UAV-Enabled Data Collection Over Clustered Machine-Type Communication Networks: AEM Modeling and Trajectory Planning
Machine-type communications (MTC) is a key technology for Internet-of-Things (IoT) services in 5G mobile communications and beyond. An essential design problem for an MTC network is the efficient and scalable data collection from low-power machine-type communication devices (MTCDs). This paper uses...
Saved in:
| Published in | IEEE transactions on vehicular technology Vol. 71; no. 9; pp. 10016 - 10032 |
|---|---|
| Main Authors | , , , , , , |
| Format | Journal Article |
| Language | English |
| Published |
New York
IEEE
01.09.2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Subjects | |
| Online Access | Get full text |
| ISSN | 0018-9545 1939-9359 |
| DOI | 10.1109/TVT.2022.3181158 |
Cover
| Abstract | Machine-type communications (MTC) is a key technology for Internet-of-Things (IoT) services in 5G mobile communications and beyond. An essential design problem for an MTC network is the efficient and scalable data collection from low-power machine-type communication devices (MTCDs). This paper uses unmanned aerial vehicles (UAVs) to facilitate data collection from a clustered MTC network on the ground. The notion of artificial energy map (AEM) is introduced as a novel modeling technique for energy efficiency analysis, which is critical to the subject of investigation here considering the limited energy of battery-powered MTCDs and UAVs. The proposed design framework first determines the number of MTCD clusters <inline-formula><tex-math notation="LaTeX">L_\mathrm{{opt}}</tex-math></inline-formula> according to a certain criterion. A greedy learning clustering (GLC) algorithm is then employed to divide the MTCDs into <inline-formula><tex-math notation="LaTeX">L_\mathrm{{opt}}</tex-math></inline-formula> clusters. For each MTCD cluster, an AEM is constructed, and the optimal UAV hovering strategy within the cluster can be obtained accordingly. Finally, the UAV stations travel across the clusters and collect data from each cluster while hovering above it. This AEM-based modeling technique leads to a solution that can effectively improve the energy efficiency (EE) of UAV-enabled data collection. However, the MTCD clustering strategy, UAV hovering strategy, and UAV flying strategy all have impacts on the overall energy efficiency, which results in a coupled optimization problem that is difficult to solve. The GLC-AEM method is proposed to decouple the original EE optimization problem into sub-problems that can be handled easily by standard optimization techniques. Simulation results show that the GLC-AEM algorithm can be applied to UAV-enabled data collection scenarios with single and multiple UAV stations, and it can improve the overall EE effectively. Besides, the GLC-AEM algorithm shows good scalability and consistent performance in clustered MTC networks. The more MTCDs, the higher the achieved EE. |
|---|---|
| AbstractList | Machine-type communications (MTC) is a key technology for Internet-of-Things (IoT) services in 5G mobile communications and beyond. An essential design problem for an MTC network is the efficient and scalable data collection from low-power machine-type communication devices (MTCDs). This paper uses unmanned aerial vehicles (UAVs) to facilitate data collection from a clustered MTC network on the ground. The notion of artificial energy map (AEM) is introduced as a novel modeling technique for energy efficiency analysis, which is critical to