Threshold Rates for Properties of Random Codes

Suppose that <inline-formula> <tex-math notation="LaTeX">\mathcal {P} </tex-math></inline-formula> is a property that may be satisfied by a random code <inline-formula> <tex-math notation="LaTeX">C \subset \Sigma ^{n} </tex-math></inli...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on information theory Vol. 68; no. 2; pp. 905 - 922
Main Authors Guruswami, Venkatesan, Mosheiff, Jonathan, Resch, Nicolas, Silas, Shashwat, Wootters, Mary
Format Journal Article
LanguageEnglish
Published New York IEEE 01.02.2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN0018-9448
1557-9654
DOI10.1109/TIT.2021.3123497

Cover

Abstract Suppose that <inline-formula> <tex-math notation="LaTeX">\mathcal {P} </tex-math></inline-formula> is a property that may be satisfied by a random code <inline-formula> <tex-math notation="LaTeX">C \subset \Sigma ^{n} </tex-math></inline-formula>. For example, for some <inline-formula> <tex-math notation="LaTeX">p \in (0,1) </tex-math></inline-formula>, <inline-formula> <tex-math notation="LaTeX">\mathcal {P} </tex-math></inline-formula> might be the property that there exist three elements of <inline-formula> <tex-math notation="LaTeX">C </tex-math></inline-formula> that lie in some Hamming ball of radius <inline-formula> <tex-math notation="LaTeX">pn </tex-math></inline-formula>. We say that <inline-formula> <tex-math notation="LaTeX">R^{\ast} </tex-math></inline-formula> is the threshold rate for <inline-formula> <tex-math notation="LaTeX">\mathcal {P} </tex-math></inline-formula> if a random code of rate <inline-formula> <tex-math notation="LaTeX">R^{\ast} + \varepsilon </tex-math></inline-formula> is very likely to satisfy <inline-formula> <tex-math notation="LaTeX">\mathcal {P} </tex-math></inline-formula>, while a random code of rate <inline-formula> <tex-math notation="LaTeX">R^{\ast} - \varepsilon </tex-math></inline-formula> is very unlikely to satisfy <inline-formula> <tex-math notation="LaTeX">\mathcal {P} </tex-math></inline-formula>. While random codes are well-studied in coding theory, even the threshold rates for relatively simple properties like the one above are not well understood. We characterize threshold rates for a rich class of properties. These properties, like the example above, are defined by the inclusion of specific sets of codewords which are also suitably "symmetric." For properties in this class, we show that the threshold rate is in fact equal to the lower bound that a simple first-moment calculation obtains. Our techniques not only pin down the threshold rate for the property <inline-formula> <tex-math notation="LaTeX">\mathcal {P} </tex-math></inline-formula> above, they give sharp bounds on the threshold rate for list-recovery in several parameter regimes, as well as an efficient algorithm for estimating the threshold rates for list-recovery in general.
AbstractList Suppose that <inline-formula> <tex-math notation="LaTeX">\mathcal {P} </tex-math></inline-formula> is a property that may be satisfied by a random code <inline-formula> <tex-math notation="LaTeX">C \subset \Sigma ^{n} </tex-math></inline-formula>. For example, for some <inline-formula> <tex-math notation="LaTeX">p \in (0,1) </tex-math></inline-formula>, <inline-formula> <tex-math notation="LaTeX">\mathcal {P} </tex-math></inline-formula> might be the property that there exist three elements of <inline-formula> <tex-math notation="LaTeX">C </tex-math></inline-formula> that lie in some Hamming ball of radius <inline-formula> <tex-math notation="LaTeX">pn </tex-math></inline-formula>. We say that <inline-formula> <tex-math notation="LaTeX">R^{\ast} </tex-math></inline-formula> is the threshold rate for <inline-formula> <tex-math notation="LaTeX">\mathcal {P} </tex-math></inline-formula> if a random code of rate <inline-formula> <tex-math notation="LaTeX">R^{\ast} + \varepsilon </tex-math></inline-formula> is very likely to satisfy <inline-formula> <tex-math notation="LaTeX">\mathcal {P} </tex-math></inline-formula>, while a random code of rate <inline-formula> <tex-math notation="LaTeX">R^{\ast} - \varepsilon </tex-math></inline-formula> is very unlikely to satisfy <inline-formula> <tex-math notation="LaTeX">\mathcal {P} </tex-math></inline-formula>. While random codes are well-studied in coding theory, even the threshold rates for relatively simple properties like the one above are not well understood. We characterize threshold rates for a rich class of properties. These properties, like the example above, are defined by the inclusion of specific sets of codewords which are also suitably "symmetric." For properties in this class, we show that the threshold rate is in fact equal to the lower bound that a simple first-moment calculation obtains. Our techniques not only pin down the threshold rate for the property <inline-formula> <tex-math notation="LaTeX">\mathcal {P} </tex-math></inline-formula> above, they give sharp bounds on the threshold rate for list-recovery in several parameter regimes, as well as an efficient algorithm for estimating the threshold rates for list-recovery in general.
