UAV-Enabled Data Collection Over Clustered Machine-Type Communication Networks: AEM Modeling and Trajectory Planning

Machine-type communications (MTC) is a key technology for Internet-of-Things (IoT) services in 5G mobile communications and beyond. An essential design problem for an MTC network is the efficient and scalable data collection from low-power machine-type communication devices (MTCDs). This paper uses...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on vehicular technology Vol. 71; no. 9; pp. 10016 - 10032
Main Authors Shen, Lingfeng, Wang, Ning, Zhu, Zhengyu, Xu, Wei, Li, Yue, Mu, Xiaomin, Cai, Lin
Format Journal Article
LanguageEnglish
Published New York IEEE 01.09.2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN0018-9545
1939-9359
DOI10.1109/TVT.2022.3181158

Cover

Abstract Machine-type communications (MTC) is a key technology for Internet-of-Things (IoT) services in 5G mobile communications and beyond. An essential design problem for an MTC network is the efficient and scalable data collection from low-power machine-type communication devices (MTCDs). This paper uses unmanned aerial vehicles (UAVs) to facilitate data collection from a clustered MTC network on the ground. The notion of artificial energy map (AEM) is introduced as a novel modeling technique for energy efficiency analysis, which is critical to the subject of investigation here considering the limited energy of battery-powered MTCDs and UAVs. The proposed design framework first determines the number of MTCD clusters <inline-formula><tex-math notation="LaTeX">L_\mathrm{{opt}}</tex-math></inline-formula> according to a certain criterion. A greedy learning clustering (GLC) algorithm is then employed to divide the MTCDs into <inline-formula><tex-math notation="LaTeX">L_\mathrm{{opt}}</tex-math></inline-formula> clusters. For each MTCD cluster, an AEM is constructed, and the optimal UAV hovering strategy within the cluster can be obtained accordingly. Finally, the UAV stations travel across the clusters and collect data from each cluster while hovering above it. This AEM-based modeling technique leads to a solution that can effectively improve the energy efficiency (EE) of UAV-enabled data collection. However, the MTCD clustering strategy, UAV hovering strategy, and UAV flying strategy all have impacts on the overall energy efficiency, which results in a coupled optimization problem that is difficult to solve. The GLC-AEM method is proposed to decouple the original EE optimization problem into sub-problems that can be handled easily by standard optimization techniques. Simulation results show that the GLC-AEM algorithm can be applied to UAV-enabled data collection scenarios with single and multiple UAV stations, and it can improve the overall EE effectively. Besides, the GLC-AEM algorithm shows good scalability and consistent performance in clustered MTC networks. The more MTCDs, the higher the achieved EE.
AbstractList Machine-type communications (MTC) is a key technology for Internet-of-Things (IoT) services in 5G mobile communications and beyond. An essential design problem for an MTC network is the efficient and scalable data collection from low-power machine-type communication devices (MTCDs). This paper uses unmanned aerial vehicles (UAVs) to facilitate data collection from a clustered MTC network on the ground. The notion of artificial energy map (AEM) is introduced as a novel modeling technique for energy efficiency analysis, which is critical to the subject of investigation here considering the limited energy of battery-powered MTCDs and UAVs. The proposed design framework first determines the number of MTCD clusters <inline-formula><tex-math notation="LaTeX">L_\mathrm{{opt}}</tex-math></inline-formula> according to a certain criterion. A greedy learning clustering (GLC) algorithm is then employed to divide the MTCDs into <inline-formula><tex-math notation="LaTeX">L_\mathrm{{opt}}</tex-math></inline-formula> clusters. For each MTCD cluster, an AEM is constructed, and the optimal UAV hovering strategy within the cluster can be obtained accordingly. Finally, the UAV stations travel across the clusters and collect data from each cluster while hovering above it. This AEM-based modeling technique leads to a solution that can effectively improve the energy efficiency (EE) of UAV-enabled data collection. However, the MTCD clustering strategy, UAV hovering strategy, and UAV flying strategy all have impacts on the overall energy efficiency, which results in a coupled optimization problem that is difficult to solve. The GLC-AEM method is proposed to decouple the original EE optimization problem into sub-problems that can be handled easily by standard optimization techniques. Simulation results show that the GLC-AEM algorithm can be applied to UAV-enabled data collection scenarios with single and multiple UAV stations, and it can improve the overall EE effectively. Besides, the GLC-AEM algorithm shows good scalability and consistent performance in clustered MTC networks. The more MTCDs, the higher the achieved EE.
