MADER: Trajectory Planner in Multiagent and Dynamic Environments

This article presents MADER, a 3-D decentralized and asynchronous trajectory planner for UAVs that generates collision-free trajectories in environments with static obstacles, dynamic obstacles, and other planning agents. Real-time collision avoidance with other dynamic obstacles or agents is done b...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on robotics Vol. 38; no. 1; pp. 463 - 476
Main Authors Tordesillas, Jesus, How, Jonathan P.
Format Journal Article
LanguageEnglish
Published New York IEEE 01.02.2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN1552-3098
1941-0468
DOI10.1109/TRO.2021.3080235

Cover

Abstract This article presents MADER, a 3-D decentralized and asynchronous trajectory planner for UAVs that generates collision-free trajectories in environments with static obstacles, dynamic obstacles, and other planning agents. Real-time collision avoidance with other dynamic obstacles or agents is done by performing outer polyhedral representations of every interval of the trajectories and then including the plane that separates each pair of polyhedra as a decision variable in the optimization problem. MADER uses our recently developed MINVO basis to obtain outer polyhedral representations with volumes 2.36 and 254.9 times, respectively, smaller than the Bernstein or B-Spline bases used extensively in the planning literature. Our decentralized and asynchronous algorithm guarantees safety with respect to other agents by including their committed trajectories as constraints in the optimization and then executing a collision check-recheck scheme. Finally, extensive simulations in challenging cluttered environments show up to a 33.9% reduction in the flight time, and a 88.8% reduction in the number of stops compared to the Bernstein and B-Spline bases, shorter flight distances than centralized approaches, and shorter total times on average than synchronous decentralized approaches.
AbstractList This article presents MADER, a 3-D decentralized and asynchronous trajectory planner for UAVs that generates collision-free trajectories in environments with static obstacles, dynamic obstacles, and other planning agents. Real-time collision avoidance with other dynamic obstacles or agents is done by performing outer polyhedral representations of every interval of the trajectories and then including the plane that separates each pair of polyhedra as a decision variable in the optimization problem. MADER uses our recently developed MINVO basis to obtain outer polyhedral representations with volumes 2.36 and 254.9 times, respectively, smaller than the Bernstein or B-Spline bases used extensively in the planning literature. Our decentralized and asynchronous algorithm guarantees safety with respect to other agents by including their committed trajectories as constraints in the optimization and then executing a collision check-recheck scheme. Finally, extensive simulations in challenging cluttered environments show up to a 33.9% reduction in the flight time, and a 88.8% reduction in the number of stops compared to the Bernstein and B-Spline bases, shorter flight distances than centralized approaches, and shorter total times on average than synchronous decentralized approaches.
Author How, Jonathan P.
Tordesillas, Jesus
Author_xml – sequence: 1
  givenname: Jesus
  orcidid: 0000-0001-6848-4070
  surname: Tordesillas
  fullname: Tordesillas, Jesus
  email: jtorde@mit.edu
  organization: Aerospace Controls Laboratory, MIT, Cambridge, MA, USA
– sequence: 2
  givenname: Jonathan P.
  orcidid: 0000-0001-8576-1930
  surname: How
  fullname: How, Jonathan P.
  email: jhow@mit.edu
  organization: Aerospace Controls Laboratory, MIT, Cambridge, MA, USA
