CMP Process Optimization Engineering by Machine Learning

Advanced Chemical-mechanical polishing (CMP) process not only needs to maintain stable run-to-run thickness control but also achieve better within wafer/within chip planarization performance. Furthermore, slurries or other consumable parts, like PAD and Disks selection are also the keys for CMP proc...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on semiconductor manufacturing Vol. 34; no. 3; pp. 280 - 285
Main Authors Yu, Hsiang-Meng, Lin, Chih-Chen, Hsu, Min-Hsuan, Chen, Yen-Ting, Chen, Kuang-Wei, Luoh, Tuung, Yang, Ling-Wuu, Yang, Tahone, Chen, Kuang-Chao
Format Journal Article
LanguageEnglish
Published New York IEEE 01.08.2021
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN0894-6507
1558-2345
DOI10.1109/TSM.2021.3072361

Cover

Abstract Advanced Chemical-mechanical polishing (CMP) process not only needs to maintain stable run-to-run thickness control but also achieve better within wafer/within chip planarization performance. Furthermore, slurries or other consumable parts, like PAD and Disks selection are also the keys for CMP process optimization. The most difficult thing in CMP process is to have capability to predict and cover the various topologies and layout densities patterned wafers and preventing the hot spots occurrences. In this study, different Neural-Network algorithm with data pre-processing models are implemented to the in-line CMP CLC tuning and dishing/erosion prediction at various topology/pattern density test vehicle pattern wafers. Transfer learning technique is implemented on the original Neural -Network algorithm model, the behavior of real product can be simulated and predicted based on the knowledge of test vehicle database successfully. With the aid of multiple layer erosion/ dishing Neural-Network algorithm model prediction, the potential high risky hot spots can be highlighted at the initial layout design stage, then further shorten the turn-around time of design layout validation.
AbstractList Advanced Chemical-mechanical polishing (CMP) process not only needs to maintain stable run-to-run thickness control but also achieve better within wafer/within chip planarization performance. Furthermore, slurries or other consumable parts, like PAD and Disks selection are also the keys for CMP process optimization. The most difficult thing in CMP process is to have capability to predict and cover the various topologies and layout densities patterned wafers and preventing the hot spots occurrences. In this study, different Neural-Network algorithm with data pre-processing models are implemented to the in-line CMP CLC tuning and dishing/erosion prediction at various topology/pattern density test vehicle pattern wafers. Transfer learning technique is implemented on the original Neural -Network algorithm model, the behavior of real product can be simulated and predicted based on the knowledge of test vehicle database successfully. With the aid of multiple layer erosion/ dishing Neural-Network algorithm model prediction, the potential high risky hot spots can be highlighted at the initial layout design stage, then further shorten the turn-around time of design layout validation.
Author Hsu, Min-Hsuan
Yang, Ling-Wuu
Chen, Kuang-Chao
Yu, Hsiang-Meng
Luoh, Tuung
Chen, Yen-Ting
Lin, Chih-Chen
Yang, Tahone
Chen, Kuang-Wei
Author_xml – sequence: 1
  givenname: Hsiang-Meng
  surname: Yu
  fullname: Yu, Hsiang-Meng
  organization: Technology Development Center, Macronix International Company Ltd., Hsinchu, Taiwan
– sequence: 2
  givenname: Chih-Chen
  surname: Lin
  fullname: Lin, Chih-Chen
  organization: Technology Development Center, Macronix International Company Ltd., Hsinchu, Taiwan
– sequence: 3
  givenname: Min-Hsuan
  surname: Hsu
  fullname: Hsu, Min-Hsuan
  organization: Technology Development Center, Macronix International Company Ltd., Hsinchu, Taiwan
– sequence: 4
  givenname: Yen-Ting
  surname: Chen
  fullname: Chen, Yen-Ting
  organization: Technology Development Center, Macronix International Company Ltd., Hsinchu, Taiwan
– sequence: 5
  givenname: Kuang-Wei
  surname: Chen
  fullname: Chen, Kuang-Wei