Suppose that [Formula Omitted] is a property that may be satisfied by a random code [Formula Omitted]. For example, for some [Formula Omitted], [Formula Omitted] might be the property that there exist three elements of [Formula Omitted] that lie in some Hamming ball of radius [Formula Omitted]. We say that [Formula Omitted] is the threshold rate for [Formula Omitted] if a random code of rate [Formula Omitted] is very likely to satisfy [Formula Omitted], while a random code of rate [Formula Omitted] is very unlikely to satisfy [Formula Omitted]. While random codes are well-studied in coding theory, even the threshold rates for relatively simple properties like the one above are not well understood. We characterize threshold rates for a rich class of properties. These properties, like the example above, are defined by the inclusion of specific sets of codewords which are also suitably “symmetric.” For properties in this class, we show that the threshold rate is in fact equal to the lower bound that a simple first-moment calculation obtains. Our techniques not only pin down the threshold rate for the property [Formula Omitted] above, they give sharp bounds on the threshold rate for list-recovery in several parameter regimes, as well as an efficient algorithm for estimating the threshold rates for list-recovery in general.
Author Mosheiff, Jonathan
Wootters, Mary
Guruswami, Venkatesan
Silas, Shashwat
Resch, Nicolas
Author_xml – sequence: 1
  givenname: Venkatesan
  orcidid: 0000-0001-7926-3396
  surname: Guruswami
  fullname: Guruswami, Venkatesan
  email: venkatg@cs.cmu.edu
  organization: Computer Science Department, Carnegie Mellon University, Pittsburgh, PA, USA
– sequence: 2
  givenname: Jonathan
  surname: Mosheiff
  fullname: Mosheiff, Jonathan
  email: jonathanmush@gmail.com
  organization: School of Computer Science, Carnegie Mellon University, Pittsburgh, PA, USA
– sequence: 3
  givenname: Nicolas
  orcidid: 0000-0002-5133-5631
  surname: Resch
  fullname: Resch, Nicolas
  email: nicolas.resch@cwi.nl
  organization: Centrum Wiskunde en Informatica, Amsterdam, XG, The Netherlands
– sequence: 4
  givenname: Shashwat
  orcidid: 0000-0002-1742-7137
  surname: Silas
  fullname: Silas, Shashwat
  email: shashwat@alumni.stanford.edu
  organization: Computer Science Department, Stanford University, Stanford, CA, USA
– sequence: 5
  givenname: Mary
  orcidid: 0000-0002-2345-2531
  surname: Wootters
  fullname: Wootters, Mary
  email: marykw@stanford.edu
  organization: Computer Science Department and the Department of Electrical Engineering, Stanford University, Stanford, CA, USA
BookMark eNp9kEtLAzEUhYNUsK3uBTcDrmfMO5OlFB-FgiLjOmTyoFPaSU3Shf_elBYXLlxdzuWceznfDEzGMDoAbhFsEILyoVt2DYYYNQRhQqW4AFPEmKglZ3QCphCitpaUtldgltKmSMoQnoKmW0eX1mFrqw-dXap8iNV7DHsX81Bk8GU_2rCrFsG6dA0uvd4md3Oec_D5_NQtXuvV28ty8biqDZYo17I3WPSi11BKyLRzjjLPDbXMWyiRZxYZZLVAxgju2x4ySrAU3BKMOSSWzMH96e4-hq-DS1ltwiGO5aXCHCMhCWZtcfGTy8SQUnRemSHrPIQxRz1sFYLqyEYVNurIRp3ZlCD8E9zHYafj93-Ru1NkKG1-7ZKVfpySHwoLb1Q