Machine-type communications (MTC) is a key technology for Internet-of-Things (IoT) services in 5G mobile communications and beyond. An essential design problem for an MTC network is the efficient and scalable data collection from low-power machine-type communication devices (MTCDs). This paper uses unmanned aerial vehicles (UAVs) to facilitate data collection from a clustered MTC network on the ground. The notion of artificial energy map (AEM) is introduced as a novel modeling technique for energy efficiency analysis, which is critical to the subject of investigation here considering the limited energy of battery-powered MTCDs and UAVs. The proposed design framework first determines the number of MTCD clusters [Formula Omitted] according to a certain criterion. A greedy learning clustering (GLC) algorithm is then employed to divide the MTCDs into [Formula Omitted] clusters. For each MTCD cluster, an AEM is constructed, and the optimal UAV hovering strategy within the cluster can be obtained accordingly. Finally, the UAV stations travel across the clusters and collect data from each cluster while hovering above it. This AEM-based modeling technique leads to a solution that can effectively improve the energy efficiency (EE) of UAV-enabled data collection. However, the MTCD clustering strategy, UAV hovering strategy, and UAV flying strategy all have impacts on the overall energy efficiency, which results in a coupled optimization problem that is difficult to solve. The GLC-AEM method is proposed to decouple the original EE optimization problem into sub-problems that can be handled easily by standard optimization techniques. Simulation results show that the GLC-AEM algorithm can be applied to UAV-enabled data collection scenarios with single and multiple UAV stations, and it can improve the overall EE effectively. Besides, the GLC-AEM algorithm shows good scalability and consistent performance in clustered MTC networks. The more MTCDs, the higher the achieved EE.
Author Zhu, Zhengyu
Cai, Lin
Shen, Lingfeng
Wang, Ning
Mu, Xiaomin
Li, Yue
Xu, Wei
Author_xml – sequence: 1
  givenname: Lingfeng
  orcidid: 0000-0002-1375-8414
  surname: Shen
  fullname: Shen, Lingfeng
  email: ielfshen@163.com
  organization: School of Information Engineering, Zhengzhou University, Zhengzhou, China
– sequence: 2
  givenname: Ning
  orcidid: 0000-0001-9403-3417
  surname: Wang
  fullname: Wang, Ning
  email: ienwang@zzu.edu.cn
  organization: School of Information Engineering, Zhengzhou University, Zhengzhou, China
– sequence: 3
  givenname: Zhengyu
  surname: Zhu
  fullname: Zhu, Zhengyu
  email: iezyzhu@zzu.edu.cn
  organization: School of Information Engineering, Zhengzhou University, Zhengzhou, China
– sequence: 4
  givenname: Wei
  orcidid: 0000-0001-9341-8382
  surname: Xu
  fullname: Xu, Wei
  email: wxu@seu.edu.cn
  organization: School of Information Science and Engineering, Southeast University, Nanjing, China
– sequence: 5
  givenname: Yue
  orcidid: 0000-0001-9035-6278
  surname: Li
  fullname: Li, Yue
  email: liyue331@uvic.ca