the subject of investigation here considering the limited energy of battery-powered MTCDs and UAVs. The proposed design framework first determines the number of MTCD clusters <inline-formula><tex-math notation="LaTeX">L_\mathrm{{opt}}</tex-math></inline-formula> according to a certain criterion. A greedy learning clustering (GLC) algorithm is then employed to divide the MTCDs into <inline-formula><tex-math notation="LaTeX">L_\mathrm{{opt}}</tex-math></inline-formula> clusters. For each MTCD cluster, an AEM is constructed, and the optimal UAV hovering strategy within the cluster can be obtained accordingly. Finally, the UAV stations travel across the clusters and collect data from each cluster while hovering above it. This AEM-based modeling technique leads to a solution that can effectively improve the energy efficiency (EE) of UAV-enabled data collection. However, the MTCD clustering strategy, UAV hovering strategy, and UAV flying strategy all have impacts on the overall energy efficiency, which results in a coupled optimization problem that is difficult to solve. The GLC-AEM method is proposed to decouple the original EE optimization problem into sub-problems that can be handled easily by standard optimization techniques. Simulation results show that the GLC-AEM algorithm can be applied to UAV-enabled data collection scenarios with single and multiple UAV stations, and it can improve the overall EE effectively. Besides, the GLC-AEM algorithm shows good scalability and consistent performance in clustered MTC networks. The more MTCDs, the higher the achieved EE. Machine-type communications (MTC) is a key technology for Internet-of-Things (IoT) services in 5G mobile communications and beyond. An essential design problem for an MTC network is the efficient and scalable data collection from low-power machine-type communication devices (MTCDs). This paper uses unmanned aerial vehicles (UAVs) to facilitate data collection from a clustered MTC network on the ground. The notion of artificial energy map (AEM) is introduced as a novel modeling technique for energy efficiency analysis, which is critical to the subject of investigation here considering the limited energy of battery-powered MTCDs and UAVs. The proposed design framework first determines the number of MTCD clusters [Formula Omitted] according to a certain criterion. A greedy learning clustering (GLC) algorithm is then employed to divide the MTCDs into [Formula Omitted] clusters. For each MTCD cluster, an AEM is constructed, and the optimal UAV hovering strategy within the cluster can be obtained accordingly. Finally, the UAV stations travel across the clusters and collect data from each cluster while hovering above it. This AEM-based modeling technique leads to a solution that can effectively improve the energy efficiency (EE) of UAV-enabled data collection. However, the MTCD clustering strategy, UAV hovering strategy, and UAV flying strategy all have impacts on the overall energy efficiency, which results in a coupled optimization problem that is difficult to solve. The GLC-AEM method is proposed to decouple the original EE optimization problem into sub-problems that can be handled easily by standard optimization techniques. Simulation results show that the GLC-AEM algorithm can be applied to UAV-enabled data collection scenarios with single and multiple UAV stations, and it can improve the overall EE effectively. Besides, the GLC-AEM algorithm shows good scalability and consistent performance in clustered MTC networks. The more MTCDs, the higher the achieved EE. |