CODEN IETTAW
CitedBy_id crossref_primary_10_1109_TIT_2024_3357703
crossref_primary_10_1109_TIT_2021_3127126
crossref_primary_10_1109_TIT_2024_3430842
Cites_doi 10.1109/TIT.2021.3127126
10.1561/9781933019543
10.1109/TIT.2018.2868957
10.1109/TIT.2020.3041650
10.1109/TIT.2007.903122
10.1137/0607062
10.1016/j.jcta.2021.105580
10.1090/s0894-0347-99-00305-7
10.1561/2200000001
10.1109/18.61123
10.1016/S0195-6698(88)80048-9
10.1137/1.9781611975031.42
10.1007/b104335
10.1145/1538902.1538904
10.4007/annals.2021.194.2.2
10.1007/s00493-023-00014-x
10.1017/CBO9780511814068
10.1137/0605009
10.1007/978-1-4757-6048-4_20
10.1109/TIT.2014.2371915
10.1109/TIT.2014.2343224
10.1109/TIT.2010.2095170
10.1109/ISIT.2018.8437698
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
DOI 10.1109/TIT.2021.3123497
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Technology Research Database
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
EISSN 1557-9654
EndPage 922
ExternalDocumentID 10_1109_TIT_2021_3123497
9590564
Genre orig-research
GrantInformation_xml – fundername: Sloan Research Fellowship
– fundername: NSF-BSF
  grantid: CCF-1814629
– fundername: NSF
  grantid: CCF-1563742; CCF-1814603
  funderid: 10.13039/100000001
– fundername: European Research Council (ERC) H2020 (ALGSTRONGCRYPTO)
  grantid: 74079
  funderid: 10.13039/501100000781
– fundername: Google Graduate Fellowship in Computer Science
– fundername: Simons Investigator Award
– fundername: NSF-U.S.-Israel Binational Science Foundation (BSF)
  grantid: CCF-1814629
– fundername: NSF-CAREER
  grantid: CCF-1844628
GroupedDBID -~X
.DC
0R~
29I
3EH
4.4
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABFSI
ABQJQ
ABVLG
ACGFO
ACGFS
ACGOD
ACIWK
AENEX
AETEA
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
E.L
EBS
EJD
F5P
HZ~
H~9
IAAWW
IBMZZ
ICLAB
IDIHD
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
MS~
O9-
OCL
P2P
PQQKQ
RIA
RIE
RNS
RXW
TAE
TN5
VH1
VJK
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c291t-9bc27b7ba09905aeee45f6c4d5fd091f5d1c1da71cc76f8b05432976d322603d3
IEDL.DBID RIE
ISSN 0018-9448
IngestDate Mon Jun 30 06:30:55 EDT 2025
Wed Oct 01 02:55:21 EDT 2025
Thu Apr 24 23:01:41 EDT 2025
Wed Aug 27 02:29:09 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c291t-9bc27b7ba09905aeee45f6c4d5fd091f5d1c1da71cc76f8b05432976d322603d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-1742-7137
0000-0002-5133-5631
0000-0001-7926-3396
0000-0002-2345-2531
PQID 2621793258
PQPubID 36024
PageCount 18
ParticipantIDs crossref_citationtrail_10_1109_TIT_2021_3123497
proquest_journals_2621793258
ieee_primary_9590564
crossref_primary_10_1109_TIT_2021_3123497
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-02-01
PublicationDateYYYYMMDD 2022-02-01