BookMark eNp9kL1rwzAQxUVJoUnavdDF0NnuSbJlq1NDkn5AQkpIZyHbUlFwpFRWCvnva5PQoUOXu-N47x73G6GBdVYhdIshwRj4w2a9SggQnFAogNDsAg0xT3EMKSsG3ZxlJKbAiys0atstAEk50CF6Wk5m8_VjtPFyq6rg_DF6b6S1ykfGRstDE4z8VDZE0tbR7GjlzlTR3H4b7-yu27fX6FLLplU35z5GH8_zzfQ1Xqxe3qaTRVwRjkPMJSZUcZ52NU-VrklRMibzOq04BsqI1ESXHMq6xAXTBat1mTJNK1Kz7h2gY3R_urv37uug2iC27uBtFykII4znFLJeBSdV5V3beqXF3pud9EeBQfScRMdJ9JzEmVNnYX8slQkyGGeDl6b5z3h3Mhql1G8O77nmhP4A60Z1hw
CODEN ITREAE
CitedBy_id crossref_primary_10_1109_LRA_2022_3191037
crossref_primary_10_1007_s10514_023_10104_w
crossref_primary_10_3390_s21186223
crossref_primary_10_1109_TIE_2024_3433585
crossref_primary_10_1109_TIE_2023_3319732
crossref_primary_10_1109_LRA_2022_3152702
crossref_primary_10_1109_TRO_2024_3429193
crossref_primary_10_1109_LRA_2023_3254444
crossref_primary_10_1109_TAES_2022_3221702
crossref_primary_10_1109_ACCESS_2024_3473935
crossref_primary_10_1109_LCSYS_2024_3491052
crossref_primary_10_1109_ACCESS_2022_3154037
crossref_primary_10_1109_LRA_2022_3196777
crossref_primary_10_1126_scirobotics_abm5954
crossref_primary_10_1109_TRO_2023_3264950
crossref_primary_10_1109_TCNS_2024_3372710
crossref_primary_10_3390_drones5040134
crossref_primary_10_1007_s10846_022_01788_w
crossref_primary_10_1007_s11431_022_2264_5
crossref_primary_10_1109_TAES_2023_3298293
crossref_primary_10_1109_JIOT_2024_3477450
crossref_primary_10_1177_02783649241227869
crossref_primary_10_3390_robotics14010003
crossref_primary_10_1007_s10586_024_04683_1
crossref_primary_10_3390_drones7020122
crossref_primary_10_1109_TCST_2024_3396027
crossref_primary_10_1109_LRA_2022_3231832
crossref_primary_10_1109_LRA_2024_3519883
crossref_primary_10_1109_LRA_2022_3142743
crossref_primary_10_3390_s22051855
crossref_primary_10_1016_j_eswa_2023_122694
crossref_primary_10_2514_1_I011594
crossref_primary_10_1109_TRO_2024_3509015
crossref_primary_10_1016_j_conengprac_2024_106066
crossref_primary_10_1109_TRO_2024_3454415
crossref_primary_10_1016_j_ifacol_2023_10_794
crossref_primary_10_1109_LRA_2025_3544519
crossref_primary_10_2514_1_G007853
crossref_primary_10_1016_j_trc_2023_104448
crossref_primary_10_1177_02783649241312352
crossref_primary_10_1007_s00607_025_01431_0
crossref_primary_10_1109_TIM_2025_3550248
crossref_primary_10_1109_LRA_2023_3248377
crossref_primary_10_1109_LWC_2024_3416742
crossref_primary_10_1016_j_jksuci_2023_101889
crossref_primary_10_3390_drones8090464
crossref_primary_10_1109_LRA_2025_3541376
crossref_primary_10_1109_LRA_2023_3241812
crossref_primary_10_3390_drones7120704
crossref_primary_10_1109_LRA_2023_3342561
crossref_primary_10_1109_LRA_2025_3541458
crossref_primary_10_1016_j_automatica_2024_111996
crossref_primary_10_1109_LRA_2024_3426374
crossref_primary_10_1109_TAES_2024_3439673
crossref_primary_10_1109_TAES_2024_3411563
crossref_primary_10_1007_s43154_022_00090_9
crossref_primary_10_3390_drones8120705
crossref_primary_10_1016_j_jfranklin_2023_09_060
crossref_primary_10_1109_LRA_2023_3235678
crossref_primary_10_3390_rs14112584
crossref_primary_10_1109_TIE_2023_3335448
crossref_primary_10_1109_TAC_2024_3393126
crossref_primary_10_3390_drones8090497
crossref_primary_10_1109_TCE_2023_3340327
crossref_primary_10_1109_TRO_2023_3279903
Cites_doi 10.1137/S1052623499362822
10.1109/ICRA.2011.5980409
10.1016/j.cad.2022.103341
10.1007/s003710050206
10.1109/ICRA.2018.8463195
10.1109/ICRA.2016.7487283
10.1109/TSSC.1968.300136
10.1109/LRA.2019.2927938
10.1137/0728030
10.1109/IROS.2012.6385823
10.1177/0278364916632065
10.1109/LRA.2020.3047728
10.14711/thesis-991012760867803412
10.1109/ICRA40945.2020.9197162
10.1109/LRA.2018.2794582
10.1109/ICRA.2015.7140034
10.1109/LRA.2017.2663526
10.1109/IROS.2016.7759784
10.1080/10556780701577730
10.1007/978-3-030-43089-4_20
10.1109/ICRA.2017.7989677