| Author | Zhu, Zhengyu Cai, Lin Shen, Lingfeng Wang, Ning Mu, Xiaomin Li, Yue Xu, Wei |
| Author_xml | – sequence: 1 givenname: Lingfeng orcidid: 0000-0002-1375-8414 surname: Shen fullname: Shen, Lingfeng email: ielfshen@163.com organization: School of Information Engineering, Zhengzhou University, Zhengzhou, China – sequence: 2 givenname: Ning orcidid: 0000-0001-9403-3417 surname: Wang fullname: Wang, Ning email: ienwang@zzu.edu.cn organization: School of Information Engineering, Zhengzhou University, Zhengzhou, China – sequence: 3 givenname: Zhengyu surname: Zhu fullname: Zhu, Zhengyu email: iezyzhu@zzu.edu.cn organization: School of Information Engineering, Zhengzhou University, Zhengzhou, China – sequence: 4 givenname: Wei orcidid: 0000-0001-9341-8382 surname: Xu fullname: Xu, Wei email: wxu@seu.edu.cn organization: School of Information Science and Engineering, Southeast University, Nanjing, China – sequence: 5 givenname: Yue orcidid: 0000-0001-9035-6278 surname: Li fullname: Li, Yue email: liyue331@uvic.ca organization: Department of Electrical and Computer Engineering, University of Victoria, Victoria, BC, Canada – sequence: 6 givenname: Xiaomin surname: Mu fullname: Mu, Xiaomin email: iexmmu@zzu.edu.cn organization: School of Information Engineering, Zhengzhou University, Zhengzhou, China – sequence: 7 givenname: Lin orcidid: 0000-0002-1093-4865 surname: Cai fullname: Cai, Lin email: cai@ece.uvic.ca organization: Department of Electrical and Computer Engineering, University of Victoria, Victoria, BC, Canada |
| BookMark | eNp9kD1PwzAQhi0EEuVjR2KxxJxix3abY6tK-ZAoMKRdI8e5QEpqF8cF9d9jWsTAwGLL5-e90z1HZN86i4SccdbnnMFlPs_7KUvTvuAZ5yrbIz0OAhIQCvZJjzGeJaCkOiRHXbeITymB90iYjebJxOqyxYpe66Dp2LUtmtA4S58-0NNxu-4C-vg91ea1sZjkmxVGbLlc28boLfmI4dP5t-6KjiZTOnUVto19odpWNPd6Efs5v6HPrbY21k_IQa3bDk9_7mMyu5nk47vk4en2fjx6SEwKPCSQGa5qI0QmM1apWouSKcxKZMqgrkQ1BFaVwDVAbQCkTMtKilIqHU9eD8Qxudj1XXn3vsYuFAu39jaOLNIhl1FHqlSkBjvKeNd1HuvCNGG7VvC6aQvOim_DRTRcfBsufgzHIPsTXPlmqf3mv8j5LtIg4i8OQ0jlgIkvwayJDw |
| CODEN | ITVTAB |
| CitedBy_id | crossref_primary_10_1002_cpe_8237 crossref_primary_10_3390_drones8060267 crossref_primary_10_1109_TITS_2023_3299842 crossref_primary_10_1109_TVT_2023_3301676 crossref_primary_10_3390_drones8100530 |
| Cites_doi | 10.1109/GLOBECOM42002.2020.9322517 10.23919/JCC.2020.10.010 10.1109/LCOMM.2019.2931900 10.1109/LWC.2020.2982637 10.1109/TWC.2019.2892131 10.1017/CBO9780511804441 10.1109/MWC.2019.1800146 10.1109/TWC.2019.2930190 10.1109/JIOT.2020.3012835 10.1109/COMST.2019.2916177 10.1109/MCOM.2019.1800394 10.1109/TSIPN.2020.2986360 10.3390/s19153442 10.1109/JIOT.2019.2952364 10.1109/LCOMM.2021.3057069 10.1109/ACCESS.2019.2939616 10.1109/JIOT.2019.2939823 10.1109/TVT.2019.2954233 10.1109/WCSP49889.2020.9299804 10.1109/PIMRC.2019.8904414 10.1109/LWC.2014.2342736 10.1016/j.jnca.2019.05.006 10.1109/ACCESS.2020.3010271 10.1109/JIOT.2020.3011521 10.1109/GLOCOMW.2018.8644379 10.1109/ACCESS.2020.3048436 10.1109/TWC.2020.3037916 10.1109/TWC.2019.2902559 10.1109/MNET.2017.1600280 10.1109/TWC.2021.3111991 10.1109/JIOT.2021.3051370 10.1109/ICC40277.2020.9148990 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022 |
| DBID | 97E RIA RIE AAYXX CITATION 7SP 8FD FR3 KR7 L7M |
| DOI | 10.1109/TVT.2022.3181158 |
| DatabaseName | IEEE Xplore (IEEE) IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Electronics & Communications Abstracts Technology Research Database Engineering Research Database Civil Engineering Abstracts Advanced Technologies Database with Aerospace |