PublicationDate_xml – month: 02
  year: 2022
  text: 2022-02-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on information theory
PublicationTitleAbbrev TIT
PublicationYear 2022
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref12
ref15
ref14
ref30
ref11
ref10
ref2
Mosheiff (ref1) 2019
ref17
ref16
ref19
ref24
Resch (ref29) 2020
Zyablov (ref5) 1981; 17
ref26
ref25
ref20
Guruswami (ref23); 39
ref22
ref21
Erdős (ref13) 1959; 6
Blinovsky (ref18) 1986; 22
ref28
ref27
ref8
ref7
ref9
ref3
ref6
Vadhan (ref4) 2011; 7
References_xml – ident: ref7
  doi: 10.1109/TIT.2021.3127126
– ident: ref27
  doi: 10.1561/9781933019543
– ident: ref21
  doi: 10.1109/TIT.2018.2868957
– ident: ref17
  doi: 10.1109/TIT.2020.3041650
– ident: ref28
  doi: 10.1109/TIT.2007.903122
– ident: ref9
  doi: 10.1137/0607062
– volume: 6
  start-page: 290
  issue: 6
  year: 1959
  ident: ref13
  article-title: On random graphs. I
  publication-title: Publ. Math. Debrecen
– ident: ref10
  doi: 10.1016/j.jcta.2021.105580
– ident: ref14
  doi: 10.1090/s0894-0347-99-00305-7
– volume: 22
  start-page: 7
  issue: 1
  year: 1986
  ident: ref18
  article-title: Bounds for codes in the case of list decoding of finite volume
  publication-title: Problems Inf. Transmiss.
– ident: ref30
  doi: 10.1561/2200000001
– volume: 17
  start-page: 29
  issue: 4
  year: 1981
  ident: ref5
  article-title: List concatenated decoding
  publication-title: Problemy Peredachi Informatsii
– ident: ref20
  doi: 10.1109/18.61123
– year: 2020
  ident: ref29
  article-title: List-decodable codes: (Randomized) constructions and applications
– ident: ref11
  doi: 10.1016/S0195-6698(88)80048-9
– ident: ref2
  doi: 10.1137/1.9781611975031.42
– ident: ref22
  doi: 10.1007/b104335
– volume: 7
  start-page: 1
  issue: 1
  year: 2011
  ident: ref4
  article-title: Pseudorandomness
  publication-title: Found. Trends Theor. Comput. Sci.
– ident: ref3
  doi: 10.1145/1538902.1538904
– year: 2019
  ident: ref1
  article-title: LDPC codes achieve list decoding capacity
  publication-title: arXiv:1909.06430
– volume: 39
  start-page: 857
  issue: 2
  volume-title: Proc. Annu. Allerton Conf. Commun. Control Comput.
  ident: ref23
  article-title: Linear-time codes to correct a maximum possible fraction of errors
– ident: ref15
  doi: 10.4007/annals.2021.194.2.2
– ident: ref12
  doi: 10.1007/s00493-023-00014-x
– ident: ref26
  doi: 10.1017/CBO9780511814068
– ident: ref8
  doi: 10.1137/0605009
– ident: ref19
  doi: 10.1007/978-1-4757-6048-4_20
– ident: ref24
  doi: 10.1109/TIT.2014.2371915
– ident: ref16
  doi: 10.1109/TIT.2014.2343224
– ident: ref6
  doi: 10.1109/TIT.2010.2095170
– ident: ref25
  doi: 10.1109/ISIT.2018.8437698
SSID ssj0014512
Score 2.4234297
Snippet Suppose that <inline-formula> <tex-math notation="LaTeX">\mathcal {P} </tex-math></inline-formula> is a property that may be satisfied by a random code...
