Wu, Xie, Senkov, Li, Hui, Dahmen, Liaw, Kecskes, Liu (bib43) 2017; 3
Lu, Hu, Yang (bib61) 2008; 56
Meng, Gao, Liu, Yu (bib18) 2022; 33
Cardarelli (bib47) 2018
Yao, Qiao, Gao, Hawk, Ma, Zhou (bib88) 2016; 18
Yao, Qiao, Gao, Hawk, Ma, Zhou, Zhang (bib44) 2016; 674
Laplanche, Gadaud, Bärsch, Demtröder, Reinhart, Schreuer, George (bib94) 2018; 746
Guo, Yan, Jia, Yang, Li, Zuo (bib25) 2024; 109
Perdew, Burke, Ernzerhof (bib70) 1996; 77
Varshni (bib96) 1970; 2
Senkov, Rao, Butler, Chaput (bib36) 2019; 808
Feng, Feng, Gao, Zhang, Neuefeind, Poplawsky, Ren, An, Widom, Liaw (bib4) 2021; 33
Chen, Zhou, Wang, Liu, Lv, Yang, Xu, Liu (bib15) 2018; 760
Lee, Kim, Chou, Musicó, Gao, An, Song, Chou, Keppens, Chen, Liaw (bib90) 2020; 6
Han, Wu, Zong, Shen, Zhang, Lou, Dong, Zeng, Peng, Hou, Lu, Xiong, Yan, Gou, Yang, Du, Yuan, Zhang, Jiao, Liu, Jiang, Wang, Rempel, Zhang, Zeng, Lu (bib48) 2024; 15
Gyorffy (bib68) 1972; 5
Deshmukh, Ranganathan (bib50) 2025; 204
Wang, Xu (bib35) 2018; 95
Vitos (bib66) 2001; 64
Lee, Chou, Kim, Gao, An, Brechtl, Zhang, Chen, Poplawsky, Song, Ren, Chou, Liaw (bib42) 2020; 32
Tian, Vitos, Lizárraga (bib58) 2021; 5
Zhang, Li, Obbard, Wang, Wang, Hao, Yang (bib75) 2011; 59
Cantor, Chang, Knight, Vincent (bib6) 2004; 375–377
Oh, Kim, Odbadrakh, Ryu, Yoon, Mu, Körmann, Ikeda, Tasan, Raabe, Egami, Park (bib41) 2019; 10
Wang, Ma, Xu, Cheng (bib89) 2021; 191
Rodgers, Nicewander, Blouin (bib107) 1988; 42
Senkov, Wilks, Miracle, Chuang, Liaw (bib10) 2010; 18
Wu, Cai, Chen, Wang, Si, Wang, Wang, Hui (bib45) 2015; 83
Zhuo, Xie, Chen (bib12) 2024; 33
Vitos (bib69) 2007
Miracle, Senkov (bib8) 2017; 122
Ge, Tian, Wang (bib16) 2017; 128
Wu, Liu, Zhang, Li, Zhao (bib53) 2024; 40
Vela, Acemi, Singh, Kirk, Trehern, Norris, Johnson, Karaman, Arróyave (bib21) 2023; 248
Liu, Zhang, Zhang, Wang, Chen, Zhang, Li (bib102) 2017; 694
Zhang, Yang, Liaw (bib106) 2012; 64
Razumovskiy, Ruban, Korzhavyi (bib98) 2011; 107
Juan, Tsai, Tsai, Lin, Wang, Yang, Chen, Lin, Yeh (bib100) 2015; 62
He, Li, Zhao, Zhang, Zhang, Wang, Cheng (bib55) 2024; 33
Shi, Zhu, Zhang, Sun, Ahuja (bib51) 2018; 144
Woo, Huang, Yeh, Choo, Lee, Tu (bib99) 2015; 62
Poletti, Battezzati (bib49) 2014; 75
Wang, Bai, Tang, Li, Liu, Jia, Ye, Zhu (bib29) 2021; 868
Schönecker, Li, Wei, Nozaki, Kato, Vitos, Li (bib30) 2022; 215
Liu, Zhang, Hu, Ding, Sun (bib28) 2024; 29
Gao, Gao, Yang, Zhang (bib56) 2024; 10
Senkov, Wilks, Scott, Miracle (bib11) 2011; 19
Chen, Zhuo (bib13) 2023; 110
Rao, Baruffi, De Luca, Leinenbach, Curtin (bib104) 2022; 237
Huang, Vitos, Kwon, Johansson, Ahuja (bib59) 2006; 73
Zhang, Punkkinen, Johansson, Vitos (bib57) 2012; 85
Debye (bib71) 1912; 344
Qi, Chrzan (bib27) 2014; 112
Greaves, Greer, Lakes, Rouxel (bib86) 2011; 10
Borges, Ritchie, Asta (bib109) 2024; 10
Tian, Varga, Chen, Shen, Vitos (bib91) 2014; 599
Qiao, Ramanujan, Zhu (bib108) 2023; 211
Gypen, Deruyttere (bib81) 1977; 12
Yuan, Wu, Yang, Liang, Lei, Huang, Wang, Liu, An, Wu, Lu (bib23) 2019; 7
Zhang, Punkkinen, Johansson, Hertzman, Vitos (bib60) 2010; 81
Labusch (bib79) 1972; 20
Tong, Zhao, Bei, Egami, Zhang, Zhang (bib92) 2020; 183
Juan, Tseng, Hsu, Tsai, Tsai, Lin, Chen, Lin, Yeh (bib37) 2016; 175
Pettifor (bib87) 1992; 8
Guo, Ng, Lu, Liu (bib22) 2011; 109
Nabarro (bib34) 1947; 59
George, Curtin, Tasan (bib7) 2020; 188
Stoica, Stoica, Miller, Ma (bib97) 2014; 5
Hill (bib72) 1952; 65
Gypen, Deruyttere (bib82) 1977; 12
Soven (bib67) 1967; 156
Yeh, Chen, Lin, Gan, Chin, Shun, Tsau, Chang (bib5) 2004; 6
Zhang, Cai, Sun, Huang, Lu, Wang, Hu, Vitos, Ding (bib77) 2022; 121
Tsuru, Han, Matsuura, Chen, Kishida, Iobzenko, Rao, Woodward, George, Inui (bib52) 2024; 15
George, Raabe, Ritchie (bib9) 2019; 4
Wu, Zhang, Li, Liu, Zhao, Liu (bib54) 2024; 30
Guo, Liu (bib24) 2011; 21
Han, Chen, Zhao, Fan, Yang, Shao, Yao (bib101) 2017; 84
Peierls (bib33) 1940; 52
Xiong, Guo, Zhan, Liu, Cao (bib3) 2023; 142
Hu, Guo, Guo, Luo, Wang (bib40) 2022; 906
Zheng, Lü, Wu, Chen, Guo (bib19) 2022; 850
Cui, Wei, Hu, Feng, Gong (bib84) 2012; 191
Knowles, Howie (bib74) 2014; 120
Feng, Kim, Yu, Chen, Chen, Liaw, An (bib17) 2022; 219
Perepezko (bib1) 2009; 326
Chen, Qin, Zheng, Wang, Su, Chiu, Ding, Guo, Fu (bib26) 2018; 144
Yan, Zhang, Zhang, Liu, Yu, Hu, Yang, Zhang (bib38) 2023; 139
Lai, Vogel, Zhao, Wang, Yi, You, Tong, Li, Yu, Wang (bib93) 2022; 10
Zhang, Sun, Lu, Dong, Ding, Wang, Vitos (bib62) 2018; 155
Qiao, Jiang, Jiao, Lu, Cao, Li (bib105) 2019; 32
Senkov, Miracle, Chaput, Couzinie (bib2) 2018; 33
Huang, Tian, Vitos (bib65) 2018; 33
Coury, Kaufman, Clarke (bib46) 2019; 175
Senkov, Scott, Senkova, Miracle, Woodward (bib32) 2011; 509
Nabarro (bib80) 1977; 35
Huang, Li, Eriksson, Vitos (bib64) 2020; 199
Lei, Sun, Yang, Wen (bib78) 2024; 173
Tandoc, Hu, Qi, Liaw (bib31) 2023; 9
Sun, Zhuo, Chen, Zhan, Jiang (bib14) 2024; 130
Ledbetter (bib73) 1977; 6
Senkov, Gorsse, Miracle (bib103) 2019; 175
Xu, Zhang, Ding, Sun (bib63) 2024; 179
Maresca, Curtin (bib20) 2020; 182
Gypen, Deruyttere (bib83) 1977; 56
Wen, Wang, Zhang, Antonov, Xue, Lookman, Su (bib39) 2021; 212
Kuramoto, Nagasako, Furuta, Horita (bib76) 2013; 577
Zhang (10.1016/j.jmrt.2025.05.259_bib62) 2018; 155
Liu (10.1016/j.jmrt.2025.05.259_bib102) 2017; 694
Senkov (10.1016/j.jmrt.2025.05.259_bib11) 2011; 19
Guo (10.1016/j.jmrt.2025.05.259_bib25) 2024; 109
Shi (10.1016/j.jmrt.2025.05.259_bib51) 2018; 144
Han (10.1016/j.jmrt.2025.05.259_bib101) 2017; 84
Wang (10.1016/j.jmrt.2025.05.259_bib89) 2021; 191
Vela (10.1016/j.jmrt.2025.05.259_bib21) 2023; 248
Feng (10.1016/j.jmrt.2025.05.259_bib4) 2021; 33
Wang (10.1016/j.jmrt.2025.05.259_bib29) 2021; 868
Kuramoto (10.1016/j.jmrt.2025.05.259_bib76) 2013; 577
Juan (10.1016/j.jmrt.2025.05.259_bib100) 2015; 62
Zhuo (10.1016/j.jmrt.2025.05.259_bib12) 2024; 33
Cui (10.1016/j.jmrt.2025.05.259_bib84) 2012; 191
Yeh (10.1016/j.jmrt.2025.05.259_bib5) 2004; 6
Zhang (10.1016/j.jmrt.2025.05.259_bib77) 2022; 121
Wang (10.1016/j.jmrt.2025.05.259_bib43) 2017; 3
Huang (10.1016/j.jmrt.2025.05.259_bib65) 2018; 33
Meng (10.1016/j.jmrt.2025.05.259_bib18) 2022; 33
Tandoc (10.1016/j.jmrt.2025.05.259_bib31) 2023; 9
Gypen (10.1016/j.jmrt.2025.05.259_bib82) 1977; 12
Wang (10.1016/j.jmrt.2025.05.259_bib35) 2018; 95
Rao (10.1016/j.jmrt.2025.05.259_bib104) 2022; 237
Han (10.1016/j.jmrt.2025.05.259_bib48) 2024; 15
Tian (10.1016/j.jmrt.2025.05.259_bib58) 2021; 5
Yan (10.1016/j.jmrt.2025.05.259_bib38) 2023; 139
Chen (10.1016/j.jmrt.2025.05.259_bib13) 2023; 110
Hill (10.1016/j.jmrt.2025.05.259_bib72) 1952; 65
Borges (10.1016/j.jmrt.2025.05.259_bib109) 2024; 10
Senkov (10.1016/j.jmrt.2025.05.259_bib32) 2011; 509
Xiong (10.1016/j.jmrt.2025.05.259_bib3) 2023; 142
Xu (10.1016/j.jmrt.2025.05.259_bib63) 2024; 179
Soven (10.1016/j.jmrt.2025.05.259_bib67) 1967; 156
Debye (10.1016/j.jmrt.2025.05.259_bib71) 1912; 344
Senkov (10.1016/j.jmrt.2025.05.259_bib2) 2018; 33
Gypen (10.1016/j.jmrt.2025.05.259_bib81) 1977; 12
Cantor (10.1016/j.jmrt.2025.05.259_bib6) 2004; 375–377
Chen (10.1016/j.jmrt.2025.05.259_bib26) 2018; 144
Zhang (10.1016/j.jmrt.2025.05.259_bib75) 2011; 59
Feng (10.1016/j.jmrt.2025.05.259_bib17) 2022; 219
Liu (10.1016/j.jmrt.2025.05.259_bib28) 2024; 29
Yao (10.1016/j.jmrt.2025.05.259_bib44) 2016; 674
Guo (10.1016/j.jmrt.2025.05.259_bib24) 2011; 21
Senkov (10.1016/j.jmrt.2025.05.259_bib10) 2010; 18
Zheng (10.1016/j.jmrt.2025.05.259_bib19) 2022; 850
Tian (10.1016/j.jmrt.2025.05.259_bib91) 2014; 599
Lei (10.1016/j.jmrt.2025.05.259_bib78) 2024; 173
Juan (10.1016/j.jmrt.2025.05.259_bib37) 2016; 175
Yao (10.1016/j.jmrt.2025.05.259_bib88) 2016; 18
Qiao (10.1016/j.jmrt.2025.05.259_bib108) 2023; 211
Qi (10.1016/j.jmrt.2025.05.259_bib27) 2014; 112
Coury (10.1016/j.jmrt.2025.05.259_bib46) 2019; 175
Perdew (10.1016/j.jmrt.2025.05.259_bib70) 1996; 77
Zhang (10.1016/j.jmrt.2025.05.259_bib106) 2012; 64
Varshni (10.1016/j.jmrt.2025.05.259_bib96) 1970; 2