  organization: Department of Electrical and Computer Engineering, University of Victoria, Victoria, BC, Canada
– sequence: 6
  givenname: Xiaomin
  surname: Mu
  fullname: Mu, Xiaomin
  email: iexmmu@zzu.edu.cn
  organization: School of Information Engineering, Zhengzhou University, Zhengzhou, China
– sequence: 7
  givenname: Lin
  orcidid: 0000-0002-1093-4865
  surname: Cai
  fullname: Cai, Lin
  email: cai@ece.uvic.ca
  organization: Department of Electrical and Computer Engineering, University of Victoria, Victoria, BC, Canada
BookMark eNp9kD1PwzAQhi0EEuVjR2KxxJxix3abY6tK-ZAoMKRdI8e5QEpqF8cF9d9jWsTAwGLL5-e90z1HZN86i4SccdbnnMFlPs_7KUvTvuAZ5yrbIz0OAhIQCvZJjzGeJaCkOiRHXbeITymB90iYjebJxOqyxYpe66Dp2LUtmtA4S58-0NNxu-4C-vg91ea1sZjkmxVGbLlc28boLfmI4dP5t-6KjiZTOnUVto19odpWNPd6Efs5v6HPrbY21k_IQa3bDk9_7mMyu5nk47vk4en2fjx6SEwKPCSQGa5qI0QmM1apWouSKcxKZMqgrkQ1BFaVwDVAbQCkTMtKilIqHU9eD8Qxudj1XXn3vsYuFAu39jaOLNIhl1FHqlSkBjvKeNd1HuvCNGG7VvC6aQvOim_DRTRcfBsufgzHIPsTXPlmqf3mv8j5LtIg4i8OQ0jlgIkvwayJDw
CODEN ITVTAB
CitedBy_id crossref_primary_10_1002_cpe_8237
crossref_primary_10_3390_drones8060267
crossref_primary_10_1109_TITS_2023_3299842
crossref_primary_10_1109_TVT_2023_3301676
crossref_primary_10_3390_drones8100530
Cites_doi 10.1109/GLOBECOM42002.2020.9322517
10.23919/JCC.2020.10.010
10.1109/LCOMM.2019.2931900
10.1109/LWC.2020.2982637
10.1109/TWC.2019.2892131
10.1017/CBO9780511804441
10.1109/MWC.2019.1800146
10.1109/TWC.2019.2930190
10.1109/JIOT.2020.3012835
10.1109/COMST.2019.2916177
10.1109/MCOM.2019.1800394
10.1109/TSIPN.2020.2986360
10.3390/s19153442
10.1109/JIOT.2019.2952364
10.1109/LCOMM.2021.3057069
10.1109/ACCESS.2019.2939616
10.1109/JIOT.2019.2939823
10.1109/TVT.2019.2954233
10.1109/WCSP49889.2020.9299804
10.1109/PIMRC.2019.8904414
10.1109/LWC.2014.2342736
10.1016/j.jnca.2019.05.006
10.1109/ACCESS.2020.3010271
10.1109/JIOT.2020.3011521
10.1109/GLOCOMW.2018.8644379
10.1109/ACCESS.2020.3048436
10.1109/TWC.2020.3037916
10.1109/TWC.2019.2902559
10.1109/MNET.2017.1600280
10.1109/TWC.2021.3111991
10.1109/JIOT.2021.3051370
10.1109/ICC40277.2020.9148990
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
DBID 97E
RIA
RIE
AAYXX
CITATION
7SP
8FD
FR3
KR7
L7M
DOI 10.1109/TVT.2022.3181158
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Electronics & Communications Abstracts
Technology Research Database
Engineering Research Database
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Civil Engineering Abstracts
Engineering Research Database
Technology Research Database
Advanced Technologies Database with Aerospace
Electronics & Communications Abstracts
DatabaseTitleList
Civil Engineering Abstracts
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1939-9359
EndPage 10032
ExternalDocumentID 10_1109_TVT_2022_3181158
9792460
Genre orig-research
GroupedDBID -~X
.DC
0R~
29I
3EH
4.4
5GY
5VS
6IK
97E
AAIKC
AAJGR
AAMNW
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ACNCT
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
HZ~
H~9
IAAWW
IBMZZ
ICLAB
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
MS~
O9-
OCL
P2P
RIA
RIE
RNS
RXW
TAE
TN5
VH1
