Intelligent bearing fault diagnosis using swarm decomposition method and new hybrid particle swarm optimization algorithm
The quality of information extracted from the vibration signals, and the accuracy of the bearing status detection depend on the methods used to process the signal and select the informative features. In this paper, a new hybrid approach is introduced in which the relatively new swarm decomposition (...
Saved in:
| Published in | Soft computing (Berlin, Germany) Vol. 26; no. 3; pp. 1475 - 1497 |
|---|---|
| Main Authors | , , , , |
| Format | Journal Article |
| Language | English |
| Published |
Berlin/Heidelberg
Springer Berlin Heidelberg
01.02.2022
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 1432-7643 1433-7479 |
| DOI | 10.1007/s00500-021-06307-x |
Cover
| Abstract | The quality of information extracted from the vibration signals, and the accuracy of the bearing status detection depend on the methods used to process the signal and select the informative features. In this paper, a new hybrid approach is introduced in which the relatively new swarm decomposition (SWD) method and the optimized compensation distance evaluation technique (OCDET) are used to enhance the signal processing stage and to improve the optimal features selection process, respectively. Firstly, the vibration signals are decomposed into their Oscillatory Components (OCs) using the SWD. The feature matrix is constructed by computing the time-domain features for the OCs. The CDET method is consequently utilized to select the most sensitive features corresponding to the bearing status. On the other hand, The CDET approach contains a parameter called threshold which affects the number of the selected features. In this way, the hybrid optimization algorithm, which is a combination of the Particle Swarm Optimization (PSO) algorithm with the Sine–Cosine Algorithm (SCA) and the Levy flight distribution, has been used to select the optimal CDET threshold and improve the support vector machine (SVM) classifier. The proposed technique ability is evaluated by vibration signals corresponding to different bearing defects and various speeds. The results indicate the capability of the proposed fault diagnosis method in identifying the very small-size defects under various bearing conditions. Finally, the presented method shows better performance in comparison with other well-known methods in the most of the case studies. |
|---|---|
| AbstractList | The quality of information extracted from the vibration signals, and the accuracy of the bearing status detection depend on the methods used to process the signal and select the informative features. In this paper, a new hybrid approach is introduced in which the relatively new swarm decomposition (SWD) method and the optimized compensation distance evaluation technique (OCDET) are used to enhance the signal processing stage and to improve the optimal features selection process, respectively. Firstly, the vibration signals are decomposed into their Oscillatory Components (OCs) using the SWD. The feature matrix is constructed by computing the time-domain features for the OCs. The CDET method is consequently utilized to select the most sensitive features corresponding to the bearing status. On the other hand, The CDET approach contains a parameter called threshold which affects the number of the selected features. In this way, the hybrid optimization algorithm, which is a combination of the Particle Swarm Optimization (PSO) algorithm with the Sine–Cosine Algorithm (SCA) and the Levy flight distribution, has been used to select the optimal CDET threshold and improve the support vector machine (SVM) classifier. The proposed technique ability is evaluated by vibration signals corresponding to different bearing defects and various speeds. The results indicate the capability of the proposed fault diagnosis method in identifying the very small-size defects under various bearing conditions. Finally, the presented method shows better performance in comparison with other well-known methods in the most of the case studies. |