Nabarro (10.1016/j.jmrt.2025.05.259_bib34) 1947; 59
Gypen (10.1016/j.jmrt.2025.05.259_bib83) 1977; 56
Wen (10.1016/j.jmrt.2025.05.259_bib39) 2021; 212
Wu (10.1016/j.jmrt.2025.05.259_bib45) 2015; 83
Ledbetter (10.1016/j.jmrt.2025.05.259_bib73) 1977; 6
Schönecker (10.1016/j.jmrt.2025.05.259_bib30) 2022; 215
Maresca (10.1016/j.jmrt.2025.05.259_bib20) 2020; 182
Greaves (10.1016/j.jmrt.2025.05.259_bib86) 2011; 10
Senkov (10.1016/j.jmrt.2025.05.259_bib103) 2019; 175
Wu (10.1016/j.jmrt.2025.05.259_bib53) 2024; 40
Pettifor (10.1016/j.jmrt.2025.05.259_bib87) 1992; 8
Senkov (10.1016/j.jmrt.2025.05.259_bib36) 2019; 808
Yuan (10.1016/j.jmrt.2025.05.259_bib23) 2019; 7
Sun (10.1016/j.jmrt.2025.05.259_bib14) 2024; 130
Deshmukh (10.1016/j.jmrt.2025.05.259_bib50) 2025; 204
Oh (10.1016/j.jmrt.2025.05.259_bib41) 2019; 10
Miracle (10.1016/j.jmrt.2025.05.259_bib8) 2017; 122
Ge (10.1016/j.jmrt.2025.05.259_bib16) 2017; 128
Huang (10.1016/j.jmrt.2025.05.259_bib59) 2006; 73
Poletti (10.1016/j.jmrt.2025.05.259_bib49) 2014; 75
Huang (10.1016/j.jmrt.2025.05.259_bib64) 2020; 199
Zhang (10.1016/j.jmrt.2025.05.259_bib57) 2012; 85
Pugh (10.1016/j.jmrt.2025.05.259_bib85) 1954; 45
George (10.1016/j.jmrt.2025.05.259_bib9) 2019; 4
Perepezko (10.1016/j.jmrt.2025.05.259_bib1) 2009; 326
Rodgers (10.1016/j.jmrt.2025.05.259_bib107) 1988; 42
Qiao (10.1016/j.jmrt.2025.05.259_bib105) 2019; 32
Knowles (10.1016/j.jmrt.2025.05.259_bib74) 2014; 120
Lu (10.1016/j.jmrt.2025.05.259_bib61) 2008; 56
Zhang (10.1016/j.jmrt.2025.05.259_bib60) 2010; 81
Lee (10.1016/j.jmrt.2025.05.259_bib90) 2020; 6
Vitos (10.1016/j.jmrt.2025.05.259_bib66) 2001; 64
George (10.1016/j.jmrt.2025.05.259_bib7) 2020; 188
Razumovskiy (10.1016/j.jmrt.2025.05.259_bib98) 2011; 107
Cardarelli (10.1016/j.jmrt.2025.05.259_bib47) 2018
Shittu (10.1016/j.jmrt.2025.05.259_bib95) 2024; 977
Wu (10.1016/j.jmrt.2025.05.259_bib54) 2024; 30
Laplanche (10.1016/j.jmrt.2025.05.259_bib94) 2018; 746
He (10.1016/j.jmrt.2025.05.259_bib55) 2024; 33
Gyorffy (10.1016/j.jmrt.2025.05.259_bib68) 1972; 5
Hu (10.1016/j.jmrt.2025.05.259_bib40) 2022; 906
Peierls (10.1016/j.jmrt.2025.05.259_bib33) 1940; 52
Stoica (10.1016/j.jmrt.2025.05.259_bib97) 2014; 5
Gao (10.1016/j.jmrt.2025.05.259_bib56) 2024; 10
Guo (10.1016/j.jmrt.2025.05.259_bib22) 2011; 109
Labusch (10.1016/j.jmrt.2025.05.259_bib79) 1972; 20
Woo (10.1016/j.jmrt.2025.05.259_bib99) 2015; 62
Vitos (10.1016/j.jmrt.2025.05.259_bib69) 2007
Nabarro (10.1016/j.jmrt.2025.05.259_bib80) 1977; 35
Lai (10.1016/j.jmrt.2025.05.259_bib93) 2022; 10
Chen (10.1016/j.jmrt.2025.05.259_bib15) 2018; 760
Tsuru (10.1016/j.jmrt.2025.05.259_bib52) 2024; 15
Tong (10.1016/j.jmrt.2025.05.259_bib92) 2020; 183
Lee (10.1016/j.jmrt.2025.05.259_bib42) 2020; 32
References_xml – volume: 33
  year: 2021
  ident: bib4
  article-title: Superior high-temperature strength in a supersaturated refractory high-entropy alloy
  publication-title: Adv Mater
– volume: 179
  start-page: 174
  year: 2024
  end-page: 186
  ident: bib63
  article-title: Rapid design and screen high strength U-based high-entropy alloys from first-principles calculations
  publication-title: J Mater Sci Technol
– volume: 45
  start-page: 823
  year: 1954
  end-page: 843
  ident: bib85
  article-title: Relations between the elastic moduli and the plastic properties of polycrystalline pure metals
  publication-title: Philos Mag
– volume: 509
  start-page: 6043
  year: 2011
  end-page: 6048
  ident: bib32
  article-title: Microstructure and room temperature properties of a high-entropy TaNbHfZrTi alloy
  publication-title: J Alloys Compd
– volume: 32
  year: 2020
  ident: bib42
  article-title: Lattice-distortion-enhanced yield strength in a refractory high-entropy alloy
  publication-title: Adv Mater
– volume: 77
  start-page: 3865
  year: 1996
  end-page: 3868
  ident: bib70
  article-title: Generalized gradient approximation made simple
  publication-title: Phys Rev Lett
– volume: 128
  start-page: 185
  year: 2017
  end-page: 190
  ident: bib16
  article-title: Elastic and thermal properties of refractory high-entropy alloys from first-principles calculations
  publication-title: Comput Mater Sci
– volume: 183
  start-page: 172
  year: 2020
  end-page: 181
  ident: bib92
  article-title: Severe local lattice distortion in Zr- and/or Hf-containing refractory multi-principal element alloys
  publication-title: Acta Mater
– year: 2007
  ident: bib69
  article-title: Computational quantum mechanics for materials engineers: the EMTO method and applications
– volume: 10
  start-page: 2090
  year: 2019
  ident: bib41
  article-title: Engineering atomic-level complexity in high-entropy and complex concentrated alloys
  publication-title: Nat Commun
– volume: 84
  start-page: 153
  year: 2017
  end-page: 157
  ident: bib101
  article-title: Effect of Ti additions on mechanical properties of NbMoTaW and VNbMoTaW refractory high entropy alloys
  publication-title: Intermetallics
– volume: 15
  start-page: 7102
  year: 2024
  ident: bib48
  article-title: Lightweight single-phase Al-based complex concentrated alloy with high specific strength
  publication-title: Nat Commun
– volume: 85
  year: 2012
  ident: bib57
  article-title: Elastic parameters of paramagnetic iron-based alloys from first-principles calculations
  publication-title: Phys Rev B
– volume: 850
  year: 2022
  ident: bib19
  article-title: Development of MoNbVTax refractory high entropy alloy with high strength at elevated temperature
  publication-title: Mater Sci Eng, A
– volume: 204
  start-page: 127
  year: 2025
  end-page: 151
  ident: bib50
  article-title: Recent advances in modelling structure-property correlations in high-entropy alloys
  publication-title: J Mater Sci Technol
– volume: 62
  start-page: 76
  year: 2015
  end-page: 83
  ident: bib100
  article-title: Enhanced mechanical properties of HfMoTaTiZr and HfMoNbTaTiZr refractory high-entropy alloys
  publication-title: Intermetallics
– volume: 32
  start-page: 925
  year: 2019
  end-page: 931
  ident: bib105
  article-title: A novel series of refractory high-entropy alloys Ti
  publication-title: Acta Metall Sin
– volume: 64
  start-page: 830
  year: 2012
  end-page: 838
  ident: bib106
  article-title: Alloy design and properties optimization of high-entropy alloys
  publication-title: Jom
– volume: 6
  start-page: 299
  year: 2004
  end-page: 303
  ident: bib5
  article-title: Nanostructured high-entropy alloys with multiple principal elements: novel alloy design concepts and outcomes
  publication-title: Adv Eng Mater
– volume: 40
  year: 2024
  ident: bib53
  article-title: First-principles calculation for mechanical properties of TiZrHfNbTa series refractory high-entropy alloys
  publication-title: Mater Today Commun
– volume: 120
  start-page: 87
  year: 2014
  end-page: 108
  ident: bib74
  article-title: The directional dependence of elastic stiffness and compliance shear coefficients and shear moduli in cubic materials
  publication-title: J Elasticity
– volume: 6
  start-page: eaaz4748
  year: 2020
  ident: bib90
  article-title: Temperature dependence of elastic and plastic deformation behavior of a refractory high-entropy alloy
  publication-title: Sci Adv
– volume: 112
  year: 2014
  ident: bib27
  article-title: Tuning ideal tensile strengths and intrinsic ductility of bcc refractory alloys
  publication-title: Phys Rev Lett
– volume: 35
  start-page: 613
  year: 1977
  end-page: 622
  ident: bib80
  article-title: The theory of solution hardening
  publication-title: Philos Mag
– volume: 694
  start-page: 869
  year: 2017
  end-page: 876
  ident: bib102
  article-title: Microstructure and mechanical properties of refractory HfMo
  publication-title: J Alloys Compd
– volume: 9
  start-page: 53
  year: 2023
  ident: bib31
  article-title: Mining of lattice distortion, strength, and intrinsic ductility of refractory high entropy alloys