AAYXX
CITATION
7SP
8FD
FR3
KR7
L7M
ID FETCH-LOGICAL-c291t-98c15fc338480d5fa3b05e8be05cead3d790db91a99fc99442bd43b45a43b1f63
IEDL.DBID RIE
ISSN 0018-9545
IngestDate Mon Jun 30 10:19:15 EDT 2025
Wed Oct 01 02:27:06 EDT 2025
Thu Apr 24 22:50:29 EDT 2025
Wed Aug 27 02:15:02 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 9
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c291t-98c15fc338480d5fa3b05e8be05cead3d790db91a99fc99442bd43b45a43b1f63
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-1093-4865
0000-0001-9341-8382
0000-0001-9403-3417
0000-0002-1375-8414
0000-0001-9035-6278
PQID 2714954255
PQPubID 85454
PageCount 17
ParticipantIDs proquest_journals_2714954255
crossref_primary_10_1109_TVT_2022_3181158
crossref_citationtrail_10_1109_TVT_2022_3181158
ieee_primary_9792460
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-09-01
PublicationDateYYYYMMDD 2022-09-01
PublicationDate_xml – month: 09
  year: 2022
  text: 2022-09-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on vehicular technology
PublicationTitleAbbrev TVT
PublicationYear 2022
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref12
ref15
ref14
ref31
ref30
ref11
ref33
ref10
ref32
ref2
ref1
ref17
ref16
ref19
ref18
ref24
ref23
ref26
ref25
ref20
ref22
ref21
ref28
ref27
ref29
(ref8) 2015
ref7
ref9
ref4
ref3
ref6
ref5
References_xml – ident: ref6
  doi: 10.1109/GLOBECOM42002.2020.9322517
– ident: ref13
  doi: 10.23919/JCC.2020.10.010
– ident: ref25
  doi: 10.1109/LCOMM.2019.2931900
– ident: ref15
  doi: 10.1109/LWC.2020.2982637
– ident: ref12
  doi: 10.1109/TWC.2019.2892131
– ident: ref33
  doi: 10.1017/CBO9780511804441
– ident: ref30
  doi: 10.1109/MWC.2019.1800146
– ident: ref22
  doi: 10.1109/TWC.2019.2930190
– ident: ref20
  doi: 10.1109/JIOT.2020.3012835
– ident: ref3
  doi: 10.1109/COMST.2019.2916177
– ident: ref7
  doi: 10.1109/MCOM.2019.1800394
– ident: ref14
  doi: 10.1109/TSIPN.2020.2986360
– ident: ref9
  doi: 10.3390/s19153442
– ident: ref24
  doi: 10.1109/JIOT.2019.2952364
– ident: ref19
  doi: 10.1109/LCOMM.2021.3057069
– ident: ref29
  doi: 10.1109/ACCESS.2019.2939616
– ident: ref23
  doi: 10.1109/JIOT.2019.2939823
– ident: ref1
  doi: 10.1109/TVT.2019.2954233
– ident: ref21
  doi: 10.1109/WCSP49889.2020.9299804
– ident: ref4
  doi: 10.1109/PIMRC.2019.8904414
– ident: ref32
  doi: 10.1109/LWC.2014.2342736
– ident: ref10
  doi: 10.1016/j.jnca.2019.05.006
– ident: ref5
  doi: 10.1109/ACCESS.2020.3010271
– ident: ref2
  doi: 10.1109/JIOT.2020.3011521
– ident: ref16
  doi: 10.1109/GLOCOMW.2018.8644379
– ident: ref17
  doi: 10.1109/ACCESS.2020.3048436
– ident: ref31
  doi: 10.1109/TWC.2020.3037916
– ident: ref28
  doi: 10.1109/TWC.2019.2902559
– year: 2015
  ident: ref8
  article-title: Cellular system support for ultra-low complexity and low throughput Internet-of-Things (CIoT) (Release 13)
– ident: ref11
  doi: 10.1109/MNET.2017.1600280
– ident: ref27
  doi: 10.1109/TWC.2021.3111991
– ident: ref26
  doi: 10.1109/JIOT.2021.3051370
– ident: ref18
  doi: 10.1109/ICC40277.2020.9148990
SSID ssj0014491
Score 2.4475963
