Threshold Rates for Properties of Random Codes
Suppose that <inline-formula> <tex-math notation="LaTeX">\mathcal {P} </tex-math></inline-formula> is a property that may be satisfied by a random code <inline-formula> <tex-math notation="LaTeX">C \subset \Sigma ^{n} </tex-math></inli...
Saved in:
| Published in | IEEE transactions on information theory Vol. 68; no. 2; pp. 905 - 922 |
|---|---|
| Main Authors | , , , , |
| Format | Journal Article |
| Language | English |
| Published |
New York
IEEE
01.02.2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Subjects | |
| Online Access | Get full text |
| ISSN | 0018-9448 1557-9654 |
| DOI | 10.1109/TIT.2021.3123497 |
Cover
| Abstract | Suppose that <inline-formula> <tex-math notation="LaTeX">\mathcal {P} </tex-math></inline-formula> is a property that may be satisfied by a random code <inline-formula> <tex-math notation="LaTeX">C \subset \Sigma ^{n} </tex-math></inline-formula>. For example, for some <inline-formula> <tex-math notation="LaTeX">p \in (0,1) </tex-math></inline-formula>, <inline-formula> <tex-math notation="LaTeX">\mathcal {P} </tex-math></inline-formula> might be the property that there exist three elements of <inline-formula> <tex-math notation="LaTeX">C </tex-math></inline-formula> that lie in some Hamming ball of radius <inline-formula> <tex-math notation="LaTeX">pn </tex-math></inline-formula>. We say that <inline-formula> <tex-math notation="LaTeX">R^{\ast} </tex-math></inline-formula> is the threshold rate for <inline-formula> <tex-math notation="LaTeX">\mathcal {P} </tex-math></inline-formula> if a random code of rate <inline-formula> <tex-math notation="LaTeX">R^{\ast} + \varepsilon </tex-math></inline-formula> is very likely to satisfy <inline-formula> <tex-math notation="LaTeX">\mathcal {P} </tex-math></inline-formula>, while a random code of rate <inline-formula> <tex-math notation="LaTeX">R^{\ast} - \varepsilon </tex-math></inline-formula> is very unlikely to satisfy <inline-formula> <tex-math notation="LaTeX">\mathcal {P} </tex-math></inline-formula>. While random codes are well-studied in coding theory, even the threshold rates for relatively simple properties like the one above are not well understood. We characterize threshold rates for a rich class of properties. These properties, like the example above, are defined by the inclusion of specific sets of codewords which are also suitably "symmetric." For properties in this class, we show that the threshold rate is in fact equal to the lower bound that a simple first-moment calculation obtains. Our techniques not only pin down the threshold rate for the property <inline-formula> <tex-math notation="LaTeX">\mathcal {P} </tex-math></inline-formula> above, they give sharp bounds on the threshold rate for list-recovery in several parameter regimes, as well as an efficient algorithm for estimating the threshold rates for list-recovery in general. |
|---|---|
