Enabling Finger-Touch-Based Mobile User Authentication via Physical Vibrations on IoT Devices
This work enables mobile user authentication via finger inputs on ubiquitous surfaces leveraging low-cost physical vibration. The system we proposed extends finger-input authentication beyond touch screens to any solid surface for IoT devices (e.g., smart access systems and IoT appliances). Unlike p...
Saved in:
| Published in | IEEE transactions on mobile computing Vol. 21; no. 10; pp. 3565 - 3580 |
|---|---|
| Main Authors | , , , , , |
| Format | Magazine Article |
| Language | English |
| Published |
Los Alamitos
IEEE
01.10.2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Subjects | |
| Online Access | Get full text |
| ISSN | 1536-1233 1558-0660 |
| DOI | 10.1109/TMC.2021.3057083 |
Cover
| Abstract | This work enables mobile user authentication via finger inputs on ubiquitous surfaces leveraging low-cost physical vibration. The system we proposed extends finger-input authentication beyond touch screens to any solid surface for IoT devices (e.g., smart access systems and IoT appliances). Unlike passcode or biometrics-based solutions, it integrates passcode, behavioral and physiological characteristics, and surface dependency together to provide a low-cost, tangible and enhanced security solution. The proposed system builds upon a touch sensing technique with vibration signals that can operate on surfaces constructed from a broad range of materials. New algorithms are developed to discriminate fine-grained finger inputs and supports three independent passcode secrets including PIN number, lock pattern, and simple gestures by extracting unique features in the frequency domain to capture both behavioral and physiological characteristics including contacting area, touching force, and etc. The system is implemented using a single pair of low-cost portable vibration motor and receiver that can be easily attached to any surface (e.g., a door panel, a stovetop or an appliance). Extensive experiments demonstrate that our system can authenticate users with high accuracy (e.g., more than 97 percent within two trials), low false positive rate (e.g., less 2 percent) and is robust to various types of attacks. |
|---|---|
| AbstractList | This work enables mobile user authentication via finger inputs on ubiquitous surfaces leveraging low-cost physical vibration. The system we proposed extends finger-input authentication beyond touch screens to any solid surface for IoT devices (e.g., smart access systems and IoT appliances). Unlike passcode or biometrics-based solutions, it integrates passcode, behavioral and physiological characteristics, and surface dependency together to provide a low-cost, tangible and enhanced security solution. The proposed system builds upon a touch sensing technique with vibration signals that can operate on surfaces constructed from a broad range of materials. New algorithms are developed to discriminate fine-grained finger inputs and supports three independent passcode secrets including PIN number, lock pattern, and simple gestures by extracting unique features in the frequency domain to capture both behavioral and physiological