CMP Process Optimization Engineering by Machine Learning
Advanced Chemical-mechanical polishing (CMP) process not only needs to maintain stable run-to-run thickness control but also achieve better within wafer/within chip planarization performance. Furthermore, slurries or other consumable parts, like PAD and Disks selection are also the keys for CMP proc...
Saved in:
| Published in | IEEE transactions on semiconductor manufacturing Vol. 34; no. 3; pp. 280 - 285 |
|---|---|
| Main Authors | , , , , , , , , |
| Format | Journal Article |
| Language | English |
| Published |
New York
IEEE
01.08.2021
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Subjects | |
| Online Access | Get full text |
| ISSN | 0894-6507 1558-2345 |
| DOI | 10.1109/TSM.2021.3072361 |
Cover
| Abstract | Advanced Chemical-mechanical polishing (CMP) process not only needs to maintain stable run-to-run thickness control but also achieve better within wafer/within chip planarization performance. Furthermore, slurries or other consumable parts, like PAD and Disks selection are also the keys for CMP process optimization. The most difficult thing in CMP process is to have capability to predict and cover the various topologies and layout densities patterned wafers and preventing the hot spots occurrences. In this study, different Neural-Network algorithm with data pre-processing models are implemented to the in-line CMP CLC tuning and dishing/erosion prediction at various topology/pattern density test vehicle pattern wafers. Transfer learning technique is implemented on the original Neural -Network algorithm model, the behavior of real product can be simulated and predicted based on the knowledge of test vehicle database successfully. With the aid of multiple layer erosion/ dishing Neural-Network algorithm model prediction, the potential high risky hot spots can be highlighted at the initial layout design stage, then further shorten the turn-around time of design layout validation. |
|---|---|
| AbstractList | Advanced Chemical-mechanical polishing (CMP) process not only needs to maintain stable run-to-run thickness control but also achieve better within wafer/within chip planarization performance. Furthermore, slurries or other consumable parts, like PAD and Disks selection are also the keys for CMP process optimization. The most difficult thing in CMP process is to have capability to predict and cover the various topologies and layout densities patterned wafers and preventing the hot spots occurrences. In this study, different Neural-Network algorithm with data pre-processing models are implemented to the in-line CMP CLC tuning and dishing/erosion prediction at various topology/pattern density test vehicle pattern wafers. Transfer learning technique is implemented on the original Neural -Network algorithm model, the behavior of real product can be simulated and predicted based on the knowledge of test vehicle database successfully. With the aid of multiple layer erosion/ dishing Neural-Network algorithm model prediction, the potential high risky hot spots can be highlighted at the initial layout design stage, then further shorten the turn-around time of design layout validation. |
| Author | Hsu, Min-Hsuan Yang, Ling-Wuu Chen, Kuang-Chao Yu, Hsiang-Meng Luoh, Tuung Chen, Yen-Ting Lin, Chih-Chen Yang, Tahone Chen, Kuang-Wei |
| Author_xml | – sequence: 1 givenname: Hsiang-Meng surname: Yu fullname: Yu, Hsiang-Meng organization: Technology Development Center, Macronix International Company Ltd., Hsinchu, Taiwan – sequence: 2 givenname: Chih-Chen surname: Lin fullname: Lin, Chih-Chen organization: Technology Development Center, Macronix International Company Ltd., Hsinchu, Taiwan – sequence: 3 givenname: Min-Hsuan surname: Hsu fullname: Hsu, Min-Hsuan organization: Technology Development Center, Macronix International Company Ltd., Hsinchu, Taiwan – sequence: 4 givenname: Yen-Ting surname: Chen fullname: Chen, Yen-Ting organization: Technology Development Center, Macronix International Company Ltd., Hsinchu, Taiwan – sequence: 5 givenname: Kuang-Wei surname: Chen fullname: Chen, Kuang-Wei organization: Technology Development Center, Macronix International Company Ltd., Hsinchu, Taiwan – sequence: 6 givenname: Tuung orcidid: 0000-0003-0433-0835 surname: Luoh fullname: Luoh, Tuung email: chrisluoh@mxic.com.tw organization: Technology Development Center, Macronix International Company Ltd., Hsinchu, Taiwan – sequence: 7 givenname: Ling-Wuu surname: Yang fullname: Yang, Ling-Wuu organization: Technology Development Center, Macronix International Company Ltd., Hsinchu, Taiwan – sequence: 8 givenname: Tahone surname: Yang fullname: Yang, Tahone organization: Technology Development Center, Macronix International Company Ltd., Hsinchu, Taiwan – sequence: 9 givenname: Kuang-Chao orcidid: 0000-0002-7715-808X surname: Chen fullname: Chen, Kuang-Chao organization: Technology Development Center, Macronix International Company Ltd., Hsinchu, Taiwan |
| BookMark | eNp9kE1PAjEQhhuDiYDeTbxs4nnX6de2PRqCHwkEEvHcdLsFS6CL7XLAX-8ixIMHT5OZvM9M5hmgXmiCQ-gWQ4ExqIfF27QgQHBBQRBa4gvUx5zLnFDGe6gPUrG85CCu0CClNQBmTIk-kqPpPJvHxrqUstmu9Vv_ZVrfhGwcVj44F31YZdUhmxr70fXZxJkYutk1ulyaTXI35zpE70_jxegln8yeX0ePk9wShdtcWssrqupKqdJIV9rS1owJA8RZQTmpMZNEigq4NBKWoiaOmFpU1rCqSwIdovvT3l1sPvcutXrd7GPoTmrCuVBClkR1KTilbGxSim6pd9FvTTxoDProR3d-9NGPPvvpkPIPYn3783objd_8B96dQO-c-72jGACVgn4Dcv1zcQ |
| CODEN | ITSMED |
| CitedBy_id | crossref_primary_10_1016_j_mssp_2022_107025 crossref_primary_10_1007_s10845_024_02335_0 crossref_primary_10_1109_TSM_2023_3264255 crossref_primary_10_1109_TSM_2023_3332630 crossref_primary_10_1109_TAI_2024_3429479 crossref_primary_10_1109_TSM_2024_3370175 crossref_primary_10_1080_00207543_2022_2164088 crossref_primary_10_7736_JKSPE_022_119 |
| Cites_doi | 10.1117/12.2514467 10.1109/TCPMT.2020.2979472 10.23919/ACC.2004.1383922 10.1109/HICSS.2013.163 10.1016/j.cirp.2017.04.013 10.1186/s40537-016-0043-6 10.1016/S0167-739X(97)00022-8 10.1109/AEMCSE50948.2020.00056 10.1109/WHISPERS.2011.6080861 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021 |
| DBID | 97E RIA RIE AAYXX CITATION 7SP 7U5 8FD L7M |
| DOI | 10.1109/TSM.2021.3072361 |
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Xplore CrossRef Electronics & Communications Abstracts Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace |
| DatabaseTitle | CrossRef Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace Electronics & Communications Abstracts |
| DatabaseTitleList | Solid State and Superconductivity Abstracts |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Xplore url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Economics Engineering |
| EISSN | 1558-2345 |
| EndPage | 285 |
| ExternalDocumentID | 10_1109_TSM_2021_3072361 9400387 |
| Genre | orig-research |
| GroupedDBID | -~X .DC 0R~ 29I 4.4 5GY 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACGFS ACIWK AENEX AETIX AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD HZ~ H~9 ICLAB IFIPE IFJZH IPLJI JAVBF LAI M43 MS~ O9- OCL P2P RIA RIE RNS TN5 VH1 AAYXX CITATION 7SP 7U5 8FD L7M |
| ID | FETCH-LOGICAL-c291t-8cc5b39db996a8e6c6cd447a02ec7352d148287b058a80f7d2e2ad7bca4bcd403 |
| IEDL.DBID | RIE |
| ISSN | 0894-6507 |
| IngestDate | Sun Jun 29 12:15:06 EDT 2025 Thu Apr 24 23:04:47 EDT 2025 Wed Oct 01 03:58:37 EDT 2025 Wed Aug 27 02:39:34 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 3 |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c291t-8cc5b39db996a8e6c6cd447a02ec7352d148287b058a80f7d2e2ad7bca4bcd403 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0003-0433-0835 0000-0002-7715-808X |
| PQID | 2557978629 |
| PQPubID | 85442 |
| PageCount | 6 |
| ParticipantIDs | crossref_citationtrail_10_1109_TSM_2021_3072361 crossref_primary_10_1109_TSM_2021_3072361 proquest_journals_2557978629 ieee_primary_9400387 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2021-08-01 |
| PublicationDateYYYYMMDD | 2021-08-01 |
| PublicationDate_xml | – month: 08 year: 2021 text: 2021-08-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York |
| PublicationTitle | IEEE transactions on semiconductor manufacturing |
| PublicationTitleAbbrev | TSM |
| PublicationYear | 2021 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref13 ref12 ref15 ref14 kim (ref6) 1997 ref11 ref10 sun (ref3) 2016 ref8 babu (ref1) 2016 tsvetanova (ref4) 2017 ref7 li (ref2) 2008 ref5 ghulghazaryan (ref9) 2017 |