  publication-title: npj Comput Mater
– volume: 42
  start-page: 59
  year: 1988
  end-page: 66
  ident: bib107
  article-title: Thirteen ways to look at the correlation coefficient
  publication-title: Am Statistician
– volume: 52
  start-page: 34
  year: 1940
  end-page: 37
  ident: bib33
  article-title: The size of a dislocation
  publication-title: Proc Phys Soc
– volume: 139
  start-page: 232
  year: 2023
  end-page: 244
  ident: bib38
  article-title: Design and optimization of the composition and mechanical properties for non-equiatomic CoCrNi medium-entropy alloys
  publication-title: J Mater Sci Technol
– volume: 599
  start-page: 19
  year: 2014
  end-page: 25
  ident: bib91
  article-title: Ab initio design of elastically isotropic TiZrNbMoVx high-entropy alloys
  publication-title: J Alloys Compd
– volume: 19
  start-page: 698
  year: 2011
  end-page: 706
  ident: bib11
  article-title: Mechanical properties of Nb
  publication-title: Intermetallics
– volume: 73
  year: 2006
  ident: bib59
  article-title: Thermoelastic properties of random alloys from first-principles theory
  publication-title: Phys Rev B
– volume: 62
  start-page: 1
  year: 2015
  end-page: 6
  ident: bib99
  article-title: In-situ neutron diffraction studies on high-temperature deformation behavior in a CoCrFeMnNi high entropy alloy
  publication-title: Intermetallics
– volume: 107
  year: 2011
  ident: bib98
  article-title: Effect of temperature on the elastic anisotropy of pure Fe and Fe
  publication-title: Phys Rev Lett
– volume: 188
  start-page: 435
  year: 2020
  end-page: 474
  ident: bib7
  article-title: High entropy alloys: a focused review of mechanical properties and deformation mechanisms
  publication-title: Acta Mater
– volume: 83
  start-page: 651
  year: 2015
  end-page: 660
  ident: bib45
  article-title: Phase composition and solid solution strengthening effect in TiZrNbMoV high-entropy alloys
  publication-title: Mater Des
– volume: 175
  start-page: 66
  year: 2019
  end-page: 81
  ident: bib46
  article-title: Solid-solution strengthening in refractory high entropy alloys
  publication-title: Acta Mater
– volume: 3
  start-page: 23
  year: 2017
  ident: bib43
  article-title: Atomic and electronic basis for the serrations of refractory high-entropy alloys
  publication-title: npj Comput Mater
– volume: 248
  year: 2023
  ident: bib21
  article-title: High-throughput exploration of the WMoVTaNbAl refractory multi-principal-element alloys under multiple-property constraints
  publication-title: Acta Mater
– volume: 344
  start-page: 789
  year: 1912
  end-page: 839
  ident: bib71
  article-title: Zur Theorie der spezifischen Wärmen
  publication-title: Ann Phys
– volume: 577
  start-page: S147
  year: 2013
  end-page: S150
  ident: bib76
  article-title: Strengthening the alloys with elastic softening in shear modulus
  publication-title: J Alloys Compd
– volume: 746
  start-page: 244
  year: 2018
  end-page: 255
  ident: bib94
  article-title: Elastic moduli and thermal expansion coefficients of medium-entropy subsystems of the CrMnFeCoNi high-entropy alloy
  publication-title: J Alloys Compd
– volume: 10
  start-page: 133
  year: 2022
  end-page: 140
  ident: bib93
  article-title: Design of BCC refractory multi-principal element alloys with superior mechanical properties
  publication-title: Mater Res Lett
– volume: 5
  start-page: 2382
  year: 1972
  end-page: 2384
  ident: bib68
  article-title: Coherent-potential approximation for a nonoverlapping-muffin-tin-potential model of random substitutional alloys
  publication-title: Phys Rev B
– volume: 64
  year: 2001
  ident: bib66
  article-title: Total-energy method based on the exact muffin-tin orbitals theory
  publication-title: Phys Rev B
– volume: 121
  start-page: 105
  year: 2022
  end-page: 116
  ident: bib77
  article-title: Solid solution strengthening of high-entropy alloys from first-principles study
  publication-title: J Mater Sci Technol
– volume: 191
  start-page: 147
  year: 2012
  end-page: 152
  ident: bib84
  article-title: First-principles study of the structural and elastic properties of Cr
  publication-title: J Solid State Chem
– volume: 21
  start-page: 433
  year: 2011
  end-page: 446
  ident: bib24
  article-title: Phase stability in high entropy alloys: formation of solid-solution phase or amorphous phase
  publication-title: Prog Nat Sci Mater Int
– volume: 144
  start-page: 853
  year: 2018
  end-page: 861
  ident: bib51
  article-title: Mapping the relationship among composition, stacking fault energy and ductility in Nb alloys: a first-principles study
  publication-title: Acta Mater
– volume: 175
  start-page: 284
  year: 2016
  end-page: 287
  ident: bib37
  article-title: Solution strengthening of ductile refractory HfMo
  publication-title: Mater Lett
– volume: 182
  start-page: 235
  year: 2020
  end-page: 249
  ident: bib20
  article-title: Mechanistic origin of high strength in refractory BCC high entropy alloys up to 1900K
  publication-title: Acta Mater
– volume: 10
  year: 2024
  ident: bib109
  article-title: Electronic descriptors for dislocation deformation behavior and intrinsic ductility in bcc high-entropy alloys
  publication-title: Sci Adv
– volume: 15
  start-page: 1706
  year: 2024
  ident: bib52
  article-title: Intrinsic factors responsible for brittle versus ductile nature of refractory high-entropy alloys
  publication-title: Nat Commun
– volume: 20
  start-page: 917
  year: 1972
  end-page: 927
  ident: bib79
  article-title: Statistical theories of solid solution hardening
  publication-title: Acta Metall
– volume: 59
  start-page: 256
  year: 1947
  end-page: 272
  ident: bib34
  article-title: Dislocations in a simple cubic lattice
  publication-title: Proc Phys Soc
– volume: 10
  start-page: 823
  year: 2011
  end-page: 837
  ident: bib86
  article-title: Poisson's ratio and modern materials
  publication-title: Nat Mater
– volume: 95
  start-page: 59
  year: 2018
  end-page: 72
  ident: bib35
  article-title: (TiZrNbTa)-Mo high-entropy alloys: dependence of microstructure and mechanical properties on Mo concentration and modeling of solid solution strengthening
  publication-title: Intermetallics
– volume: 760
  start-page: 15
  year: 2018
  end-page: 30
  ident: bib15
  article-title: A review on fundamental of high entropy alloys with promising high–temperature properties
  publication-title: J Alloys Compd
– volume: 215
  year: 2022
  ident: bib30
  article-title: Harnessing elastic anisotropy to achieve low-modulus refractory high-entropy alloys for biomedical applications
  publication-title: Mater Des
– volume: 59
  start-page: 3081
  year: 2011
  end-page: 3090
  ident: bib75
  article-title: Elastic properties of Ti–24Nb–4Zr–8Sn single crystals with bcc crystal structure
  publication-title: Acta Mater
– volume: 808
  year: 2019
  ident: bib36
  article-title: Ductile Nb alloys with reduced density and cost
  publication-title: J Alloys Compd
– volume: 18
  start-page: 189
  year: 2016
  ident: bib88
  article-title: MoNbTaV medium-entropy alloy
  publication-title: Entropy
– volume: 18
  start-page: 1758
  year: 2010
  end-page: 1765
  ident: bib10
  article-title: Refractory high-entropy alloys
  publication-title: Intermetallics
– volume: 29
  start-page: 3420
  year: 2024
  end-page: 3436
  ident: bib28
  article-title: First-principles design of high strength refractory high-entropy alloys
  publication-title: J Mater Res Technol
– volume: 12
  start-page: 1028
  year: 1977
  end-page: 1033
  ident: bib81
  article-title: Multi-component solid solution hardening - Part 1 Proposed model
  publication-title: J Mater Sci
– volume: 4
  start-page: 515
  year: 2019
  end-page: 534
  ident: bib9
  article-title: High-entropy alloys
  publication-title: Nat Rev Mater