  organization: Technology Development Center, Macronix International Company Ltd., Hsinchu, Taiwan
– sequence: 6
  givenname: Tuung
  orcidid: 0000-0003-0433-0835
  surname: Luoh
  fullname: Luoh, Tuung
  email: chrisluoh@mxic.com.tw
  organization: Technology Development Center, Macronix International Company Ltd., Hsinchu, Taiwan
– sequence: 7
  givenname: Ling-Wuu
  surname: Yang
  fullname: Yang, Ling-Wuu
  organization: Technology Development Center, Macronix International Company Ltd., Hsinchu, Taiwan
– sequence: 8
  givenname: Tahone
  surname: Yang
  fullname: Yang, Tahone
  organization: Technology Development Center, Macronix International Company Ltd., Hsinchu, Taiwan
– sequence: 9
  givenname: Kuang-Chao
  orcidid: 0000-0002-7715-808X
  surname: Chen
  fullname: Chen, Kuang-Chao
  organization: Technology Development Center, Macronix International Company Ltd., Hsinchu, Taiwan
BookMark eNp9kE1PAjEQhhuDiYDeTbxs4nnX6de2PRqCHwkEEvHcdLsFS6CL7XLAX-8ixIMHT5OZvM9M5hmgXmiCQ-gWQ4ExqIfF27QgQHBBQRBa4gvUx5zLnFDGe6gPUrG85CCu0CClNQBmTIk-kqPpPJvHxrqUstmu9Vv_ZVrfhGwcVj44F31YZdUhmxr70fXZxJkYutk1ulyaTXI35zpE70_jxegln8yeX0ePk9wShdtcWssrqupKqdJIV9rS1owJA8RZQTmpMZNEigq4NBKWoiaOmFpU1rCqSwIdovvT3l1sPvcutXrd7GPoTmrCuVBClkR1KTilbGxSim6pd9FvTTxoDProR3d-9NGPPvvpkPIPYn3783objd_8B96dQO-c-72jGACVgn4Dcv1zcQ
CODEN ITSMED
CitedBy_id crossref_primary_10_1016_j_mssp_2022_107025
crossref_primary_10_1007_s10845_024_02335_0
crossref_primary_10_1109_TSM_2023_3264255
crossref_primary_10_1109_TSM_2023_3332630
crossref_primary_10_1109_TAI_2024_3429479
crossref_primary_10_1109_TSM_2024_3370175
crossref_primary_10_1080_00207543_2022_2164088
crossref_primary_10_7736_JKSPE_022_119
Cites_doi 10.1117/12.2514467
10.1109/TCPMT.2020.2979472
10.23919/ACC.2004.1383922
10.1109/HICSS.2013.163
10.1016/j.cirp.2017.04.013
10.1186/s40537-016-0043-6
10.1016/S0167-739X(97)00022-8
10.1109/AEMCSE50948.2020.00056
10.1109/WHISPERS.2011.6080861
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021
DBID 97E
RIA
RIE
AAYXX
CITATION
7SP
7U5
8FD
L7M
DOI 10.1109/TSM.2021.3072361
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Xplore
CrossRef
Electronics & Communications Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
Electronics & Communications Abstracts
DatabaseTitleList
Solid State and Superconductivity Abstracts
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Xplore
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Economics
Engineering
EISSN 1558-2345
EndPage 285
ExternalDocumentID 10_1109_TSM_2021_3072361
9400387
Genre orig-research
GroupedDBID -~X
.DC
0R~
29I
4.4
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
HZ~
H~9
ICLAB
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
MS~
O9-
OCL
P2P
RIA
RIE
RNS
TN5
VH1
AAYXX
CITATION
7SP
7U5
8FD
L7M
ID FETCH-LOGICAL-c291t-8cc5b39db996a8e6c6cd447a02ec7352d148287b058a80f7d2e2ad7bca4bcd403
IEDL.DBID RIE
ISSN 0894-6507
IngestDate Sun Jun 29 12:15:06 EDT 2025
Thu Apr 24 23:04:47 EDT 2025
Wed Oct 01 03:58:37 EDT 2025
Wed Aug 27 02:39:34 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c291t-8cc5b39db996a8e6c6cd447a02ec7352d148287b058a80f7d2e2ad7bca4bcd403
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-0433-0835
0000-0002-7715-808X
PQID 2557978629
PQPubID 85442
PageCount 6
ParticipantIDs crossref_citationtrail_10_1109_TSM_2021_3072361
crossref_primary_10_1109_TSM_2021_3072361
proquest_journals_2557978629
ieee_primary_9400387
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-08-01
PublicationDateYYYYMMDD 2021-08-01
PublicationDate_xml – month: 08
  year: 2021
  text: 2021-08-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on semiconductor manufacturing
PublicationTitleAbbrev TSM
PublicationYear 2021
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref12
ref15
ref14
kim (ref6) 1997
ref11
ref10
sun (ref3) 2016
ref8
babu (ref1) 2016
tsvetanova (ref4) 2017
ref7
li (ref2) 2008
ref5
ghulghazaryan (ref9) 2017
References_xml – start-page: 307
  year: 2017
  ident: ref4
  article-title: Dummy gate amorphous silicon CMP using In-situ profile CLC endpoint system for advanced FinFET
  publication-title: Proc ICPT
– ident: ref5
  doi: 10.1117/12.2514467
– ident: ref12
  doi: 10.1109/TCPMT.2020.2979472