| AbstractList | Suppose that <inline-formula> <tex-math notation="LaTeX">\mathcal {P} </tex-math></inline-formula> is a property that may be satisfied by a random code <inline-formula> <tex-math notation="LaTeX">C \subset \Sigma ^{n} </tex-math></inline-formula>. For example, for some <inline-formula> <tex-math notation="LaTeX">p \in (0,1) </tex-math></inline-formula>, <inline-formula> <tex-math notation="LaTeX">\mathcal {P} </tex-math></inline-formula> might be the property that there exist three elements of <inline-formula> <tex-math notation="LaTeX">C </tex-math></inline-formula> that lie in some Hamming ball of radius <inline-formula> <tex-math notation="LaTeX">pn </tex-math></inline-formula>. We say that <inline-formula> <tex-math notation="LaTeX">R^{\ast} </tex-math></inline-formula> is the threshold rate for <inline-formula> <tex-math notation="LaTeX">\mathcal {P} </tex-math></inline-formula> if a random code of rate <inline-formula> <tex-math notation="LaTeX">R^{\ast} + \varepsilon </tex-math></inline-formula> is very likely to satisfy <inline-formula> <tex-math notation="LaTeX">\mathcal {P} </tex-math></inline-formula>, while a random code of rate <inline-formula> <tex-math notation="LaTeX">R^{\ast} - \varepsilon </tex-math></inline-formula> is very unlikely to satisfy <inline-formula> <tex-math notation="LaTeX">\mathcal {P} </tex-math></inline-formula>. While random codes are well-studied in coding theory, even the threshold rates for relatively simple properties like the one above are not well understood. We characterize threshold rates for a rich class of properties. These properties, like the example above, are defined by the inclusion of specific sets of codewords which are also suitably "symmetric." For properties in this class, we show that the threshold rate is in fact equal to the lower bound that a simple first-moment calculation obtains. Our techniques not only pin down the threshold rate for the property <inline-formula> <tex-math notation="LaTeX">\mathcal {P} </tex-math></inline-formula> above, they give sharp bounds on the threshold rate for list-recovery in several parameter regimes, as well as an efficient algorithm for estimating the threshold rates for list-recovery in general. Suppose that [Formula Omitted] is a property that may be satisfied by a random code [Formula Omitted]. For example, for some [Formula Omitted], [Formula Omitted] might be the property that there exist three elements of [Formula Omitted] that lie in some Hamming ball of radius [Formula Omitted]. We say that [Formula Omitted] is the threshold rate for [Formula Omitted] if a random code of rate [Formula Omitted] is very likely to satisfy [Formula Omitted], while a random code of rate [Formula Omitted] is very unlikely to satisfy [Formula Omitted]. While random codes are well-studied in coding theory, even the threshold rates for relatively simple properties like the one above are not well understood. We characterize threshold rates for a rich class of properties. These properties, like the example above, are defined by the inclusion of specific sets of codewords which are also suitably “symmetric.” For properties in this class, we show that the threshold rate is in fact equal to the lower bound that a simple first-moment calculation obtains. Our techniques not only pin down the threshold rate for the property [Formula Omitted] above, they give sharp bounds on the threshold rate for list-recovery in several parameter regimes, as well as an efficient algorithm for estimating the threshold rates for list-recovery in general. |
| Author | Mosheiff, Jonathan Wootters, Mary Guruswami, Venkatesan Silas, Shashwat Resch, Nicolas |