Snippet Machine-type communications (MTC) is a key technology for Internet-of-Things (IoT) services in 5G mobile communications and beyond. An essential design problem...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 10016
SubjectTerms 5G mobile communication
Algorithms
Artificial energy map
Autonomous aerial vehicles
clustered MTC network
Clustering
Clustering algorithms
Communication networks
Data collection
Energy consumption
Energy efficiency
Greedy algorithms
Hovering
Internet of Things
Machine learning
Modelling
Optimization
Optimization techniques
Strategy
Trajectory
Trajectory planning
UAV-enabled data collection
Unmanned aerial vehicles
Title UAV-Enabled Data Collection Over Clustered Machine-Type Communication Networks: AEM Modeling and Trajectory Planning
URI https://ieeexplore.ieee.org/document/9792460
https://www.proquest.com/docview/2714954255
Volume 71
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1939-9359
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014491
  issn: 0018-9545
  databaseCode: RIE
  dateStart: 19670101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NT8IwFG-Qkx78QiOKpgcvJhb20W6tN4IQYgJegHBb2q47qAEj46B_va_dRkSN8bIsW9s0ea_t-_V9_BC6lqA3PueKZDyMCKUyIiJVkvgZfOCW7tgF0YzG0XBKH-ZsXkO3m1wYY4wLPjNt--p8-elSr-1VWUfEgBYiAOg7MY-KXK2Nx4DSkh3PhwUMZkHlkvREZzKbABAMAsCnHAwgvnUEOU6VHxuxO10GB2hUzasIKnlur3PV1h_fSjb-d-KHaL80M3G30IsjVDOLY7T3pfhgA-XT7oz0XepUiu9lLrG7RHB5DvgRNBz3Xta2jAL8HrmQS0MsasVbOSV4XMSRr-5wtz_CllrNJrhjuUgxnINPzinwjitupBM0HfQnvSEpORiIDoSfE8G1zzINQJZyL2WZDJXHDFfGYxqUMExj4aVK-FKITAtBaaBSGirKJDz9LApPUX2xXJgzhGMJowjqaR5rKnQgFQsl0xHYOLFlFWyiTiWWRJcFyi1PxkvigIonEhBkYgWZlIJsoptNj9eiOMcfbRtWLpt2pUiaqFVJPilX7yoJYosbYTdj57_3ukC7duwi1qyF6vnb2lyCcZKrK6eVn7IL36A
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NT9swFH9C5TB2GGwwUb7mwy5Ic5sPO7G5VaWoA9Jd2qq3yHacA6AyQXrY_nqenaQCNiEuUZTYiaX3bL-f38cP4LtCvQmF0LQUcUIZUwmVhVY0LPGBcHTHPogmmyTjGbtc8MUG_FjnwlhrffCZ7blb78sv7s3KHZX1ZYpoIUGAvskZY7zO1lr7DBhr-PFCnMJoGLROyUD2p_MpQsEoQoQq0AQSLzYhz6ryz1Ls95eLbcjakdVhJbe9VaV75u-roo3vHfoOfGoMTTKoNeMzbNjlF_j4rPzgLlSzwZyOfPJUQc5VpYg_RvCZDuQX6jgZ3q1cIQV8nfmgS0sdbiUvskrIpI4kfzwjg1FGHLmaS3EnalkQ3AlvvFvgD2nZkfZgdjGaDse0YWGgJpJhRaUwIS8NQlkmgoKXKtYBt0LbgBtUw7hIZVBoGSopSyMlY5EuWKwZV3gNyyT-Cp3l_dLuA0kVfkWywIjUMGkipXmsuEnQykkdr2AX-q1YctOUKHdMGXe5hyqBzFGQuRNk3giyC6frHr_r8hxvtN11clm3a0TShaNW8nkzfx_zKHXIEdczfvD_Xt_gw3iaXefXPydXh7Dl_lNHnh1Bp3pY2WM0VSp94jX0CY7I4u0
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=UAV-Enabled+Data+Collection+Over+Clustered+Machine-Type+Communication+Networks%3A+AEM+Modeling+and+Trajectory+Planning&rft.jtitle=IEEE+transactions+on+vehicular+technology&rft.au=Shen%2C+Lingfeng&rft.au=Wang%2C+Ning&rft.au=Zhu%2C+Zhengyu&rft.au=Xu%2C+Wei&rft.date=2022-09-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=0018-9545&rft.eissn=1939-9359&rft.volume=71&rft.issue=9&rft.spage=10016&rft_id=info:doi/10.1109%2FTVT.2022.3181158&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0018-9545&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0018-9545&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0018-9545&client=summon