– ident: ref7
  doi: 10.23919/ACC.2004.1383922
– start-page: 183
  year: 2017
  ident: ref9
  article-title: Application of machine learning and neural networks for generation of pre-CMP profile of advanced deposition process for CMP modeling
  publication-title: Proc ICPI
– ident: ref13
  doi: 10.1109/HICSS.2013.163
– ident: ref8
  doi: 10.1016/j.cirp.2017.04.013
– ident: ref15
  doi: 10.1186/s40537-016-0043-6
– ident: ref14
  doi: 10.1016/S0167-739X(97)00022-8
– year: 2016
  ident: ref1
  publication-title: Advances in chemical mechanical planarization (CMP)
– year: 2008
  ident: ref2
  publication-title: Microelectronic Applications of Chemical Mechanical Planarization
– ident: ref10
  doi: 10.1109/AEMCSE50948.2020.00056
– start-page: 69
  year: 1997
  ident: ref6
  article-title: CMP profile simulation using an elastic model based on nonlinear contact analysis
  publication-title: Int Conf Simulation of Semiconductor Processes and Devices (SISPAD)
– ident: ref11
  doi: 10.1109/WHISPERS.2011.6080861
– start-page: 399
  year: 2016
  ident: ref3
  article-title: A multi-step wafer-level run-to-run controller with sampled measurements for furnace deposition and CMP process flows
  publication-title: Proc IEEE/SEMI Conf Workshop Adv Semicond Manuf (ASMC)
SSID ssj0014497
Score 2.3637068
Snippet Advanced Chemical-mechanical polishing (CMP) process not only needs to maintain stable run-to-run thickness control but also achieve better within wafer/within...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 280
SubjectTerms Algorithms
artificial intelligence
Artificial neural networks
Chemical-mechanical polishing
closed loop systems
Disks
Layout
Layouts
Machine learning
Neural networks
Optimization
Prediction algorithms
Predictive models
Process control
Semiconductor device modeling
Semiconductor process modeling
Slurries
Test vehicles
thickness control
Topology
Wafers
Title CMP Process Optimization Engineering by Machine Learning
URI https://ieeexplore.ieee.org/document/9400387
https://www.proquest.com/docview/2557978629
Volume 34
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Xplore
  customDbUrl:
  eissn: 1558-2345
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014497
  issn: 0894-6507
  databaseCode: RIE
  dateStart: 19880101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT8MwDLbGLsCBxwZiMFAPXJBol7ZpkxzRxDQhFZDYpN2q5lEOwIZYd4BfT9Km1XgIccvBqSLbje3Y_gxwHmmrp0KUuTQXysVSEjdDInaJrwRRUSyD3GR0k9t4PMU3s2jWgsumF0YpVRafKc8sy1y-XIiVeSobmCHeISUbsEFoXPVqNRkDjFmF6smwq70OUqckERtMHhIdCAa-p_XZYI18MUHlTJUfF3FpXUa7kNTnqopKnrxVwT3x8Q2y8b8H34Md62Y6V5Ve7ENLzTuwWXchLzuwvQZE2AU6TO4d2zPg3Olb5MW2ZzprZA5_d5Ky9lI5Fpb18QCmo-vJcOzamQquCJhfuFSIiIdMch3nZFTFIhYSY5KhQMtGO2PS4IJSwlFEM4pyIgMVZJJwkWGuKVF4CO35Yq6OwPEJRZIhzCODguZHPMK5n0vOucpj7rMeDGo2p8ICjpu5F89pGXgglmrBpEYwqRVMDy6aHa8V2MYftF3D54bOsrgH_VqSqf0bl6kOm4iOluOAHf--6wS2zLerwr4-tIu3lTrVzkbBz0ot-wSbC89b
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT8MwDLZ4HIADjw3EePbABYluaZs0yREh0IB1ILFJu1XNoxyADUF3gF9P0qYTLyFuOThqZLuxHdufAY6IsXo6QpnPcql9rBT1MyRjnwZaUk1iFeY2o5v04-4QX43IaA5OZr0wWuuy-Ey37bLM5auJnNqnso4d4h0xOg-LBGNMqm6tWc4AY17henLsG7-D1klJxDuDu8SEgmHQNhpt0Ua-GKFyqsqPq7i0LxdrkNQnq8pKHtrTQrTl-zfQxv8efR1WnaPpnVaasQFzetyApboP-bUBK5-gCJvAzpJbz3UNeDfmHnlyDZreJzJPvHlJWX2pPQfMer8Jw4vzwVnXd1MVfBnyoPCZlEREXAkT6WRMxzKWCmOaodBIx7hjyiKDMioQYRlDOVWhDjNFhcywMJQo2oKF8WSst8ELKEOKIyyIxUELiCA4D3IlhNB5LALegk7N5lQ6yHE7-eIxLUMPxFMjmNQKJnWCacHxbMdzBbfxB23T8nlG51jcgr1akqn7H19TEzhREy_HId_5fdchLHUHSS_tXfavd2HZfqcq89uDheJlqveN61GIg1LjPgCj4dKo
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=CMP+Process+Optimization+Engineering+by+Machine+Learning&rft.jtitle=IEEE+transactions+on+semiconductor+manufacturing&rft.au=Yu%2C+Hsiang-Meng&rft.au=Lin%2C+Chih-Chen&rft.au=Hsu%2C+Min-Hsuan&rft.au=Chen%2C+Yen-Ting&rft.date=2021-08-01&rft.pub=IEEE&rft.issn=0894-6507&rft.volume=34&rft.issue=3&rft.spage=280&rft.epage=285&rft_id=info:doi/10.1109%2FTSM.2021.3072361&rft.externalDocID=9400387
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0894-6507&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0894-6507&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0894-6507&client=summon