| Author_xml | – sequence: 1 givenname: Venkatesan orcidid: 0000-0001-7926-3396 surname: Guruswami fullname: Guruswami, Venkatesan email: venkatg@cs.cmu.edu organization: Computer Science Department, Carnegie Mellon University, Pittsburgh, PA, USA – sequence: 2 givenname: Jonathan surname: Mosheiff fullname: Mosheiff, Jonathan email: jonathanmush@gmail.com organization: School of Computer Science, Carnegie Mellon University, Pittsburgh, PA, USA – sequence: 3 givenname: Nicolas orcidid: 0000-0002-5133-5631 surname: Resch fullname: Resch, Nicolas email: nicolas.resch@cwi.nl organization: Centrum Wiskunde en Informatica, Amsterdam, XG, The Netherlands – sequence: 4 givenname: Shashwat orcidid: 0000-0002-1742-7137 surname: Silas fullname: Silas, Shashwat email: shashwat@alumni.stanford.edu organization: Computer Science Department, Stanford University, Stanford, CA, USA – sequence: 5 givenname: Mary orcidid: 0000-0002-2345-2531 surname: Wootters fullname: Wootters, Mary email: marykw@stanford.edu organization: Computer Science Department and the Department of Electrical Engineering, Stanford University, Stanford, CA, USA |
| BookMark | eNp9kEtLAzEUhYNUsK3uBTcDrmfMO5OlFB-FgiLjOmTyoFPaSU3Shf_elBYXLlxdzuWceznfDEzGMDoAbhFsEILyoVt2DYYYNQRhQqW4AFPEmKglZ3QCphCitpaUtldgltKmSMoQnoKmW0eX1mFrqw-dXap8iNV7DHsX81Bk8GU_2rCrFsG6dA0uvd4md3Oec_D5_NQtXuvV28ty8biqDZYo17I3WPSi11BKyLRzjjLPDbXMWyiRZxYZZLVAxgju2x4ySrAU3BKMOSSWzMH96e4-hq-DS1ltwiGO5aXCHCMhCWZtcfGTy8SQUnRemSHrPIQxRz1sFYLqyEYVNurIRp3ZlCD8E9zHYafj93-Ru1NkKG1-7ZKVfpySHwoLb1Q |
| CODEN | IETTAW |
| CitedBy_id | crossref_primary_10_1109_TIT_2024_3357703 crossref_primary_10_1109_TIT_2021_3127126 crossref_primary_10_1109_TIT_2024_3430842 |
| Cites_doi | 10.1109/TIT.2021.3127126 10.1561/9781933019543 10.1109/TIT.2018.2868957 10.1109/TIT.2020.3041650 10.1109/TIT.2007.903122 10.1137/0607062 10.1016/j.jcta.2021.105580 10.1090/s0894-0347-99-00305-7 10.1561/2200000001 10.1109/18.61123 10.1016/S0195-6698(88)80048-9 10.1137/1.9781611975031.42 10.1007/b104335 10.1145/1538902.1538904 10.4007/annals.2021.194.2.2 10.1007/s00493-023-00014-x 10.1017/CBO9780511814068 10.1137/0605009 10.1007/978-1-4757-6048-4_20 10.1109/TIT.2014.2371915 10.1109/TIT.2014.2343224 10.1109/TIT.2010.2095170 10.1109/ISIT.2018.8437698 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022 |
| DBID | 97E RIA RIE AAYXX CITATION 7SC 7SP 8FD JQ2 L7M L~C L~D |
| DOI | 10.1109/TIT.2021.3123497 |
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
| DatabaseTitle | CrossRef Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Technology Research Database |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Computer Science |
| EISSN | 1557-9654 |
| EndPage | 922 |
| ExternalDocumentID | 10_1109_TIT_2021_3123497 9590564 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: Sloan Research Fellowship – fundername: NSF-BSF grantid: CCF-1814629 – fundername: NSF grantid: CCF-1563742; CCF-1814603 funderid: 10.13039/100000001 – fundername: European Research Council (ERC) H2020 (ALGSTRONGCRYPTO) grantid: 74079 funderid: 10.13039/501100000781 – fundername: Google Graduate Fellowship in Computer Science – fundername: Simons Investigator Award – fundername: NSF-U.S.-Israel Binational Science Foundation (BSF) grantid: CCF-1814629 – fundername: NSF-CAREER grantid: CCF-1844628 |