| DatabaseTitle | CrossRef Civil Engineering Abstracts Engineering Research Database Technology Research Database Advanced Technologies Database with Aerospace Electronics & Communications Abstracts |
| DatabaseTitleList | Civil Engineering Abstracts |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1939-9359 |
| EndPage | 10032 |
| ExternalDocumentID | 10_1109_TVT_2022_3181158 9792460 |
| Genre | orig-research |
| GroupedDBID | -~X .DC 0R~ 29I 3EH 4.4 5GY 5VS 6IK 97E AAIKC AAJGR AAMNW AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACGFS ACIWK ACNCT AENEX AETIX AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD HZ~ H~9 IAAWW IBMZZ ICLAB IFIPE IFJZH IPLJI JAVBF LAI M43 MS~ O9- OCL P2P RIA RIE RNS RXW TAE TN5 VH1 AAYXX CITATION 7SP 8FD FR3 KR7 L7M |
| ID | FETCH-LOGICAL-c291t-98c15fc338480d5fa3b05e8be05cead3d790db91a99fc99442bd43b45a43b1f63 |
| IEDL.DBID | RIE |
| ISSN | 0018-9545 |
| IngestDate | Mon Jun 30 10:19:15 EDT 2025 Wed Oct 01 02:27:06 EDT 2025 Thu Apr 24 22:50:29 EDT 2025 Wed Aug 27 02:15:02 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 9 |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c291t-98c15fc338480d5fa3b05e8be05cead3d790db91a99fc99442bd43b45a43b1f63 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-1093-4865 0000-0001-9341-8382 0000-0001-9403-3417 0000-0002-1375-8414 0000-0001-9035-6278 |
| PQID | 2714954255 |
| PQPubID | 85454 |
| PageCount | 17 |
| ParticipantIDs | proquest_journals_2714954255 crossref_primary_10_1109_TVT_2022_3181158 crossref_citationtrail_10_1109_TVT_2022_3181158 ieee_primary_9792460 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2022-09-01 |
| PublicationDateYYYYMMDD | 2022-09-01 |
| PublicationDate_xml | – month: 09 year: 2022 text: 2022-09-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York |
| PublicationTitle | IEEE transactions on vehicular technology |
| PublicationTitleAbbrev | TVT |
| PublicationYear | 2022 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref13 ref12 ref15 ref14 ref31 ref30 ref11 ref33 ref10 ref32 ref2 ref1 ref17 ref16 ref19 ref18 ref24 ref23 ref26 ref25 ref20 ref22 ref21 ref28 ref27 ref29 (ref8) 2015 ref7 ref9 ref4 ref3 ref6 ref5 |
| References_xml | – ident: ref6 doi: 10.1109/GLOBECOM42002.2020.9322517 – ident: ref13 doi: 10.23919/JCC.2020.10.010 – ident: ref25 doi: 10.1109/LCOMM.2019.2931900 – ident: ref15 doi: 10.1109/LWC.2020.2982637 – ident: ref12 doi: 10.1109/TWC.2019.2892131 – ident: ref33 doi: 10.1017/CBO9780511804441 – ident: ref30 doi: 10.1109/MWC.2019.1800146 – ident: ref22 doi: 10.1109/TWC.2019.2930190 – ident: ref20 doi: 10.1109/JIOT.2020.3012835 – ident: ref3 doi: 10.1109/COMST.2019.2916177 – ident: ref7 doi: 10.1109/MCOM.2019.1800394 – ident: ref14 doi: 10.1109/TSIPN.2020.2986360 – ident: ref9 doi: 10.3390/s19153442 – ident: ref24 doi: 10.1109/JIOT.2019.2952364 – ident: ref19 doi: 10.1109/LCOMM.2021.3057069 – ident: ref29 doi: 10.1109/ACCESS.2019.2939616 – ident: ref23 doi: 10.1109/JIOT.2019.2939823 – ident: ref1 doi: 10.1109/TVT.2019.2954233 – ident: ref21 doi: 10.1109/WCSP49889.2020.9299804 – ident: ref4 doi: 10.1109/PIMRC.2019.8904414 – ident: ref32 doi: 10.1109/LWC.2014.2342736 – ident: ref10 doi: 10.1016/j.jnca.2019.05.006 – ident: ref5 doi: 10.1109/ACCESS.2020.3010271 – ident: ref2 doi: 10.1109/JIOT.2020.3011521 – ident: ref16 doi: 10.1109/GLOCOMW.2018.8644379 – ident: ref17 doi: 10.1109/ACCESS.2020.3048436 – ident: ref31 doi: 10.1109/TWC.2020.3037916 – ident: ref28 doi: 10.1109/TWC.2019.2902559 – year: 2015 ident: ref8 article-title: Cellular system support for ultra-low complexity and low throughput Internet-of-Things (CIoT) (Release 13) – ident: ref11 doi: 10.1109/MNET.2017.1600280 – ident: ref27 doi: 10.1109/TWC.2021.3111991 – ident: ref26 doi: 10.1109/JIOT.2021.3051370 – ident: ref18 doi: 10.1109/ICC40277.2020.9148990 |