10.1109/LRA.2018.2890572
10.1109/LRA.2020.3003277
10.1002/rob.21842
10.1007/s10514-013-9349-9
10.1109/ICRA.2015.7138978
10.1109/TRO.2021.3071527
10.1007/s10514-020-09919-8
10.1109/LRA.2019.2893494
10.1109/ICRA.2017.7989750
10.1109/IROS.2017.8202314
10.1109/IROS40897.2019.8968021
10.1109/ICRA40945.2020.9197481
10.1109/ICRA.2019.8794248
10.1109/ICRA.2012.6225009
10.1109/ICUAS.2016.7502596
10.1109/IROS.2018.8594351
10.15607/RSS.2017.XIII.054
10.1109/ROBIO49542.2019.8961485
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
7SP
7TB
8FD
FR3
JQ2
L7M
L~C
L~D
DOI 10.1109/TRO.2021.3080235
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Technology Research Database
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1941-0468
EndPage 476
ExternalDocumentID 10_1109_TRO_2021_3080235
9490372
Genre orig-research
GrantInformation_xml – fundername: Boeing Research and Technology
– fundername: MADER
GroupedDBID .DC
0R~
29I
4.4
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACIWK
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AIBXA
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
F5P
HZ~
H~9
IFIPE
IPLJI
JAVBF
LAI
M43
MS~
O9-
OCL
P2P
PQQKQ
RIA
RIE
RNS
VJK
AAYXX
CITATION
7SC
7SP
7TB
8FD
FR3
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c291t-9a123e99423e74efd28b66a7d4c910362af2fb90bdb186f86dfb46f3c2d602303
IEDL.DBID RIE
ISSN 1552-3098
IngestDate Sun Jun 29 12:38:10 EDT 2025
Thu Apr 24 23:09:55 EDT 2025
Wed Oct 01 01:12:31 EDT 2025
Wed Aug 27 02:49:41 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c291t-9a123e99423e74efd28b66a7d4c910362af2fb90bdb186f86dfb46f3c2d602303
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-8576-1930
0000-0001-6848-4070
PQID 2626973050
PQPubID 27625
PageCount 14
ParticipantIDs ieee_primary_9490372
crossref_primary_10_1109_TRO_2021_3080235
proquest_journals_2626973050
crossref_citationtrail_10_1109_TRO_2021_3080235
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-Feb.
2022-2-00
20220201
PublicationDateYYYYMMDD 2022-02-01
PublicationDate_xml – month: 02
  year: 2022
  text: 2022-Feb.
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on robotics
PublicationTitleAbbrev TRO
PublicationYear 2022
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref35
ref12
ref34
ref15
ref37
ref14
ref36
ref31
ref30
ref11
ref33
ref10
ref2
ref1
ref17
MathWorld (ref43)
ref16
ref38
ref19
ref18
Johnson (ref39)
ref24
ref23
ref26
ref25
ref20
ref42
ref22
ref21
Liu (ref32) 2018
ref28
ref27
ref29
ref8
ref7
ref9
ref4
ref3
ref6
GLPK (ref41) 2020
ref5
ref40
References_xml – ident: ref38
  doi: 10.1137/S1052623499362822
– ident: ref42
  doi: 10.1109/ICRA.2011.5980409
– ident: ref1
  doi: 10.1016/j.cad.2022.103341
– ident: ref35
  doi: 10.1007/s003710050206
– ident: ref6
  doi: 10.1109/ICRA.2018.8463195
– ident: ref11
  doi: 10.1109/ICRA.2016.7487283
– ident: ref40
  doi: 10.1109/TSSC.1968.300136
– ident: ref13
  doi: 10.1109/LRA.2019.2927938
– issue: 2019
  ident: ref43
  article-title: Trefoil Knot
– ident: ref36
  doi: 10.1137/0728030
– ident: ref23
  doi: 10.1109/IROS.2012.6385823
– ident: ref29
  doi: 10.1177/0278364916632065
– ident: ref2
  doi: 10.1109/LRA.2020.3047728
– ident: ref25
  doi: 10.14711/thesis-991012760867803412
– ident: ref27
  doi: 10.1109/ICRA40945.2020.9197162
– ident: ref26
  doi: 10.1109/LRA.2018.2794582
– ident: ref28
  doi: 10.1109/ICRA.2015.7140034
– ident: ref33
  doi: 10.1109/LRA.2017.2663526
– ident: ref14
  doi: 10.1109/IROS.2016.7759784
– ident: ref37
  doi: 10.1080/10556780701577730
– ident: ref5
  doi: 10.1007/978-3-030-43089-4_20
– ident: ref7
  doi: 10.1109/ICRA.2017.7989677
– ident: ref31
  doi: 10.1109/LRA.2018.2890572
– ident: ref3
  doi: 10.1109/LRA.2020.3003277
– ident: ref12
  doi: 10.1002/rob.21842
– ident: ref24
  doi: 10.1007/s10514-013-9349-9