– volume: 109
  year: 2011
  ident: bib22
  article-title: Effect of valence electron concentration on stability of fcc or bcc phase in high entropy alloys
  publication-title: J Appl Phys
– volume: 130
  start-page: 95
  year: 2024
  ident: bib14
  article-title: Tensile behavior and microstructural evolution of TiMoZrV HEAs: a molecular dynamics study
  publication-title: Appl Phys A
– volume: 2
  start-page: 3952
  year: 1970
  end-page: 3958
  ident: bib96
  article-title: Temperature dependence of the elastic constants
  publication-title: Phys Rev B
– volume: 219
  year: 2022
  ident: bib17
  article-title: Elastic behavior of binary and ternary refractory multi-principal-element alloys
  publication-title: Mater Des
– volume: 155
  start-page: 12
  year: 2018
  end-page: 22
  ident: bib62
  article-title: Elastic properties of Al
  publication-title: Acta Mater
– volume: 237
  year: 2022
  ident: bib104
  article-title: Theory-guided design of high-strength, high-melting point, ductile, low-density, single-phase BCC high entropy alloys
  publication-title: Acta Mater
– volume: 674
  start-page: 203
  year: 2016
  end-page: 211
  ident: bib44
  article-title: NbTaV-(Ti,W) refractory high-entropy alloys: experiments and modeling
  publication-title: Mater Sci Eng, A
– volume: 110
  year: 2023
  ident: bib13
  article-title: Latest progress on refractory high entropy alloys: composition, fabrication, post processing, performance, simulation and prospect
  publication-title: Int J Refract Metals Hard Mater
– volume: 56
  start-page: 91
  year: 1977
  end-page: 101
  ident: bib83
  article-title: Multi-component intrinsic solid solution softening and hardening
  publication-title: Journal of the Less Common Metals
– volume: 5
  start-page: 5178
  year: 2014
  ident: bib97
  article-title: Temperature-dependent elastic anisotropy and mesoscale deformation in a nanostructured ferritic alloy
  publication-title: Nat Commun
– volume: 10
  start-page: 256
  year: 2024
  ident: bib56
  article-title: Data-driven design of novel lightweight refractory high-entropy alloys with superb hardness and corrosion resistance
  publication-title: npj Comput Mater
– volume: 375–377
  start-page: 213
  year: 2004
  end-page: 218
  ident: bib6
  article-title: Microstructural development in equiatomic multicomponent alloys
  publication-title: Mater Sci Eng, A
– volume: 109
  year: 2024
  ident: bib25
  article-title: Correlations between valence electron concentration and the phase stability, intrinsic strength, and deformation mechanism in fcc multicomponent alloys
  publication-title: Phys Rev B
– volume: 156
  start-page: 809
  year: 1967
  end-page: 813
  ident: bib67
  article-title: Coherent-potential model of substitutional disordered alloys
  publication-title: Phys Rev
– volume: 8
  start-page: 345
  year: 1992
  end-page: 349
  ident: bib87
  article-title: Theoretical predictions of structure and related properties of intermetallics
  publication-title: Mater Sci Technol
– volume: 5
  year: 2021
  ident: bib58
  article-title: Temperature effects on the elastic and thermodynamic properties of Al
  publication-title: Phys Rev Mater
– volume: 211
  year: 2023
  ident: bib108
  article-title: Machine learning accelerated design of a family of Al
  publication-title: Corros Sci
– volume: 977
  year: 2024
  ident: bib95
  article-title: Microstructural, phase, and thermophysical stability of CrMoNbV refractory multi-principal element alloys
  publication-title: J Alloys Compd
– volume: 122
  start-page: 448
  year: 2017
  end-page: 511
  ident: bib8
  article-title: A critical review of high entropy alloys and related concepts
  publication-title: Acta Mater
– volume: 33
  year: 2022
  ident: bib18
  article-title: MoNbV, MoNbVTi and MoNbVTiHf multicomponent refractory alloys—compositional modulated mechanical properties investigating
  publication-title: Mater Today Commun
– volume: 7
  start-page: 225
  year: 2019
  end-page: 231
  ident: bib23
  article-title: Formation, structure and properties of biocompatible TiZrHfNbTa high-entropy alloys
  publication-title: Mater Res Lett
– volume: 56
  start-page: 4913
  year: 2008
  end-page: 4920
  ident: bib61
  article-title: Composition-dependent elastic properties and electronic structures of off-stoichiometric TiNi from first-principles calculations
  publication-title: Acta Mater
– year: 2018
  ident: bib47
  article-title: Materials handbook
– volume: 65
  start-page: 349
  year: 1952
  end-page: 354
  ident: bib72
  article-title: The elastic behaviour of a crystalline aggregate
  publication-title: Proc Phys Soc
– volume: 868
  year: 2021
  ident: bib29
  article-title: Effect of the valence electron concentration on the yield strength of Ti-Zr-Nb-V high-entropy alloys
  publication-title: J Alloys Compd
– volume: 906
  year: 2022
  ident: bib40
  article-title: Effect of Mo on high-temperature strength of refractory complex concentrated alloys: a perspective of electronegativity difference
  publication-title: J Alloys Compd
– volume: 33
  start-page: 3092
  year: 2018
  end-page: 3128
  ident: bib2
  article-title: Development and exploration of refractory high entropy alloys—a review
  publication-title: J Mater Res
– volume: 212
  year: 2021
  ident: bib39
  article-title: Modeling solid solution strengthening in high entropy alloys using machine learning
  publication-title: Acta Mater
– volume: 142
  start-page: 196
  year: 2023
  end-page: 215
  ident: bib3
  article-title: Refractory high-entropy alloys: a focused review of preparation methods and properties
  publication-title: J Mater Sci Technol
– volume: 12
  start-page: 1034
  year: 1977
  end-page: 1038
  ident: bib82
  article-title: Multi-component solid solution hardening - Part 2 Agreement with experimental results
  publication-title: J Mater Sci
– volume: 173
  year: 2024
  ident: bib78
  article-title: A computational mechanical constitutive modeling method based on thermally-activated microstructural evolution and strengthening mechanisms
  publication-title: Int J Plast
– volume: 175
  start-page: 394
  year: 2019
  end-page: 405
  ident: bib103
  article-title: High temperature strength of refractory complex concentrated alloys
  publication-title: Acta Mater
– volume: 6
  start-page: 1181
  year: 1977
  end-page: 1203
  ident: bib73
  article-title: Elastic properties of zinc: a compilation and a review
  publication-title: J Phys Chem Ref Data
– volume: 33
  start-page: 260
  year: 2024
  end-page: 286
  ident: bib55
  article-title: Machine learning-assisted design of high-entropy alloys with superior mechanical properties
  publication-title: J Mater Res Technol
– volume: 81
  year: 2010
  ident: bib60
  article-title: Single-crystal elastic constants of ferromagnetic bcc Fe-based random alloys from first-principles theory
  publication-title: Phys Rev B
– volume: 199
  start-page: 53
  year: 2020
  end-page: 62
  ident: bib64
  article-title: Chemical ordering controlled thermo-elasticity of AlTiVCr1-xNbx high-entropy alloys
  publication-title: Acta Mater
– volume: 191
  start-page: 131
  year: 2021
  end-page: 136
  ident: bib89
  article-title: Designing V
  publication-title: Scr Mater
– volume: 33
  start-page: 1097
  year: 2024
  end-page: 1129
  ident: bib12
  article-title: A review on recent progress of refractory high entropy alloys: from fundamental research to engineering applications
  publication-title: J Mater Res Technol
– volume: 30
  start-page: 8854
  year: 2024
  end-page: 8861
  ident: bib54
  article-title: Prediction of NbTaTiZr-based high-entropy alloys with high strength or ductility: first-principles calculations
  publication-title: J Mater Res Technol
– volume: 326
  start-page: 1068
  year: 2009
  end-page: 1069
  ident: bib1
  article-title: The hotter the engine, the better