| Author | Amirmostofian, Illia Nezamivand Chegini, Saeed Amini, Pouriya Ahmadi, Bahman Bagheri, Ahmad |
| Author_xml | – sequence: 1 givenname: Saeed orcidid: 0000-0002-0744-7919 surname: Nezamivand Chegini fullname: Nezamivand Chegini, Saeed email: saeed.nezamivand@gmail.com organization: Department of Dynamics, Control, and Vibrations, Faculty of Mechanical Engineering, University of Guilan – sequence: 2 givenname: Pouriya surname: Amini fullname: Amini, Pouriya organization: Institute of Acoustics and Speech Communication – sequence: 3 givenname: Bahman surname: Ahmadi fullname: Ahmadi, Bahman organization: Department of Mechanical Engineering, Faculty of Engineering, University of Kurdistan – sequence: 4 givenname: Ahmad surname: Bagheri fullname: Bagheri, Ahmad organization: Department of Dynamics, Control, and Vibrations, Faculty of Mechanical Engineering, University of Guilan – sequence: 5 givenname: Illia surname: Amirmostofian fullname: Amirmostofian, Illia organization: Department of Dynamics, Control, and Vibrations, Faculty of Mechanical Engineering, University of Guilan |
| BookMark | eNp9kMtqwzAQRUVJoWnaH-hKP6BWsiwrXpbQRyDQTbs2Y0tyFGzJSApJ-vV1HqsusprhMmfgnns0cd5phJ4YfWaUypdIqaCU0IwRWnAqyf4GTVnOOZG5LCenPSOyyPkduo9xQ8dLKfgUHZYu6a6zrXYJ1xqCdS02sO0SVhZa56ONeBuPadxB6LHSje-HMU7WO9zrtPYKg1PY6R1eH-pgFR4gJNt0-oL4Idne_sKJgK71waZ1_4BuDXRRP17mDP28v30vPsnq62O5eF2RJitZInMOJTCq5jxTCkwhtACjG5mzkopC0UzVJm8anZemKCUXhWRAQaiSG1FDJvgMZee_TfAxBm2qIdgewqFitDrKq87yqlFJdZJX7Udo_g9qbDoVSAFsdx3lZzQOR5k6VBu_DW6seI36A6W3ivA |
| CitedBy_id | crossref_primary_10_1109_ACCESS_2023_3295113 crossref_primary_10_1016_j_cnsns_2024_107917 crossref_primary_10_1007_s11071_023_09126_x crossref_primary_10_1088_1361_6501_ad6178 crossref_primary_10_1177_16878132221131291 crossref_primary_10_1007_s00500_024_09716_w crossref_primary_10_1016_j_engappai_2023_107357 crossref_primary_10_3390_math10152785 crossref_primary_10_3390_machines11080835 crossref_primary_10_1109_JSEN_2024_3392427 crossref_primary_10_1007_s00500_024_09822_9 crossref_primary_10_1007_s00500_023_08255_0 crossref_primary_10_1109_TIM_2022_3231324 crossref_primary_10_1155_2022_2604761 crossref_primary_10_1016_j_renene_2023_119310 |
| Cites_doi | 10.1016/j.ymssp.2015.08.023 10.21152/1750-9548.13.2.113 10.1109/TSP.2013.2265222 10.1016/j.knosys.2015.12.022 10.1109/89.841207 10.1109/5254.708428 10.1109/18.57199 10.1109/ACCESS.2020.2968382 10.1016/j.asoc.2018.09.019 10.1016/j.measurement.2015.03.017 10.1016/j.ymssp.2006.01.007 10.1016/j.ymssp.2017.11.029 10.2991/jrnal.2018.5.1.3 10.1016/j.measurement.2016.05.073 10.3390/s20071946 10.3390/app9245424 10.1016/j.sigpro.2016.09.004 10.1016/j.engappai.2020.103966 10.1016/j.jneumeth.2004.03.002 10.1016/j.apacoust.2014.08.016 10.1016/j.measurement.2019.05.049 10.1016/j.measurement.2020.108580 10.1016/j.measurement.2020.108644 10.1017/CBO9780511801389 10.1007/s00500-019-04516-z 10.1080/23311916.2020.1737383 10.1109/ACCESS.2018.2834540 10.1098/rspa.1998.0193 10.1016/S0888-3270(03)00073-6 10.1016/j.ymssp.2007.07.013 10.1016/j.neucom.2017.11.016 10.1007/BF00994018 10.1016/j.ymssp.2004.10.010 10.1016/j.ymssp.2006.12.007 10.1016/j.ymssp.2005.09.012 10.1016/j.ymssp.2018.02.016 10.1016/j.renene.2018.12.094 10.1142/S1793536909000047 10.1016/j.ymssp.2018.12.022 10.1016/j.ymssp.2016.02.049 10.1109/72.991427 10.1016/j.asoc.2014.11.062 10.21595/jve.2017.18052 10.1016/j.ymssp.2018.12.034 10.7551/mitpress/4175.001.0001 10.1109/ICASSP.2011.5947265 |