– ident: ref34
  doi: 10.1109/ICRA.2015.7138978
– ident: ref39
  article-title: The Nlopt nonlinear-optimization package
– ident: ref4
  doi: 10.1109/TRO.2021.3071527
– ident: ref16
  doi: 10.1007/s10514-020-09919-8
– ident: ref17
  doi: 10.1109/LRA.2019.2893494
– year: 2020
  ident: ref41
  article-title: GNU Linear Programming Kit
– ident: ref19
  doi: 10.1109/ICRA.2017.7989750
– ident: ref8
  doi: 10.1109/IROS.2017.8202314
– ident: ref10
  doi: 10.1109/IROS40897.2019.8968021
– ident: ref20
  doi: 10.1109/ICRA40945.2020.9197481
– ident: ref9
  doi: 10.1109/ICRA.2019.8794248
– ident: ref15
  doi: 10.1109/ICRA.2012.6225009
– ident: ref30
  doi: 10.1109/ICUAS.2016.7502596
– ident: ref18
  doi: 10.1109/IROS.2018.8594351
– ident: ref21
  doi: 10.15607/RSS.2017.XIII.054
– ident: ref22
  doi: 10.1109/ROBIO49542.2019.8961485
– year: 2018
  ident: ref32
  article-title: Towards search-based motion planning for micro aerial vehicles
SSID ssj0024903
Score 2.6694295
Snippet This article presents MADER, a 3-D decentralized and asynchronous trajectory planner for UAVs that generates collision-free trajectories in environments with...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 463
SubjectTerms Aerospace electronics
Algorithms
Barriers
Collision avoidance
Collision dynamics
Flight time
MINVO basis
multiagent
Multiagent systems
Optimization
Planning
Reduction
Representations
Robots
Safety
Splines (mathematics)
Trajectory
trajectory planning
UAV
Unmanned aerial vehicles
Title MADER: Trajectory Planner in Multiagent and Dynamic Environments
URI https://ieeexplore.ieee.org/document/9490372
https://www.proquest.com/docview/2626973050
Volume 38
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1941-0468
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0024903
  issn: 1552-3098
  databaseCode: RIE
  dateStart: 20040101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LSwMxEA61Jz34qmK1Sg5eBLfd7iO78aRoSxGqUFrobcljAj7YSm0P-uudZLcPVMRbDglkZ7LzSOabj5BzdBIiFgF4xrQNJiiR8lJmYs8XqYRQxTi2iWL_gfVG0f04HlfI5RILAwCu-Ayaduje8vVEze1VWYtH3A8TNLgbScoKrNaqrx53LMi2o5gX-jxdPEn6vDUcPGIiGLSboQWWOmK3lQtynCo_DLHzLt0d0l_sqygqeWnOZ7KpPr-1bPzvxnfJdhlm0pviXOyRCuT7ZGut-WCNXPdRCYMrit7q2V3df1DHYART-pRTB8wVFndFRa7pXUFcTztruLgDMup2hrc9r-RT8FTA2zOPC3RTwDlGUJBEYHSQSsZEoiOFQQN6MmECI7kvtWyjwlKmjYyYCVWgmU1VwkNSzSc5HBGqRcwUCCYgxm8DI9BMMqmFH-okToDXSWsh4kyVzcYt58Vr5pIOn2eolMwqJSuVUicXyxVvRaONP-bWrIyX80rx1kljocWs_BPfswAzNo5mLPaPf191QjYDC2lwldgNUp1N53CKgcZMnrkT9gVJlM6k
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9wwEB4hOLQcoIUitlDqA5dKZDeb2E7MiaqAtsCChBaJW-THWIJWAdHdA_x6xk52QQUhbj7YkjPjzMOebz6AbXISWugME-_7nhIUbpNSepGkujSYW0HjkCgOT-Xggh9diss52JlhYRAxFp9hNwzjW767sZNwVdZTXKV5QQZ3QXDORYPWeuqspyIPcugpluSpKqePkqnqjc7PKBXM-t08QEsjtduTE4qsKi9McfQvh8swnO6sKSv5052MTdc-_Ne08b1b_wRLbaDJfjYn4zPMYb0Ci8_aD67C3pDUcL7LyF9dx8v7exY5jPCOXdUsQnN1QF4xXTu231DXs4NnyLgvcHF4MPo1SFpGhcRmqj9OlCZHhUpRDIUFR--y0kipC8cthQ3ky7TPvFGpcaZPKiul84ZLn9vMyZCs5GswX9_UuA7MaSEtaqlR0Leh12QopXE6zV0hClQd6E1FXNm23XhgvfhbxbQjVRUppQpKqVqldODHbMVt02rjjbmrQcazea14O7A51WLV_ov_qoxyNkWGTKRfX1_1HT4MRsOT6uT36fEGfMwCwCHWZW_C_Phugt8o7BibrXjaHgFIANHx
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=MADER%3A+Trajectory+Planner+in+Multiagent+and+Dynamic+Environments&rft.jtitle=IEEE+transactions+on+robotics&rft.au=Tordesillas%2C+Jesus&rft.au=How%2C+Jonathan+P.&rft.date=2022-02-01&rft.issn=1552-3098&rft.eissn=1941-0468&rft.volume=38&rft.issue=1&rft.spage=463&rft.epage=476&rft_id=info:doi/10.1109%2FTRO.2021.3080235&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TRO_2021_3080235
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1552-3098&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1552-3098&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1552-3098&client=summon