  publication-title: Sci Technol Humanit
– volume: 33
  start-page: 2938
  year: 2018
  end-page: 2953
  ident: bib65
  article-title: Elasticity of high-entropy alloys from ab initio theory
  publication-title: J Mater Res
– volume: 75
  start-page: 297
  year: 2014
  end-page: 306
  ident: bib49
  article-title: Electronic and thermodynamic criteria for the occurrence of high entropy alloys in metallic systems
  publication-title: Acta Mater
– volume: 144
  start-page: 129
  year: 2018
  end-page: 137
  ident: bib26
  article-title: Composition design of high entropy alloys using the valence electron concentration to balance strength and ductility
  publication-title: Acta Mater
– volume: 10
  year: 2024
  ident: 10.1016/j.jmrt.2025.05.259_bib109
  article-title: Electronic descriptors for dislocation deformation behavior and intrinsic ductility in bcc high-entropy alloys
  publication-title: Sci Adv
  doi: 10.1126/sciadv.adp7670
– volume: 77
  start-page: 3865
  year: 1996
  ident: 10.1016/j.jmrt.2025.05.259_bib70
  article-title: Generalized gradient approximation made simple
  publication-title: Phys Rev Lett
  doi: 10.1103/PhysRevLett.77.3865
– volume: 7
  start-page: 225
  year: 2019
  ident: 10.1016/j.jmrt.2025.05.259_bib23
  article-title: Formation, structure and properties of biocompatible TiZrHfNbTa high-entropy alloys
  publication-title: Mater Res Lett
  doi: 10.1080/21663831.2019.1584592
– volume: 122
  start-page: 448
  year: 2017
  ident: 10.1016/j.jmrt.2025.05.259_bib8
  article-title: A critical review of high entropy alloys and related concepts
  publication-title: Acta Mater
  doi: 10.1016/j.actamat.2016.08.081
– volume: 4
  start-page: 515
  year: 2019
  ident: 10.1016/j.jmrt.2025.05.259_bib9
  article-title: High-entropy alloys
  publication-title: Nat Rev Mater
  doi: 10.1038/s41578-019-0121-4
– volume: 30
  start-page: 8854
  year: 2024
  ident: 10.1016/j.jmrt.2025.05.259_bib54
  article-title: Prediction of NbTaTiZr-based high-entropy alloys with high strength or ductility: first-principles calculations
  publication-title: J Mater Res Technol
  doi: 10.1016/j.jmrt.2024.05.253
– volume: 35
  start-page: 613
  year: 1977
  ident: 10.1016/j.jmrt.2025.05.259_bib80
  article-title: The theory of solution hardening
  publication-title: Philos Mag
  doi: 10.1080/14786437708235994
– volume: 155
  start-page: 12
  year: 2018
  ident: 10.1016/j.jmrt.2025.05.259_bib62
  article-title: Elastic properties of AlxCrMnFeCoNi (0 ≤ x ≤ 5) high-entropy alloys from ab initio theory
  publication-title: Acta Mater
  doi: 10.1016/j.actamat.2018.05.050
– volume: 83
  start-page: 651
  year: 2015
  ident: 10.1016/j.jmrt.2025.05.259_bib45
  article-title: Phase composition and solid solution strengthening effect in TiZrNbMoV high-entropy alloys
  publication-title: Mater Des
  doi: 10.1016/j.matdes.2015.06.072
– volume: 45
  start-page: 823
  year: 1954
  ident: 10.1016/j.jmrt.2025.05.259_bib85
  article-title: Relations between the elastic moduli and the plastic properties of polycrystalline pure metals
  publication-title: Philos Mag
  doi: 10.1080/14786440808520496
– year: 2018
  ident: 10.1016/j.jmrt.2025.05.259_bib47
– volume: 199
  start-page: 53
  year: 2020
  ident: 10.1016/j.jmrt.2025.05.259_bib64
  article-title: Chemical ordering controlled thermo-elasticity of AlTiVCr1-xNbx high-entropy alloys
  publication-title: Acta Mater
  doi: 10.1016/j.actamat.2020.08.005
– volume: 674
  start-page: 203
  year: 2016
  ident: 10.1016/j.jmrt.2025.05.259_bib44
  article-title: NbTaV-(Ti,W) refractory high-entropy alloys: experiments and modeling
  publication-title: Mater Sci Eng, A
  doi: 10.1016/j.msea.2016.07.102
– volume: 29
  start-page: 3420
  year: 2024
  ident: 10.1016/j.jmrt.2025.05.259_bib28
  article-title: First-principles design of high strength refractory high-entropy alloys
  publication-title: J Mater Res Technol
  doi: 10.1016/j.jmrt.2024.02.064
– volume: 15
  start-page: 1706
  year: 2024
  ident: 10.1016/j.jmrt.2025.05.259_bib52
  article-title: Intrinsic factors responsible for brittle versus ductile nature of refractory high-entropy alloys
  publication-title: Nat Commun
  doi: 10.1038/s41467-024-45639-8
– volume: 10
  start-page: 823
  year: 2011
  ident: 10.1016/j.jmrt.2025.05.259_bib86
  article-title: Poisson's ratio and modern materials
  publication-title: Nat Mater
  doi: 10.1038/nmat3134
– volume: 219
  year: 2022
  ident: 10.1016/j.jmrt.2025.05.259_bib17
  article-title: Elastic behavior of binary and ternary refractory multi-principal-element alloys
  publication-title: Mater Des
  doi: 10.1016/j.matdes.2022.110820
– volume: 204
  start-page: 127
  year: 2025
  ident: 10.1016/j.jmrt.2025.05.259_bib50
  article-title: Recent advances in modelling structure-property correlations in high-entropy alloys
  publication-title: J Mater Sci Technol
  doi: 10.1016/j.jmst.2024.03.027
– volume: 56
  start-page: 4913
  year: 2008
  ident: 10.1016/j.jmrt.2025.05.259_bib61
  article-title: Composition-dependent elastic properties and electronic structures of off-stoichiometric TiNi from first-principles calculations
  publication-title: Acta Mater
  doi: 10.1016/j.actamat.2008.06.006
– volume: 18
  start-page: 189
  year: 2016
  ident: 10.1016/j.jmrt.2025.05.259_bib88
  article-title: MoNbTaV medium-entropy alloy
  publication-title: Entropy
  doi: 10.3390/e18050189
– volume: 8
  start-page: 345
  year: 1992
  ident: 10.1016/j.jmrt.2025.05.259_bib87
  article-title: Theoretical predictions of structure and related properties of intermetallics
  publication-title: Mater Sci Technol
  doi: 10.1179/mst.1992.8.4.345
– volume: 906
  year: 2022
  ident: 10.1016/j.jmrt.2025.05.259_bib40
  article-title: Effect of Mo on high-temperature strength of refractory complex concentrated alloys: a perspective of electronegativity difference
  publication-title: J Alloys Compd
  doi: 10.1016/j.jallcom.2022.164186
– volume: 19
  start-page: 698
  year: 2011
  ident: 10.1016/j.jmrt.2025.05.259_bib11
  article-title: Mechanical properties of Nb25Mo25Ta25W25 and V20Nb20Mo20Ta20W20 refractory high entropy alloys
  publication-title: Intermetallics
  doi: 10.1016/j.intermet.2011.01.004
– volume: 375–377
  start-page: 213
  year: 2004
  ident: 10.1016/j.jmrt.2025.05.259_bib6
  article-title: Microstructural development in equiatomic multicomponent alloys
  publication-title: Mater Sci Eng, A
  doi: 10.1016/j.msea.2003.10.257
– volume: 344
  start-page: 789
  year: 1912
  ident: 10.1016/j.jmrt.2025.05.259_bib71
  article-title: Zur Theorie der spezifischen Wärmen
  publication-title: Ann Phys
  doi: 10.1002/andp.19123441404
– volume: 33
  start-page: 260
  year: 2024
  ident: 10.1016/j.jmrt.2025.05.259_bib55
  article-title: Machine learning-assisted design of high-entropy alloys with superior mechanical properties
  publication-title: J Mater Res Technol
  doi: 10.1016/j.jmrt.2024.09.014
– volume: 326
  start-page: 1068
  year: 2009
  ident: 10.1016/j.jmrt.2025.05.259_bib1
  article-title: The hotter the engine, the better
  publication-title: Sci Technol Humanit
– volume: 694
  start-page: 869
  year: 2017
  ident: 10.1016/j.jmrt.2025.05.259_bib102
  article-title: Microstructure and mechanical properties of refractory HfMo0.5NbTiV0.5Six high-entropy composites
  publication-title: J Alloys Compd
  doi: 10.1016/j.jallcom.2016.10.014
– volume: 868
  year: 2021
  ident: 10.1016/j.jmrt.2025.05.259_bib29
  article-title: Effect of the valence electron concentration on the yield strength of Ti-Zr-Nb-V high-entropy alloys
  publication-title: J Alloys Compd
  doi: 10.1016/j.jallcom.2021.159190
– volume: 75
  start-page: 297
  year: 2014
  ident: 10.1016/j.jmrt.2025.05.259_bib49
  article-title: Electronic and thermodynamic criteria for the occurrence of high entropy alloys in metallic systems