characteristics including contacting area, touching force, and etc. The system is implemented using a single pair of low-cost portable vibration motor and receiver that can be easily attached to any surface (e.g., a door panel, a stovetop or an appliance). Extensive experiments demonstrate that our system can authenticate users with high accuracy (e.g., more than 97 percent within two trials), low false positive rate (e.g., less 2 percent) and is robust to various types of attacks. |
| Author | Liu, Jian Yang, Xin Chen, Yingying Yang, Song Wang, Chen Saxena, Nitesh |
| Author_xml | – sequence: 1 givenname: Xin orcidid: 0000-0002-7861-0007 surname: Yang fullname: Yang, Xin email: xinyang@winlab.rutgers.edu organization: Department of Electrical and Computer Engineering, Rutgers University, Piscataway, NJ, USA – sequence: 2 givenname: Song orcidid: 0000-0001-9175-8455 surname: Yang fullname: Yang, Song email: sy540@winlab.rutgers.edu organization: Department of Electrical and Computer Engineering, Rutgers University, Piscataway, NJ, USA – sequence: 3 givenname: Jian orcidid: 0000-0002-8331-0834 surname: Liu fullname: Liu, Jian email: jliu@utk.edu organization: University of Tennessee, Knoxville, TN, USA – sequence: 4 givenname: Chen orcidid: 0000-0001-9737-1673 surname: Wang fullname: Wang, Chen email: chenwang1@lsu.edu organization: Louisiana State University, Baton Rouge, LA, USA – sequence: 5 givenname: Yingying orcidid: 0000-0002-3994-766X surname: Chen fullname: Chen, Yingying email: yingche@scarletmail.rutgers.edu organization: Department of Electrical and Computer Engineering, Rutgers University, Piscataway, NJ, USA – sequence: 6 givenname: Nitesh surname: Saxena fullname: Saxena, Nitesh email: saxena@uab.edu organization: University of Alabama at Birmingham, Birmingham, AL, USA |
| BookMark | eNp9kD1PwzAQhi0EEi2wI7FYYk7xR2wnI5QWKoFgSNlQ5Dhn6iokxU6Q-u9xKWJgYLk7372v7_SM0WHbtYDQOSUTSkl-VTxOJ4wwOuFEKJLxAzSiQmQJkZIc7mouE8o4P0bjENaE0CzP1Qi9zlpdNa59w_MYwCdFN5hVcqMD1Pixq1wDeBnA4-uhX0HbO6N717X402n8vNqG-G7wi6v8dzvgOFp0Bb6FT2cgnKIjq5sAZz_5BC3ns2J6nzw83S2m1w-JYTntk1xLk1lWWaUESXNtBVhSx4pbZYiqKxACUiKksJIwa3KgVteUaV7bmnPGT9Dl_t-N7z4GCH257gbfxpUlizBkypSQUSX3KuO7EDzY0rj---7ea9eUlJQ7lGVEWe5Qlj8oo5H8MW68e9d--5_lYm9xAPArz3mqMqr4FxWjgLA |
| CODEN | ITMCCJ |
| CitedBy_id | crossref_primary_10_1155_2022_6778755 crossref_primary_10_1016_j_eswa_2024_125811 crossref_primary_10_1051_sands_2024003 crossref_primary_10_1109_JIOT_2023_3328382 crossref_primary_10_1109_JSEN_2021_3136902 crossref_primary_10_1109_TII_2024_3379643 |
| Cites_doi | 10.1016/j.neucom.2009.03.013 10.1109/ICPR.1994.576879 10.1145/1133265.1133303 10.1145/359168.359172 10.1016/j.patcog.2009.08.016 10.1145/2207676.2208544 10.1007/978-3-540-74835-9_24 10.1145/2858036.2858547 10.1145/2789168.2790119 10.1145/2348543.2348569 10.1145/3133956.3133964 10.1145/2426656.2426673 10.1145/2994551.2994566 10.1145/1556262.1556312 10.1145/2594368.2594375 10.1109/TMC.2014.2365185 10.1109/CSAC.2005.27 10.1109/83.753738 10.1016/j.medengphy.2004.02.003 10.1145/1753326.1753491 10.1109/CNS.2015.7346804 10.1145/1999995.2000011 10.1109/KES.2000.884111 10.1080/00140137808931762 10.1145/2601097.2601119 10.1007/s12555-009-0102-2 10.1145/2046707.2046725 10.1109/LSP.2005.860538 10.1007/s10044-005-0022-6 10.1007/978-3-540-74549-5_80 10.1145/1961189.1961199 10.1109/LGRS.2014.2356616 |