| References_xml | – start-page: 307 year: 2017 ident: ref4 article-title: Dummy gate amorphous silicon CMP using In-situ profile CLC endpoint system for advanced FinFET publication-title: Proc ICPT – ident: ref5 doi: 10.1117/12.2514467 – ident: ref12 doi: 10.1109/TCPMT.2020.2979472 – ident: ref7 doi: 10.23919/ACC.2004.1383922 – start-page: 183 year: 2017 ident: ref9 article-title: Application of machine learning and neural networks for generation of pre-CMP profile of advanced deposition process for CMP modeling publication-title: Proc ICPI – ident: ref13 doi: 10.1109/HICSS.2013.163 – ident: ref8 doi: 10.1016/j.cirp.2017.04.013 – ident: ref15 doi: 10.1186/s40537-016-0043-6 – ident: ref14 doi: 10.1016/S0167-739X(97)00022-8 – year: 2016 ident: ref1 publication-title: Advances in chemical mechanical planarization (CMP) – year: 2008 ident: ref2 publication-title: Microelectronic Applications of Chemical Mechanical Planarization – ident: ref10 doi: 10.1109/AEMCSE50948.2020.00056 – start-page: 69 year: 1997 ident: ref6 article-title: CMP profile simulation using an elastic model based on nonlinear contact analysis publication-title: Int Conf Simulation of Semiconductor Processes and Devices (SISPAD) – ident: ref11 doi: 10.1109/WHISPERS.2011.6080861 – start-page: 399 year: 2016 ident: ref3 article-title: A multi-step wafer-level run-to-run controller with sampled measurements for furnace deposition and CMP process flows publication-title: Proc IEEE/SEMI Conf Workshop Adv Semicond Manuf (ASMC) |
| SSID | ssj0014497 |
| Score | 2.3637068 |
| Snippet | Advanced Chemical-mechanical polishing (CMP) process not only needs to maintain stable run-to-run thickness control but also achieve better within wafer/within... |
| SourceID | proquest crossref ieee |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 280 |
| SubjectTerms | Algorithms artificial intelligence Artificial neural networks Chemical-mechanical polishing closed loop systems Disks Layout Layouts Machine learning Neural networks Optimization Prediction algorithms Predictive models Process control Semiconductor device modeling Semiconductor process modeling Slurries Test vehicles thickness control Topology Wafers |
| Title | CMP Process Optimization Engineering by Machine Learning |
| URI | https://ieeexplore.ieee.org/document/9400387 https://www.proquest.com/docview/2557978629 |
| Volume | 34 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Xplore customDbUrl: eissn: 1558-2345 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0014497 issn: 0894-6507 databaseCode: RIE dateStart: 19880101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT8MwDLbGLsCBxwZiMFAPXJBol7ZpkxzRxDQhFZDYpN2q5lEOwIZYd4BfT9Km1XgIccvBqSLbje3Y_gxwHmmrp0KUuTQXysVSEjdDInaJrwRRUSyD3GR0k9t4PMU3s2jWgsumF0YpVRafKc8sy1y-XIiVeSobmCHeISUbsEFoXPVqNRkDjFmF6smwq70OUqckERtMHhIdCAa-p_XZYI18MUHlTJUfF3FpXUa7kNTnqopKnrxVwT3x8Q2y8b8H34Md62Y6V5Ve7ENLzTuwWXchLzuwvQZE2AU6TO4d2zPg3Olb5MW2ZzprZA5_d5Ky9lI5Fpb18QCmo-vJcOzamQquCJhfuFSIiIdMch3nZFTFIhYSY5KhQMtGO2PS4IJSwlFEM4pyIgMVZJJwkWGuKVF4CO35Yq6OwPEJRZIhzCODguZHPMK5n0vOucpj7rMeDGo2p8ICjpu5F89pGXgglmrBpEYwqRVMDy6aHa8V2MYftF3D54bOsrgH_VqSqf0bl6kOm4iOluOAHf--6wS2zLerwr4-tIu3lTrVzkbBz0ot-wSbC89b |
| linkProvider | IEEE |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT8MwDLZ4HIADjw3EePbABYluaZs0yREh0IB1ILFJu1XNoxyADUF3gF9P0qYTLyFuOThqZLuxHdufAY6IsXo6QpnPcql9rBT1MyRjnwZaUk1iFeY2o5v04-4QX43IaA5OZr0wWuuy-Ey37bLM5auJnNqnso4d4h0xOg-LBGNMqm6tWc4AY17henLsG7-D1klJxDuDu8SEgmHQNhpt0Ua-GKFyqsqPq7i0LxdrkNQnq8pKHtrTQrTl-zfQxv8efR1WnaPpnVaasQFzetyApboP-bUBK5-gCJvAzpJbz3UNeDfmHnlyDZreJzJPvHlJWX2pPQfMer8Jw4vzwVnXd1MVfBnyoPCZlEREXAkT6WRMxzKWCmOaodBIx7hjyiKDMioQYRlDOVWhDjNFhcywMJQo2oKF8WSst8ELKEOKIyyIxUELiCA4D3IlhNB5LALegk7N5lQ6yHE7-eIxLUMPxFMjmNQKJnWCacHxbMdzBbfxB23T8nlG51jcgr1akqn7H19TEzhREy_HId_5fdchLHUHSS_tXfavd2HZfqcq89uDheJlqveN61GIg1LjPgCj4dKo |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=CMP+Process+Optimization+Engineering+by+Machine+Learning&rft.jtitle=IEEE+transactions+on+semiconductor+manufacturing&rft.au=Yu%2C+Hsiang-Meng&rft.au=Lin%2C+Chih-Chen&rft.au=Hsu%2C+Min-Hsuan&rft.au=Chen%2C+Yen-Ting&rft.date=2021-08-01&rft.pub=IEEE&rft.issn=0894-6507&rft.volume=34&rft.issue=3&rft.spage=280&rft.epage=285&rft_id=info:doi/10.1109%2FTSM.2021.3072361&rft.externalDocID=9400387 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0894-6507&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0894-6507&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0894-6507&client=summon |