| GroupedDBID | -~X .DC 0R~ 29I 3EH 4.4 5GY 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABFSI ABQJQ ABVLG ACGFO ACGFS ACGOD ACIWK AENEX AETEA AETIX AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 E.L EBS EJD F5P HZ~ H~9 IAAWW IBMZZ ICLAB IDIHD IFIPE IFJZH IPLJI JAVBF LAI M43 MS~ O9- OCL P2P PQQKQ RIA RIE RNS RXW TAE TN5 VH1 VJK AAYXX CITATION 7SC 7SP 8FD JQ2 L7M L~C L~D |
| ID | FETCH-LOGICAL-c291t-9bc27b7ba09905aeee45f6c4d5fd091f5d1c1da71cc76f8b05432976d322603d3 |
| IEDL.DBID | RIE |
| ISSN | 0018-9448 |
| IngestDate | Mon Jun 30 06:30:55 EDT 2025 Wed Oct 01 02:55:21 EDT 2025 Thu Apr 24 23:01:41 EDT 2025 Wed Aug 27 02:29:09 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 2 |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c291t-9bc27b7ba09905aeee45f6c4d5fd091f5d1c1da71cc76f8b05432976d322603d3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-1742-7137 0000-0002-5133-5631 0000-0001-7926-3396 0000-0002-2345-2531 |
| PQID | 2621793258 |
| PQPubID | 36024 |
| PageCount | 18 |
| ParticipantIDs | crossref_citationtrail_10_1109_TIT_2021_3123497 proquest_journals_2621793258 ieee_primary_9590564 crossref_primary_10_1109_TIT_2021_3123497 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2022-02-01 |
| PublicationDateYYYYMMDD | 2022-02-01 |
| PublicationDate_xml | – month: 02 year: 2022 text: 2022-02-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York |
| PublicationTitle | IEEE transactions on information theory |
| PublicationTitleAbbrev | TIT |
| PublicationYear | 2022 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref12 ref15 ref14 ref30 ref11 ref10 ref2 Mosheiff (ref1) 2019 ref17 ref16 ref19 ref24 Resch (ref29) 2020 Zyablov (ref5) 1981; 17 ref26 ref25 ref20 Guruswami (ref23); 39 ref22 ref21 Erdős (ref13) 1959; 6 Blinovsky (ref18) 1986; 22 ref28 ref27 ref8 ref7 ref9 ref3 ref6 Vadhan (ref4) 2011; 7 |
| References_xml | – ident: ref7 doi: 10.1109/TIT.2021.3127126 – ident: ref27 doi: 10.1561/9781933019543 – ident: ref21 doi: 10.1109/TIT.2018.2868957 – ident: ref17 doi: 10.1109/TIT.2020.3041650 – ident: ref28 doi: 10.1109/TIT.2007.903122 – ident: ref9 doi: 10.1137/0607062 – volume: 6 start-page: 290 issue: 6 year: 1959 ident: ref13 article-title: On random graphs. I publication-title: Publ. Math. Debrecen – ident: ref10 doi: 10.1016/j.jcta.2021.105580 – ident: ref14 doi: 10.1090/s0894-0347-99-00305-7 – volume: 22 start-page: 7 issue: 1 year: 1986 ident: ref18 article-title: Bounds for codes in the case of list decoding of finite volume publication-title: Problems Inf. Transmiss. – ident: ref30 doi: 10.1561/2200000001 – volume: 17 start-page: 29 issue: 4 year: 1981 ident: ref5 article-title: List concatenated decoding publication-title: Problemy Peredachi Informatsii – ident: ref20 doi: 10.1109/18.61123 – year: 2020 ident: ref29 article-title: List-decodable codes: (Randomized) constructions and applications – ident: ref11 doi: 10.1016/S0195-6698(88)80048-9 – ident: ref2 doi: 10.1137/1.9781611975031.42 – ident: ref22 doi: 10.1007/b104335 – volume: 7 start-page: 1 issue: 1 year: 2011 ident: ref4 article-title: Pseudorandomness publication-title: Found. Trends Theor. Comput. Sci. – ident: ref3 doi: 10.1145/1538902.1538904 – year: 2019 ident: ref1 article-title: LDPC codes achieve list decoding capacity publication-title: arXiv:1909.06430 – volume: 39 start-page: 857 issue: 2 volume-title: Proc. Annu. Allerton Conf. Commun. Control Comput. ident: ref23 article-title: Linear-time codes to correct a maximum possible fraction of errors – ident: ref15 doi: 10.4007/annals.2021.194.2.2 – ident: ref12 doi: 10.1007/s00493-023-00014-x – ident: ref26 doi: 10.1017/CBO9780511814068 – ident: ref8 doi: 10.1137/0605009 – ident: ref19 doi: 10.1007/978-1-4757-6048-4_20 – ident: ref24 doi: 10.1109/TIT.2014.2371915 – ident: ref16 doi: 10.1109/TIT.2014.2343224 – ident: ref6 doi: 10.1109/TIT.2010.2095170 – ident: ref25 doi: 10.1109/ISIT.2018.8437698 |