| ContentType | Magazine Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022 |
| DBID | 97E RIA RIE AAYXX CITATION 7SC 7SP 8FD JQ2 L7M L~C L~D |
| DOI | 10.1109/TMC.2021.3057083 |
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
| DatabaseTitle | CrossRef Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Technology Research Database |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISSN | 1558-0660 |
| EndPage | 3580 |
| ExternalDocumentID | 10_1109_TMC_2021_3057083 9347817 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: National Science Foundation grantid: CCF-1909963; CCF-2028876; CNS-1814590; OAC-1547350; CNS-1526524; CNS-1714807; CNS-2030501 funderid: 10.13039/501100008982 – fundername: Army Research Office grantid: W911NF-18-1-0221 funderid: 10.13039/100000183 |
| GroupedDBID | -~X .DC 0R~ 29I 4.4 5GY 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACGFS ACIWK AENEX AGQYO AHBIQ AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD HZ~ IEDLZ IFIPE IPLJI JAVBF LAI M43 O9- OCL P2P PQQKQ RIA RIE RNS AAYXX CITATION 7SC 7SP 8FD JQ2 L7M L~C L~D |
| ID | FETCH-LOGICAL-c291t-9a6c8f2bf775049af5ef0d0493f7c07dbe55e40565f602fc9e1fad12a3dfd3323 |
| IEDL.DBID | RIE |
| ISSN | 1536-1233 |
| IngestDate | Sun Jun 29 16:10:58 EDT 2025 Wed Oct 01 01:54:01 EDT 2025 Thu Apr 24 23:13:01 EDT 2025 Wed Aug 27 02:29:22 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 10 |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c291t-9a6c8f2bf775049af5ef0d0493f7c07dbe55e40565f602fc9e1fad12a3dfd3323 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0001-9737-1673 0000-0002-8331-0834 0000-0002-3994-766X 0000-0002-7861-0007 0000-0001-9175-8455 |
| PQID | 2708642756 |
| PQPubID | 75730 |
| PageCount | 16 |
| ParticipantIDs | crossref_primary_10_1109_TMC_2021_3057083 ieee_primary_9347817 crossref_citationtrail_10_1109_TMC_2021_3057083 proquest_journals_2708642756 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2022-10-01 |
| PublicationDateYYYYMMDD | 2022-10-01 |
| PublicationDate_xml | – month: 10 year: 2022 text: 2022-10-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Los Alamitos |
| PublicationPlace_xml | – name: Los Alamitos |
| PublicationTitle | IEEE transactions on mobile computing |
| PublicationTitleAbbrev | TMC |
| PublicationYear | 2022 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref12 ref15 ref53 ref52 ref11 ref10 Duda (ref36) 2012 ref17 Timmons (ref5) 2010 ref16 ref19 (ref13) 2017 ref51 ref46 ten Holt (ref37); 300 ref42 ref41 Ohshima (ref27) 2006 Tian (ref28); 93 ref8 (ref50) 2017 Dhamija (ref3); 9 ref7 (ref1) 2020 ref9 ref4 ref6 Rubner (ref38) 1999 Friedman (ref43) Han (ref49) ref35 ref34 Han (ref47) 2015 ref31 ref30 Abadi (ref48) 2015 Aviv (ref33) 2010; 10 ref32 ref2 ref39 (ref14) 2017 ref24 Aly (ref18) 2005; 19 ref23 Rose (ref29) 1998 ref26 ref25 ref20 ref22 ref21 Weston (ref45) Sklar (ref40) 2001 Platt (ref44) |