  publication-title: Acta Mater
  doi: 10.1016/j.actamat.2014.04.033
– volume: 2
  start-page: 3952
  year: 1970
  ident: 10.1016/j.jmrt.2025.05.259_bib96
  article-title: Temperature dependence of the elastic constants
  publication-title: Phys Rev B
  doi: 10.1103/PhysRevB.2.3952
– volume: 139
  start-page: 232
  year: 2023
  ident: 10.1016/j.jmrt.2025.05.259_bib38
  article-title: Design and optimization of the composition and mechanical properties for non-equiatomic CoCrNi medium-entropy alloys
  publication-title: J Mater Sci Technol
  doi: 10.1016/j.jmst.2022.07.031
– volume: 18
  start-page: 1758
  year: 2010
  ident: 10.1016/j.jmrt.2025.05.259_bib10
  article-title: Refractory high-entropy alloys
  publication-title: Intermetallics
  doi: 10.1016/j.intermet.2010.05.014
– volume: 5
  year: 2021
  ident: 10.1016/j.jmrt.2025.05.259_bib58
  article-title: Temperature effects on the elastic and thermodynamic properties of Al1-xLix and Al1-xCrx alloys from first principles
  publication-title: Phys Rev Mater
– volume: 84
  start-page: 153
  year: 2017
  ident: 10.1016/j.jmrt.2025.05.259_bib101
  article-title: Effect of Ti additions on mechanical properties of NbMoTaW and VNbMoTaW refractory high entropy alloys
  publication-title: Intermetallics
  doi: 10.1016/j.intermet.2017.01.007
– volume: 808
  year: 2019
  ident: 10.1016/j.jmrt.2025.05.259_bib36
  article-title: Ductile Nb alloys with reduced density and cost
  publication-title: J Alloys Compd
  doi: 10.1016/j.jallcom.2019.151685
– volume: 65
  start-page: 349
  year: 1952
  ident: 10.1016/j.jmrt.2025.05.259_bib72
  article-title: The elastic behaviour of a crystalline aggregate
  publication-title: Proc Phys Soc
  doi: 10.1088/0370-1298/65/5/307
– volume: 56
  start-page: 91
  year: 1977
  ident: 10.1016/j.jmrt.2025.05.259_bib83
  article-title: Multi-component intrinsic solid solution softening and hardening
  publication-title: Journal of the Less Common Metals
  doi: 10.1016/0022-5088(77)90222-3
– volume: 59
  start-page: 3081
  year: 2011
  ident: 10.1016/j.jmrt.2025.05.259_bib75
  article-title: Elastic properties of Ti–24Nb–4Zr–8Sn single crystals with bcc crystal structure
  publication-title: Acta Mater
  doi: 10.1016/j.actamat.2011.01.048
– volume: 175
  start-page: 66
  year: 2019
  ident: 10.1016/j.jmrt.2025.05.259_bib46
  article-title: Solid-solution strengthening in refractory high entropy alloys
  publication-title: Acta Mater
  doi: 10.1016/j.actamat.2019.06.006
– volume: 850
  year: 2022
  ident: 10.1016/j.jmrt.2025.05.259_bib19
  article-title: Development of MoNbVTax refractory high entropy alloy with high strength at elevated temperature
  publication-title: Mater Sci Eng, A
  doi: 10.1016/j.msea.2022.143554
– volume: 40
  year: 2024
  ident: 10.1016/j.jmrt.2025.05.259_bib53
  article-title: First-principles calculation for mechanical properties of TiZrHfNbTa series refractory high-entropy alloys
  publication-title: Mater Today Commun
– volume: 5
  start-page: 2382
  year: 1972
  ident: 10.1016/j.jmrt.2025.05.259_bib68
  article-title: Coherent-potential approximation for a nonoverlapping-muffin-tin-potential model of random substitutional alloys
  publication-title: Phys Rev B
  doi: 10.1103/PhysRevB.5.2382
– volume: 10
  start-page: 256
  year: 2024
  ident: 10.1016/j.jmrt.2025.05.259_bib56
  article-title: Data-driven design of novel lightweight refractory high-entropy alloys with superb hardness and corrosion resistance
  publication-title: npj Comput Mater
  doi: 10.1038/s41524-024-01457-6
– volume: 33
  year: 2021
  ident: 10.1016/j.jmrt.2025.05.259_bib4
  article-title: Superior high-temperature strength in a supersaturated refractory high-entropy alloy
  publication-title: Adv Mater
  doi: 10.1002/adma.202102401
– volume: 188
  start-page: 435
  year: 2020
  ident: 10.1016/j.jmrt.2025.05.259_bib7
  article-title: High entropy alloys: a focused review of mechanical properties and deformation mechanisms
  publication-title: Acta Mater
  doi: 10.1016/j.actamat.2019.12.015
– volume: 183
  start-page: 172
  year: 2020
  ident: 10.1016/j.jmrt.2025.05.259_bib92
  article-title: Severe local lattice distortion in Zr- and/or Hf-containing refractory multi-principal element alloys
  publication-title: Acta Mater
  doi: 10.1016/j.actamat.2019.11.026
– volume: 211
  year: 2023
  ident: 10.1016/j.jmrt.2025.05.259_bib108
  article-title: Machine learning accelerated design of a family of AlxCrFeNi medium entropy alloys with superior high temperature mechanical and oxidation properties
  publication-title: Corros Sci
  doi: 10.1016/j.corsci.2022.110805
– volume: 112
  year: 2014
  ident: 10.1016/j.jmrt.2025.05.259_bib27
  article-title: Tuning ideal tensile strengths and intrinsic ductility of bcc refractory alloys
  publication-title: Phys Rev Lett
  doi: 10.1103/PhysRevLett.112.115503
– volume: 33
  start-page: 3092
  year: 2018
  ident: 10.1016/j.jmrt.2025.05.259_bib2
  article-title: Development and exploration of refractory high entropy alloys—a review
  publication-title: J Mater Res
  doi: 10.1557/jmr.2018.153
– volume: 32
  year: 2020
  ident: 10.1016/j.jmrt.2025.05.259_bib42
  article-title: Lattice-distortion-enhanced yield strength in a refractory high-entropy alloy
  publication-title: Adv Mater
  doi: 10.1002/adma.202004029
– volume: 212
  year: 2021
  ident: 10.1016/j.jmrt.2025.05.259_bib39
  article-title: Modeling solid solution strengthening in high entropy alloys using machine learning
  publication-title: Acta Mater
  doi: 10.1016/j.actamat.2021.116917
– volume: 9
  start-page: 53
  year: 2023
  ident: 10.1016/j.jmrt.2025.05.259_bib31
  article-title: Mining of lattice distortion, strength, and intrinsic ductility of refractory high entropy alloys
  publication-title: npj Comput Mater
  doi: 10.1038/s41524-023-00993-x
– volume: 73
  year: 2006
  ident: 10.1016/j.jmrt.2025.05.259_bib59
  article-title: Thermoelastic properties of random alloys from first-principles theory
  publication-title: Phys Rev B
  doi: 10.1103/PhysRevB.73.104203
– volume: 62
  start-page: 76
  year: 2015
  ident: 10.1016/j.jmrt.2025.05.259_bib100
  article-title: Enhanced mechanical properties of HfMoTaTiZr and HfMoNbTaTiZr refractory high-entropy alloys
  publication-title: Intermetallics
  doi: 10.1016/j.intermet.2015.03.013
– volume: 175
  start-page: 284
  year: 2016
  ident: 10.1016/j.jmrt.2025.05.259_bib37
  article-title: Solution strengthening of ductile refractory HfMoxNbTaTiZr high-entropy alloys
  publication-title: Mater Lett
  doi: 10.1016/j.matlet.2016.03.133
– volume: 12
  start-page: 1028
  year: 1977
  ident: 10.1016/j.jmrt.2025.05.259_bib81
  article-title: Multi-component solid solution hardening - Part 1 Proposed model
  publication-title: J Mater Sci
  doi: 10.1007/BF00540987
– volume: 109
  year: 2011
  ident: 10.1016/j.jmrt.2025.05.259_bib22
  article-title: Effect of valence electron concentration on stability of fcc or bcc phase in high entropy alloys
  publication-title: J Appl Phys
  doi: 10.1063/1.3587228
– volume: 248
  year: 2023
  ident: 10.1016/j.jmrt.2025.05.259_bib21
  article-title: High-throughput exploration of the WMoVTaNbAl refractory multi-principal-element alloys under multiple-property constraints
  publication-title: Acta Mater
  doi: 10.1016/j.actamat.2023.118784
– volume: 52
  start-page: 34
  year: 1940
  ident: 10.1016/j.jmrt.2025.05.259_bib33
  article-title: The size of a dislocation
  publication-title: Proc Phys Soc
  doi: 10.1088/0959-5309/52/1/305
– volume: 10
  start-page: 2090
  year: 2019
  ident: 10.1016/j.jmrt.2025.05.259_bib41
  article-title: Engineering atomic-level complexity in high-entropy and complex concentrated alloys
  publication-title: Nat Commun
  doi: 10.1038/s41467-019-10012-7
– volume: 6
  start-page: 299
  year: 2004
  ident: 10.1016/j.jmrt.2025.05.259_bib5