| SSID | ssj0014512 |
| Score | 2.4234297 |
| Snippet | Suppose that <inline-formula> <tex-math notation="LaTeX">\mathcal {P} </tex-math></inline-formula> is a property that may be satisfied by a random code... Suppose that [Formula Omitted] is a property that may be satisfied by a random code [Formula Omitted]. For example, for some [Formula Omitted], [Formula... |
| SourceID | proquest crossref ieee |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 905 |
| SubjectTerms | Algorithms Codes Coding theory Computer science Decoding Linear codes list-decoding and recovery Lower bounds Pins Probabilistic logic random codes Recovery Technological innovation threshold rates |
| Title | Threshold Rates for Properties of Random Codes |
| URI | https://ieeexplore.ieee.org/document/9590564 https://www.proquest.com/docview/2621793258 |
| Volume | 68 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 1557-9654 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0014512 issn: 0018-9448 databaseCode: RIE dateStart: 19630101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8NAEB5qT3qw2ipWq-TgRTBpst3N4yjFUoWKSAq9hezroibSphd_vbN5UVTEWwizMOzs7H4zs_sNwLUfCoQNVNuGzcymKmA2D5myU0059xQlkpvUwOLJny_p44qtOnDbvoVRSpWXz5RjPstavszF1qTKxhGL8Lyme7AXhH71VqutGFDmVczgHjowxhxNSdKNxvFDjIEg8TA-RbUMvdPOEVT2VPmxEZeny6wHi0av6lLJq7MtuCM-v1E2_lfxIzisYaZ1V62LY-iorA-9poWDVXt0Hw52-AgH4MRo2Y0pSFkvBoNaiGitZ5OuXxveVSvX-D-T-bs1zaXanMBydh9P53bdUMEWJPIKO-KCBDzgqamGsRTVpEz7gkqmJeIGzaQnPJkGnhCBr0OOcG5CEK9I9HrfncjJKXSzPFNnYGklmTRiiNgwBNURAomQY_DlKiFdnQ5h3MxxImq2cdP04i0pow43StAqibFKUltlCDftiI-KaeMP2YGZ5Faunt8hjBozJrUrbhLiE7MJERae_z7qAvaJedNQXsUeQbdYb9UlIo2CX5VL7Au4J82o |
| linkProvider | IEEE |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LSwMxEB5qPagHq61iteoevAhuu5sm-zhKsbTaFpEt9LZsXhe1K31c_PVO9lGKinhblgkMmUzyzUzyDcCNFwiEDVTbhs3MpspnNg-YshNNOXcVJZKb1MB44g2m9HHGZhW427yFUUpll89U23xmtXyZirVJlXVCFuJ5TXdgl1FKWf5aa1MzoMzNucFddGGMOsqipBN2omGEoSBxMUJFxQzB09YhlHVV-bEVZ-dLvwbjUrP8Wslre73ibfH5jbTxv6ofwWEBNK37fGUcQ0XN61ArmzhYhU_X4WCLkbAB7QhtuzQlKevFoFALMa31bBL2C8O8aqUa_89l-m71UqmWJzDtP0S9gV20VLAFCd2VHXJBfO7zxNTDWIJqUqY9QSXTEpGDZtIVrkx8Vwjf0wFHQNcliFgk-r3ndGX3FKrzdK7OwNJKMmnEELNhEKpDhBIBx_DLUUI6OmlCp5zjWBR846btxVucxR1OGKNVYmOVuLBKE243Iz5yro0_ZBtmkjdyxfw2oVWaMS6ccRkTj5htiLDg_PdR17A3iMajeDScPF3APjEvHLKL2S2orhZrdYm4Y8WvsuX2Bar60PU |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Threshold+Rates+for+Properties+of+Random+Codes&rft.jtitle=IEEE+transactions+on+information+theory&rft.au=Guruswami%2C+Venkatesan&rft.au=Mosheiff%2C+Jonathan&rft.au=Resch%2C+Nicolas&rft.au=Silas%2C+Shashwat&rft.date=2022-02-01&rft.issn=0018-9448&rft.eissn=1557-9654&rft.volume=68&rft.issue=2&rft.spage=905&rft.epage=922&rft_id=info:doi/10.1109%2FTIT.2021.3123497&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TIT_2021_3123497 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0018-9448&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0018-9448&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0018-9448&client=summon |