| References_xml | – ident: ref17 doi: 10.1016/j.neucom.2009.03.013 – year: 2020 ident: ref1 article-title: Access control market – ident: ref42 doi: 10.1109/ICPR.1994.576879 – ident: ref22 doi: 10.1145/1133265.1133303 – volume-title: Pattern Classification year: 2012 ident: ref36 – volume-title: Digital Communications year: 2001 ident: ref40 – ident: ref2 doi: 10.1145/359168.359172 – ident: ref45 article-title: Multi-class support vector machines – year: 2017 ident: ref14 article-title: Capacitive sensor – ident: ref7 doi: 10.1016/j.patcog.2009.08.016 – ident: ref30 doi: 10.1145/2207676.2208544 – ident: ref20 doi: 10.1007/978-3-540-74835-9_24 – ident: ref21 doi: 10.1145/2858036.2858547 – start-page: 547 volume-title: Proc. Advances Neural Inf. Process. Syst. ident: ref44 article-title: Large margin dags for multiclass classification – ident: ref51 doi: 10.1145/2789168.2790119 – ident: ref11 doi: 10.1145/2348543.2348569 – ident: ref16 doi: 10.1145/3133956.3133964 – ident: ref39 doi: 10.1145/2426656.2426673 – ident: ref12 doi: 10.1145/2994551.2994566 – ident: ref6 doi: 10.1145/1556262.1556312 – ident: ref32 doi: 10.1145/2594368.2594375 – year: 1998 ident: ref29 article-title: Access card for multiple accounts – issue: 1621 volume-title: Perceptual Metrics for Image Database Navigation year: 1999 ident: ref38 – volume: 10 start-page: 1 year: 2010 ident: ref33 article-title: Smudge attacks on smartphone touch screens publication-title: Woot – ident: ref26 doi: 10.1109/TMC.2014.2365185 – volume: 300 volume-title: Proc. 13th Annu. Conf. Advanced School Comput. Imag. ident: ref37 article-title: Multi-dimensional dynamic time warping for gesture recognition – year: 2015 ident: ref47 article-title: Deep compression: Compressing deep neural networks with pruning, trained quantization and huffman coding – ident: ref4 doi: 10.1109/CSAC.2005.27 – year: 2010 ident: ref5 article-title: Grid unlock – volume: 93 volume-title: Proc. Netw. Distrib. Syst. Secur. Symp. ident: ref28 article-title: Kinwrite: Handwriting-based authentication using kinect – year: 2017 ident: ref50 article-title: Pearson product moment correlation coefficient – ident: ref43 article-title: Another approach to polychotomous classification – volume: 9 volume-title: Proc. 9th Conf. USENIX Secur. Symp. ident: ref3 article-title: Deja vu-a user study: Using images for authentication – ident: ref10 doi: 10.1109/83.753738 – year: 2006 ident: ref27 article-title: Indoor apparatus of intercom system and method for controlling indoor apparatus – ident: ref34 doi: 10.1016/j.medengphy.2004.02.003 – ident: ref23 doi: 10.1145/1753326.1753491 – ident: ref31 doi: 10.1109/CNS.2015.7346804 – ident: ref15 doi: 10.1145/1999995.2000011 – ident: ref46 doi: 10.1109/KES.2000.884111 – year: 2017 ident: ref13 article-title: How to implement fingerprint authentication in automobiles – ident: ref53 doi: 10.1080/00140137808931762 – ident: ref52 doi: 10.1145/2601097.2601119 – ident: ref24 doi: 10.1007/s12555-009-0102-2 – ident: ref25 doi: 10.1145/2046707.2046725 – ident: ref35 doi: 10.1109/LSP.2005.860538 – ident: ref9 doi: 10.1007/s10044-005-0022-6 – year: 2015 ident: ref48 article-title: TensorFlow: Large-scale machine learning on heterogeneous systems – ident: ref8 doi: 10.1007/978-3-540-74549-5_80 – volume: 19 start-page: 1 year: 2005 ident: ref18 article-title: Survey on multiclass classification methods publication-title: Neural Netw. – ident: ref41 doi: 10.1145/1961189.1961199 – ident: ref19 doi: 10.1109/LGRS.2014.2356616 – start-page: 1135 volume-title: Proc. Advances Neural Inf. Process. Syst. ident: ref49 article-title: Learning both weights and connections for efficient neural network |