  article-title: Nanostructured high-entropy alloys with multiple principal elements: novel alloy design concepts and outcomes
  publication-title: Adv Eng Mater
  doi: 10.1002/adem.200300567
– volume: 237
  year: 2022
  ident: 10.1016/j.jmrt.2025.05.259_bib104
  article-title: Theory-guided design of high-strength, high-melting point, ductile, low-density, single-phase BCC high entropy alloys
  publication-title: Acta Mater
  doi: 10.1016/j.actamat.2022.118132
– volume: 120
  start-page: 87
  year: 2014
  ident: 10.1016/j.jmrt.2025.05.259_bib74
  article-title: The directional dependence of elastic stiffness and compliance shear coefficients and shear moduli in cubic materials
  publication-title: J Elasticity
  doi: 10.1007/s10659-014-9506-1
– volume: 3
  start-page: 23
  year: 2017
  ident: 10.1016/j.jmrt.2025.05.259_bib43
  article-title: Atomic and electronic basis for the serrations of refractory high-entropy alloys
  publication-title: npj Comput Mater
  doi: 10.1038/s41524-017-0024-0
– volume: 746
  start-page: 244
  year: 2018
  ident: 10.1016/j.jmrt.2025.05.259_bib94
  article-title: Elastic moduli and thermal expansion coefficients of medium-entropy subsystems of the CrMnFeCoNi high-entropy alloy
  publication-title: J Alloys Compd
  doi: 10.1016/j.jallcom.2018.02.251
– volume: 10
  start-page: 133
  year: 2022
  ident: 10.1016/j.jmrt.2025.05.259_bib93
  article-title: Design of BCC refractory multi-principal element alloys with superior mechanical properties
  publication-title: Mater Res Lett
  doi: 10.1080/21663831.2021.2024615
– volume: 62
  start-page: 1
  year: 2015
  ident: 10.1016/j.jmrt.2025.05.259_bib99
  article-title: In-situ neutron diffraction studies on high-temperature deformation behavior in a CoCrFeMnNi high entropy alloy
  publication-title: Intermetallics
  doi: 10.1016/j.intermet.2015.02.020
– volume: 509
  start-page: 6043
  year: 2011
  ident: 10.1016/j.jmrt.2025.05.259_bib32
  article-title: Microstructure and room temperature properties of a high-entropy TaNbHfZrTi alloy
  publication-title: J Alloys Compd
  doi: 10.1016/j.jallcom.2011.02.171
– volume: 182
  start-page: 235
  year: 2020
  ident: 10.1016/j.jmrt.2025.05.259_bib20
  article-title: Mechanistic origin of high strength in refractory BCC high entropy alloys up to 1900K
  publication-title: Acta Mater
  doi: 10.1016/j.actamat.2019.10.015
– volume: 144
  start-page: 129
  year: 2018
  ident: 10.1016/j.jmrt.2025.05.259_bib26
  article-title: Composition design of high entropy alloys using the valence electron concentration to balance strength and ductility
  publication-title: Acta Mater
  doi: 10.1016/j.actamat.2017.10.058
– volume: 33
  year: 2022
  ident: 10.1016/j.jmrt.2025.05.259_bib18
  article-title: MoNbV, MoNbVTi and MoNbVTiHf multicomponent refractory alloys—compositional modulated mechanical properties investigating
  publication-title: Mater Today Commun
– volume: 175
  start-page: 394
  year: 2019
  ident: 10.1016/j.jmrt.2025.05.259_bib103
  article-title: High temperature strength of refractory complex concentrated alloys
  publication-title: Acta Mater
  doi: 10.1016/j.actamat.2019.06.032
– volume: 33
  start-page: 1097
  year: 2024
  ident: 10.1016/j.jmrt.2025.05.259_bib12
  article-title: A review on recent progress of refractory high entropy alloys: from fundamental research to engineering applications
  publication-title: J Mater Res Technol
  doi: 10.1016/j.jmrt.2024.09.131
– volume: 156
  start-page: 809
  year: 1967
  ident: 10.1016/j.jmrt.2025.05.259_bib67
  article-title: Coherent-potential model of substitutional disordered alloys
  publication-title: Phys Rev
  doi: 10.1103/PhysRev.156.809
– volume: 6
  start-page: eaaz4748
  year: 2020
  ident: 10.1016/j.jmrt.2025.05.259_bib90
  article-title: Temperature dependence of elastic and plastic deformation behavior of a refractory high-entropy alloy
  publication-title: Sci Adv
  doi: 10.1126/sciadv.aaz4748
– volume: 599
  start-page: 19
  year: 2014
  ident: 10.1016/j.jmrt.2025.05.259_bib91
  article-title: Ab initio design of elastically isotropic TiZrNbMoVx high-entropy alloys
  publication-title: J Alloys Compd
  doi: 10.1016/j.jallcom.2014.01.237
– volume: 107
  year: 2011
  ident: 10.1016/j.jmrt.2025.05.259_bib98
  article-title: Effect of temperature on the elastic anisotropy of pure Fe and Fe0.9Cr0.1 random alloy
  publication-title: Phys Rev Lett
  doi: 10.1103/PhysRevLett.107.205504
– volume: 142
  start-page: 196
  year: 2023
  ident: 10.1016/j.jmrt.2025.05.259_bib3
  article-title: Refractory high-entropy alloys: a focused review of preparation methods and properties
  publication-title: J Mater Sci Technol
  doi: 10.1016/j.jmst.2022.08.046
– volume: 95
  start-page: 59
  year: 2018
  ident: 10.1016/j.jmrt.2025.05.259_bib35
  article-title: (TiZrNbTa)-Mo high-entropy alloys: dependence of microstructure and mechanical properties on Mo concentration and modeling of solid solution strengthening
  publication-title: Intermetallics
  doi: 10.1016/j.intermet.2018.01.017
– volume: 42
  start-page: 59
  year: 1988
  ident: 10.1016/j.jmrt.2025.05.259_bib107
  article-title: Thirteen ways to look at the correlation coefficient
  publication-title: Am Statistician
  doi: 10.2307/2685263
– volume: 179
  start-page: 174
  year: 2024
  ident: 10.1016/j.jmrt.2025.05.259_bib63
  article-title: Rapid design and screen high strength U-based high-entropy alloys from first-principles calculations
  publication-title: J Mater Sci Technol
  doi: 10.1016/j.jmst.2023.07.077
– volume: 64
  year: 2001
  ident: 10.1016/j.jmrt.2025.05.259_bib66
  article-title: Total-energy method based on the exact muffin-tin orbitals theory
  publication-title: Phys Rev B
  doi: 10.1103/PhysRevB.64.014107
– volume: 110
  year: 2023
  ident: 10.1016/j.jmrt.2025.05.259_bib13
  article-title: Latest progress on refractory high entropy alloys: composition, fabrication, post processing, performance, simulation and prospect
  publication-title: Int J Refract Metals Hard Mater
  doi: 10.1016/j.ijrmhm.2022.105993
– volume: 6
  start-page: 1181
  year: 1977
  ident: 10.1016/j.jmrt.2025.05.259_bib73
  article-title: Elastic properties of zinc: a compilation and a review
  publication-title: J Phys Chem Ref Data
  doi: 10.1063/1.555564
– volume: 20
  start-page: 917
  year: 1972
  ident: 10.1016/j.jmrt.2025.05.259_bib79
  article-title: Statistical theories of solid solution hardening
  publication-title: Acta Metall
  doi: 10.1016/0001-6160(72)90085-5
– volume: 64
  start-page: 830
  year: 2012
  ident: 10.1016/j.jmrt.2025.05.259_bib106
  article-title: Alloy design and properties optimization of high-entropy alloys
  publication-title: Jom
  doi: 10.1007/s11837-012-0366-5
– volume: 85
  year: 2012
  ident: 10.1016/j.jmrt.2025.05.259_bib57
  article-title: Elastic parameters of paramagnetic iron-based alloys from first-principles calculations
  publication-title: Phys Rev B
– volume: 21
  start-page: 433
  year: 2011
  ident: 10.1016/j.jmrt.2025.05.259_bib24
  article-title: Phase stability in high entropy alloys: formation of solid-solution phase or amorphous phase
  publication-title: Prog Nat Sci Mater Int
  doi: 10.1016/S1002-0071(12)60080-X
– volume: 215
  year: 2022
  ident: 10.1016/j.jmrt.2025.05.259_bib30
  article-title: Harnessing elastic anisotropy to achieve low-modulus refractory high-entropy alloys for biomedical applications
  publication-title: Mater Des
  doi: 10.1016/j.matdes.2022.110430
– volume: 121
  start-page: 105
  year: 2022
  ident: 10.1016/j.jmrt.2025.05.259_bib77
  article-title: Solid solution strengthening of high-entropy alloys from first-principles study
  publication-title: J Mater Sci Technol
  doi: 10.1016/j.jmst.2021.11.076
– volume: 109
  year: 2024
  ident: 10.1016/j.jmrt.2025.05.259_bib25
  article-title: Correlations between valence electron concentration and the phase stability, intrinsic strength, and deformation mechanism in fcc multicomponent alloys