Suppose that [Formula Omitted] is a property that may be satisfied by a random code [Formula Omitted]. For example, for some [Formula Omitted], [Formula...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 905
SubjectTerms Algorithms
Codes
Coding theory
Computer science
Decoding
Linear codes
list-decoding and recovery
Lower bounds
Pins
Probabilistic logic
random codes
Recovery
Technological innovation
threshold rates
Title Threshold Rates for Properties of Random Codes
URI https://ieeexplore.ieee.org/document/9590564
https://www.proquest.com/docview/2621793258
Volume 68
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1557-9654
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014512
  issn: 0018-9448
  databaseCode: RIE
  dateStart: 19630101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8NAEB5qT3qw2ipWq-TgRTBpst3N4yjFUoWKSAq9hezroibSphd_vbN5UVTEWwizMOzs7H4zs_sNwLUfCoQNVNuGzcymKmA2D5myU0059xQlkpvUwOLJny_p44qtOnDbvoVRSpWXz5RjPstavszF1qTKxhGL8Lyme7AXhH71VqutGFDmVczgHjowxhxNSdKNxvFDjIEg8TA-RbUMvdPOEVT2VPmxEZeny6wHi0av6lLJq7MtuCM-v1E2_lfxIzisYaZ1V62LY-iorA-9poWDVXt0Hw52-AgH4MRo2Y0pSFkvBoNaiGitZ5OuXxveVSvX-D-T-bs1zaXanMBydh9P53bdUMEWJPIKO-KCBDzgqamGsRTVpEz7gkqmJeIGzaQnPJkGnhCBr0OOcG5CEK9I9HrfncjJKXSzPFNnYGklmTRiiNgwBNURAomQY_DlKiFdnQ5h3MxxImq2cdP04i0pow43StAqibFKUltlCDftiI-KaeMP2YGZ5Faunt8hjBozJrUrbhLiE7MJERae_z7qAvaJedNQXsUeQbdYb9UlIo2CX5VL7Au4J82o
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LSwMxEB5qPagHq61iteoevAhuu5sm-zhKsbTaFpEt9LZsXhe1K31c_PVO9lGKinhblgkMmUzyzUzyDcCNFwiEDVTbhs3MpspnNg-YshNNOXcVJZKb1MB44g2m9HHGZhW427yFUUpll89U23xmtXyZirVJlXVCFuJ5TXdgl1FKWf5aa1MzoMzNucFddGGMOsqipBN2omGEoSBxMUJFxQzB09YhlHVV-bEVZ-dLvwbjUrP8Wslre73ibfH5jbTxv6ofwWEBNK37fGUcQ0XN61ArmzhYhU_X4WCLkbAB7QhtuzQlKevFoFALMa31bBL2C8O8aqUa_89l-m71UqmWJzDtP0S9gV20VLAFCd2VHXJBfO7zxNTDWIJqUqY9QSXTEpGDZtIVrkx8Vwjf0wFHQNcliFgk-r3ndGX3FKrzdK7OwNJKMmnEELNhEKpDhBIBx_DLUUI6OmlCp5zjWBR846btxVucxR1OGKNVYmOVuLBKE243Iz5yro0_ZBtmkjdyxfw2oVWaMS6ccRkTj5htiLDg_PdR17A3iMajeDScPF3APjEvHLKL2S2orhZrdYm4Y8WvsuX2Bar60PU
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Threshold+Rates+for+Properties+of+Random+Codes&rft.jtitle=IEEE+transactions+on+information+theory&rft.au=Guruswami%2C+Venkatesan&rft.au=Mosheiff%2C+Jonathan&rft.au=Resch%2C+Nicolas&rft.au=Silas%2C+Shashwat&rft.date=2022-02-01&rft.issn=0018-9448&rft.eissn=1557-9654&rft.volume=68&rft.issue=2&rft.spage=905&rft.epage=922&rft_id=info:doi/10.1109%2FTIT.2021.3123497&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TIT_2021_3123497
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0018-9448&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0018-9448&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0018-9448&client=summon