| SSID | ssj0018997 |
| Score | 1.3739249 |
| Snippet | This work enables mobile user authentication via finger inputs on ubiquitous surfaces leveraging low-cost physical vibration. The system we proposed extends... |
| SourceID | proquest crossref ieee |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 3565 |
| SubjectTerms | Algorithms Authentication Biometrics Feature extraction finger-input Layout Low cost Mobile computing physical vibration Physiology Prototypes Solid surfaces Solids Touch screens Touch sensitive screens ubiquitous surfaces User authentication Vibration Vibrations |
| Title | Enabling Finger-Touch-Based Mobile User Authentication via Physical Vibrations on IoT Devices |
| URI | https://ieeexplore.ieee.org/document/9347817 https://www.proquest.com/docview/2708642756 |
| Volume | 21 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LSwMxEB5aT57qE-uLHLwIbru72U2ao9aWKlQ8tNKLLJsXitIVbT34651kdws-EG-BZCDwTTLvGYCTxIVmFMsDmdAQDRSpA6F0FEhqbcJ0xKVxtcPjGzaaJtezdNaAs1UtjDHGJ5-Zjlv6WL4u1NK5yrqCusJI3oQm77GyVmsVMUC7gZe9Ud1cGUrrkGQoupNxHw3BOOogb_OwR7-IID9T5cdH7KXLsAXj-l5lUslTZ7mQHfXxrWXjfy--Aa26bTQ5LxljExpmvgWteoYDqZ70NtwPXPEUyi8yLB18k2KpHoILFG6ajAuJnwaZIpsS50tzmUWli4-8P-bktsKY3Dmb2zMwwa2rYkIujf-BdmA6HEz6o6AauRCoWESLQORM9WwsLXdt30VuU2NDjStquQq5liZNDep4LLUsjK0SJrK5juKcaqspjekurM2LudkDohhqdqFFdUGIxDIuEyFZaiiNrEmZ5W3o1ihkqupH7sZiPGfeLglFhrhlDreswq0NpyuKl7IXxx9ntx0Mq3MVAm04rIHOqsf6lsVIgGYYT9n-71QHsB67qgefw3cIa4vXpTlCXWQhjz0TfgLYYdp6 |
| linkProvider | IEEE |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9NAEB6FciinAAWRtsAeuFTCie19dY9QEqUQVz04VS7I8r4EahVXbdIDv57ZtR2JhxC3lXZHWumb3XnPALxjITRjRJ1oRlM0ULRNlLFZoqn3TNhMahdqh4sLMV-yzyu-GsD7XS2Mcy4mn7lxWMZYvm3MNrjKJoqGwkj5CB5zxhhvq7V2MQO0HGTbHTVMlqG0D0qmalIWZ2gK5tkYuVump_QXIRSnqvzxFUf5MhtC0d-sTSu5Hm83emx-_Na08X-v_hSGfeNo8qFljWcwcOvnMOynOJDuUR_A12kon0IJRmati69stuZb8hHFmyVFo_HbIEtkVBK8aSG3qHXykYfvNbnsUCZXweqOLExw67wpyScX_6AXsJxNy7N50g1dSEyusk2iamFOfa69DI3fVe2586nFFfXSpNJqx7lDLU9wL9LcG-UyX9ssr6n1ltKcvoS9dbN2r4AYgbpd6lFhUIp5ITVTWnBHaeYdF16OYNKjUJmuI3kYjHFTRcskVRXiVgXcqg63EZzsKG7bbhz_OHsQYNid6xAYwXEPdNU91_sqRwI0xCQXh3-negv787JYVIvziy9H8CQPNRAxo-8Y9jZ3W_caNZONfhMZ8idy2d3H |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Enabling+Finger-Touch-Based+Mobile+User+Authentication+via+Physical+Vibrations+on+IoT+Devices&rft.jtitle=IEEE+transactions+on+mobile+computing&rft.au=Yang%2C+Xin&rft.au=Yang%2C+Song&rft.au=Liu%2C+Jian&rft.au=Wang%2C+Chen&rft.date=2022-10-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=1536-1233&rft.eissn=1558-0660&rft.volume=21&rft.issue=10&rft.spage=3565&rft_id=info:doi/10.1109%2FTMC.2021.3057083&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1536-1233&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1536-1233&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1536-1233&client=summon |