| SSID | ssj0014491 |
| Score | 2.4475963 |
| Snippet | Machine-type communications (MTC) is a key technology for Internet-of-Things (IoT) services in 5G mobile communications and beyond. An essential design problem... |
| SourceID | proquest crossref ieee |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 10016 |
| SubjectTerms | 5G mobile communication Algorithms Artificial energy map Autonomous aerial vehicles clustered MTC network Clustering Clustering algorithms Communication networks Data collection Energy consumption Energy efficiency Greedy algorithms Hovering Internet of Things Machine learning Modelling Optimization Optimization techniques Strategy Trajectory Trajectory planning UAV-enabled data collection Unmanned aerial vehicles |
| Title | UAV-Enabled Data Collection Over Clustered Machine-Type Communication Networks: AEM Modeling and Trajectory Planning |
| URI | https://ieeexplore.ieee.org/document/9792460 https://www.proquest.com/docview/2714954255 |
| Volume | 71 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 1939-9359 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0014491 issn: 0018-9545 databaseCode: RIE dateStart: 19670101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NT8IwFG-Qkx78QiOKpgcvJhb20W6tN4IQYgJegHBb2q47qAEj46B_va_dRkSN8bIsW9s0ea_t-_V9_BC6lqA3PueKZDyMCKUyIiJVkvgZfOCW7tgF0YzG0XBKH-ZsXkO3m1wYY4wLPjNt--p8-elSr-1VWUfEgBYiAOg7MY-KXK2Nx4DSkh3PhwUMZkHlkvREZzKbABAMAsCnHAwgvnUEOU6VHxuxO10GB2hUzasIKnlur3PV1h_fSjb-d-KHaL80M3G30IsjVDOLY7T3pfhgA-XT7oz0XepUiu9lLrG7RHB5DvgRNBz3Xta2jAL8HrmQS0MsasVbOSV4XMSRr-5wtz_CllrNJrhjuUgxnINPzinwjitupBM0HfQnvSEpORiIDoSfE8G1zzINQJZyL2WZDJXHDFfGYxqUMExj4aVK-FKITAtBaaBSGirKJDz9LApPUX2xXJgzhGMJowjqaR5rKnQgFQsl0xHYOLFlFWyiTiWWRJcFyi1PxkvigIonEhBkYgWZlIJsoptNj9eiOMcfbRtWLpt2pUiaqFVJPilX7yoJYosbYTdj57_3ukC7duwi1qyF6vnb2lyCcZKrK6eVn7IL36A |
| linkProvider | IEEE |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NT9swFH9C5TB2GGwwUb7mwy5Ic5sPO7G5VaWoA9Jd2qq3yHacA6AyQXrY_nqenaQCNiEuUZTYiaX3bL-f38cP4LtCvQmF0LQUcUIZUwmVhVY0LPGBcHTHPogmmyTjGbtc8MUG_FjnwlhrffCZ7blb78sv7s3KHZX1ZYpoIUGAvskZY7zO1lr7DBhr-PFCnMJoGLROyUD2p_MpQsEoQoQq0AQSLzYhz6ryz1Ls95eLbcjakdVhJbe9VaV75u-roo3vHfoOfGoMTTKoNeMzbNjlF_j4rPzgLlSzwZyOfPJUQc5VpYg_RvCZDuQX6jgZ3q1cIQV8nfmgS0sdbiUvskrIpI4kfzwjg1FGHLmaS3EnalkQ3AlvvFvgD2nZkfZgdjGaDse0YWGgJpJhRaUwIS8NQlkmgoKXKtYBt0LbgBtUw7hIZVBoGSopSyMlY5EuWKwZV3gNyyT-Cp3l_dLuA0kVfkWywIjUMGkipXmsuEnQykkdr2AX-q1YctOUKHdMGXe5hyqBzFGQuRNk3giyC6frHr_r8hxvtN11clm3a0TShaNW8nkzfx_zKHXIEdczfvD_Xt_gw3iaXefXPydXh7Dl_lNHnh1Bp3pY2WM0VSp94jX0CY7I4u0 |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=UAV-Enabled+Data+Collection+Over+Clustered+Machine-Type+Communication+Networks%3A+AEM+Modeling+and+Trajectory+Planning&rft.jtitle=IEEE+transactions+on+vehicular+technology&rft.au=Shen%2C+Lingfeng&rft.au=Wang%2C+Ning&rft.au=Zhu%2C+Zhengyu&rft.au=Xu%2C+Wei&rft.date=2022-09-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=0018-9545&rft.eissn=1939-9359&rft.volume=71&rft.issue=9&rft.spage=10016&rft_id=info:doi/10.1109%2FTVT.2022.3181158&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0018-9545&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0018-9545&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0018-9545&client=summon |