  publication-title: Phys Rev B
  doi: 10.1103/PhysRevB.109.024102
– volume: 130
  start-page: 95
  year: 2024
  ident: 10.1016/j.jmrt.2025.05.259_bib14
  article-title: Tensile behavior and microstructural evolution of TiMoZrV HEAs: a molecular dynamics study
  publication-title: Appl Phys A
  doi: 10.1007/s00339-023-07255-z
– volume: 59
  start-page: 256
  year: 1947
  ident: 10.1016/j.jmrt.2025.05.259_bib34
  article-title: Dislocations in a simple cubic lattice
  publication-title: Proc Phys Soc
  doi: 10.1088/0959-5309/59/2/309
– volume: 5
  start-page: 5178
  year: 2014
  ident: 10.1016/j.jmrt.2025.05.259_bib97
  article-title: Temperature-dependent elastic anisotropy and mesoscale deformation in a nanostructured ferritic alloy
  publication-title: Nat Commun
  doi: 10.1038/ncomms6178
– year: 2007
  ident: 10.1016/j.jmrt.2025.05.259_bib69
– volume: 577
  start-page: S147
  year: 2013
  ident: 10.1016/j.jmrt.2025.05.259_bib76
  article-title: Strengthening the alloys with elastic softening in shear modulus C′
  publication-title: J Alloys Compd
  doi: 10.1016/j.jallcom.2012.01.086
– volume: 144
  start-page: 853
  year: 2018
  ident: 10.1016/j.jmrt.2025.05.259_bib51
  article-title: Mapping the relationship among composition, stacking fault energy and ductility in Nb alloys: a first-principles study
  publication-title: Acta Mater
  doi: 10.1016/j.actamat.2017.11.029
– volume: 128
  start-page: 185
  year: 2017
  ident: 10.1016/j.jmrt.2025.05.259_bib16
  article-title: Elastic and thermal properties of refractory high-entropy alloys from first-principles calculations
  publication-title: Comput Mater Sci
  doi: 10.1016/j.commatsci.2016.11.035
– volume: 191
  start-page: 147
  year: 2012
  ident: 10.1016/j.jmrt.2025.05.259_bib84
  article-title: First-principles study of the structural and elastic properties of Cr2AlX (X=N, C) compounds
  publication-title: J Solid State Chem
  doi: 10.1016/j.jssc.2012.03.014
– volume: 977
  year: 2024
  ident: 10.1016/j.jmrt.2025.05.259_bib95
  article-title: Microstructural, phase, and thermophysical stability of CrMoNbV refractory multi-principal element alloys
  publication-title: J Alloys Compd
  doi: 10.1016/j.jallcom.2023.173349
– volume: 173
  year: 2024
  ident: 10.1016/j.jmrt.2025.05.259_bib78
  article-title: A computational mechanical constitutive modeling method based on thermally-activated microstructural evolution and strengthening mechanisms
  publication-title: Int J Plast
  doi: 10.1016/j.ijplas.2024.103881
– volume: 32
  start-page: 925
  year: 2019
  ident: 10.1016/j.jmrt.2025.05.259_bib105
  article-title: A novel series of refractory high-entropy alloys Ti2ZrHf0.5VNbx with high specific yield strength and good ductility
  publication-title: Acta Metall Sin
  doi: 10.1007/s40195-019-00921-3
– volume: 33
  start-page: 2938
  year: 2018
  ident: 10.1016/j.jmrt.2025.05.259_bib65
  article-title: Elasticity of high-entropy alloys from ab initio theory
  publication-title: J Mater Res
  doi: 10.1557/jmr.2018.237
– volume: 760
  start-page: 15
  year: 2018
  ident: 10.1016/j.jmrt.2025.05.259_bib15
  article-title: A review on fundamental of high entropy alloys with promising high–temperature properties
  publication-title: J Alloys Compd
  doi: 10.1016/j.jallcom.2018.05.067
– volume: 81
  year: 2010
  ident: 10.1016/j.jmrt.2025.05.259_bib60
  article-title: Single-crystal elastic constants of ferromagnetic bcc Fe-based random alloys from first-principles theory
  publication-title: Phys Rev B
  doi: 10.1103/PhysRevB.81.184105
– volume: 191
  start-page: 131
  year: 2021
  ident: 10.1016/j.jmrt.2025.05.259_bib89
  article-title: Designing VxNbMoTa refractory high-entropy alloys with improved properties for high-temperature applications
  publication-title: Scr Mater
  doi: 10.1016/j.scriptamat.2020.09.027
– volume: 12
  start-page: 1034
  year: 1977
  ident: 10.1016/j.jmrt.2025.05.259_bib82
  article-title: Multi-component solid solution hardening - Part 2 Agreement with experimental results
  publication-title: J Mater Sci
  doi: 10.1007/BF00540988
– volume: 15
  start-page: 7102
  year: 2024
  ident: 10.1016/j.jmrt.2025.05.259_bib48
  article-title: Lightweight single-phase Al-based complex concentrated alloy with high specific strength
  publication-title: Nat Commun
  doi: 10.1038/s41467-024-51387-6
SSID ssj0001596081
Score 2.3298843
Snippet To rapidly develop high-strength refractory multi-principal element alloys (RMPEAs), we systematically calculate elastic moduli and mechanical properties for a...
SourceID doaj
crossref
elsevier
SourceType Open Website
Index Database
Publisher
StartPage 10520
SubjectTerms Ab initio calculations
Alloy design
High-entropy alloys
Mechanical properties
Solid solution strengthening
SummonAdditionalLinks – databaseName: DOAJ
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwELYQEwyIpygveWBDFk7iRzIWRFUxMFGpmxXHNrSCtmrD0H_PXZygTLCwRpad3Dn57uLvviPktszxeCZT8Ip7xYS2GUP5WyYCt4CXvFSRbfGixhPxPJXTXqsv5IRFeeBouHuvuQSUspnOHeQ6uih1UNqnSZmlHuID_PrygveSqVgfDJF506EU4C9nOpeirZiJ5K755xqJlKlE2c4UhUp7qNSI9_fAqQc4o0Ny0EaKdBjv8Ijs-MUx2e_pB56Q1bCqADZQ7cFR13Ax6DJQlCBmWASyeKvfKSy2bprqbGnDHmSr-H8d5vaRO07x8H27oVhqQsMM4sFuzIffUHBi1fb42pySyejp9XHM2hYKrEqLpGaFdUnIhJalqOBpdWKDQImwNJcBe8bz0nLvywBJSF7lVnnnJFgcEMsl1qUuOyO7i-XCnxNqUXaGO68KZQX40HqnHbZVh3S84LIakLvOhGYVlTJMRyGbGzS4QYMbLg0YfEAe0Mo_I1HlurkAvjet781fvh8Q2fnItAFDDARgqtkvi1_8x-KXZA-njOTHK7Jbr7_8NQQotb1p9uI3n1ng5w
  priority: 102
  providerName: Directory of Open Access Journals
Title Accelerated design of high-strength refractory multi-principal element alloys from first-principles calculations
URI https://dx.doi.org/10.1016/j.jmrt.2025.05.259
https://doaj.org/article/e705820b378d40279a7f67e21a32e095
Volume 36
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELYqJhgQT1EelQc2ZDUvx8nYVlQVAwtU6mbFsVNSQRqlYei_585JICwMjLH8SM6O787-7jtC7pMIr2f8EH5xE7JAKJ8h_S0LMkeBvnSSsEFbPIeLZfC04qsBmXWxMAirbPf-Zk-3u3VbMm6lOS7zfPwCii0SEYdFh2BFjvswRpViEN9q-nPOwsFGt7lKsT7DBm3sTAPz2nxUCKn0OBJ4ekhZ2tNPlsa_p6Z6qmd-Qo5bm5FOmtc6JQNTnJGjHpPgOSknaQoKBHkfNNUWlUG3GUUyYobhIMW6fqMwWGXT6-ypxRGysjlph75NgyKneA2_31EMOqFZDpZhV-fd7ChMZ9pm-9pdkOX88XW2YG0yBZZ6sVuzWGk38wPBkyCFrxWuygIkC_MinmH2eCdRjjFJBu5IlEYqNFpzIxzQXdpV2tP-JTkotoW5IlQhAY2jTRiHKoDZVEYLjQnWwTGPHZ4OyUMnQlk2nBmyA5NtJApcosClwyUIfEimKOXvmsh3bQu21Vq2Ey7hTTjYKsoXkQaPV8SJyEJhPDfxPQNW4pDwbo7kr-UDXeV_DH79z3Y35BCfGuTjLTmoq09zB9ZJrUbWqx_ZRfgFwSfjwQ
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELYqGIAB8RTl6YENWXUejpOxrahaKF1opW5WHDulFbRVG4b-e-7ygLIwsCZ-5ezcne3vviPkPg7xesYL4Be3AfOl9hjS3zI_5RrsJY-DAm0xCLoj_2ksxjXSrmJhEFZZ6v5Cp-faunzSKKXZWE6njVcwbKEMBSw6BCsK0MO74A1wXNq9cevnoEWAk54nK8UKDGuUwTMFzmv2sUJMpSuQwdNFztItA5Xz-G_ZqS3b0zkih6XTSJvFuI5Jzc5PyMEWleApWTaTBCwIEj8YanJYBl2kFNmIGcaDzCfZG4XOVnl-nQ3NgYRsWRy1Q9u2gJFTvIffrClGndB0Cq5hVebdrinMZ1Km-1qfkVHncdjusjKbAkvcyMlYpI2Ter4UsZ_A10pHpz6yhbmhSDF9PI81tzZOYT8SJqEOrDHCSg7GyzjauMY7JzvzxdxeEKqRgYYbG0SB9mE6tTXSYIZ12JlHXCR18lCJUC0L0gxVoclmCgWuUOCKCwUCr5MWSvm7JBJe5w8Wq4kqZ1zBSAQ4K9qToYEtr4ximQbSuk7suRbcxDoR1RypX-sHmpr-0fnlP-vdkb3u8KWv-r3B8xXZxzcFDPKa7GSrT3sDrkqmb_Ol-AXmHuXv
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Accelerated+design+of+high-strength+refractory+multi-principal+element+alloys+from+first-principles+calculations&rft.jtitle=Journal+of+materials+research+and+technology&rft.au=Fu%2C+Yuling&rft.au=Liu%2C+Pengjing&rft.au=Zhang%2C+Hualei&rft.au=Ding%2C+Xiangdong&rft.date=2025-05-01&rft.pub=Elsevier+B.V&rft.issn=2238-7854&rft.volume=36&rft.spage=10520&rft.epage=10534&rft_id=info:doi/10.1016%2Fj.jmrt.2025.05.259&rft.externalDocID=S2238785425014152
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2238-7854&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2238-7854&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2238-7854&client=summon