| ContentType | Journal Article |
| Copyright | The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2021 |
| Copyright_xml | – notice: The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2021 |
| DBID | AAYXX CITATION |
| DOI | 10.1007/s00500-021-06307-x |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Computer Science |
| EISSN | 1433-7479 |
| EndPage | 1497 |
| ExternalDocumentID | 10_1007_s00500_021_06307_x |
| GrantInformation_xml | – fundername: University of Guilan grantid: 1 |
| GroupedDBID | -5B -5G -BR -EM -Y2 -~C .86 .VR 06D 0R~ 0VY 1N0 1SB 203 29~ 2J2 2JN 2JY 2KG 2LR 2P1 2VQ 2~H 30V 4.4 406 408 409 40D 40E 5VS 67Z 6NX 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTD ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACSNA ACZOJ ADHHG ADHIR ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFGCZ AFKRA AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARAPS ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN B-. BA0 BDATZ BENPR BGLVJ BGNMA BSONS CAG CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 EBLON EBS EIOEI EJD ESBYG FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I09 IHE IJ- IKXTQ IWAJR IXC IXD IXE IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ K7- KDC KOV LAS LLZTM M4Y MA- N2Q NB0 NPVJJ NQJWS NU0 O9- O93 O9J OAM P2P P9P PF0 PT4 PT5 QOS R89 R9I RIG RNI ROL RPX RSV RZK S16 S1Z S27 S3B SAP SDH SEG SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 TSG TSK TSV TUC U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR Z45 Z5O Z7R Z7X Z7Y Z7Z Z81 Z83 Z88 ZMTXR AAPKM AAYXX ABBRH ABDBE ABFSG ABRTQ ACSTC ADHKG ADKFA AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT PQGLB PUEGO |
| ID | FETCH-LOGICAL-c291t-83a9a10d832ddaf65e5afec7419056d02dbf4cce49f69735671a0a5d93f5ba253 |
| IEDL.DBID | AGYKE |
| ISSN | 1432-7643 |
| IngestDate | Wed Oct 01 03:00:17 EDT 2025 Thu Apr 24 22:48:45 EDT 2025 Fri Feb 21 02:46:29 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 3 |
| Keywords | Bearing fault diagnosis Swarm decomposition Optimized compensation distance evaluation Support vector machine Hybrid particle swarm optimization algorithm |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c291t-83a9a10d832ddaf65e5afec7419056d02dbf4cce49f69735671a0a5d93f5ba253 |
| ORCID | 0000-0002-0744-7919 |
| PageCount | 23 |
| ParticipantIDs | crossref_primary_10_1007_s00500_021_06307_x crossref_citationtrail_10_1007_s00500_021_06307_x springer_journals_10_1007_s00500_021_06307_x |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 20220200 2022-02-00 |
| PublicationDateYYYYMMDD | 2022-02-01 |
| PublicationDate_xml | – month: 2 year: 2022 text: 20220200 |
| PublicationDecade | 2020 |
| PublicationPlace | Berlin/Heidelberg |
| PublicationPlace_xml | – name: Berlin/Heidelberg |
| PublicationSubtitle | A Fusion of Foundations, Methodologies and Applications |
| PublicationTitle | Soft computing (Berlin, Germany) |
| PublicationTitleAbbrev | Soft Comput |
| PublicationYear | 2022 |
| Publisher | Springer Berlin Heidelberg |
| Publisher_xml | – name: Springer Berlin Heidelberg |
| References | Deng, Yao, Sun, Zhao, Luo, Dong (CR12) 2017; 19 Gilles (CR17) 2013; 61 Kedadouche, Thomas, Tahan (CR22) 2016; 81 Chih-Wei, Chih-Jen (CR8) 2002; 13 Gao, Wu, Fu (CR16) 2018; 5 CR36 Xiao, Ding, Li, Huang (CR41) 2019; 9 CR34 Pratyay, Paramita (CR30) 2015; 30 Cristianini, Shawe-Taylor (CR10) 2000 Nezamivand Chegini, Bagheri, Najafi (CR27) 2018; 73 Widodo, Yang (CR39) 2007; 21 Yang, Kim (CR44) 2006; 20 Lei, He, Zi, Chen (CR23) 2008; 22 Rao, Kumaresan (CR31) 2000; 8 Teng, Ding, Cheng, Han, Liu, Mu (CR35) 2019; 136 Huang, Shen, Long, Wu, Shih, Zheng, Yen, Tung, Liu (CR20) 1998; 454 Ding, Xiao, Li (CR14) 2020; 21 Nezamivand Chegini, Bagheri, Najafi (CR29) 2019; 11 CR5 Ding, Huang, Xiao (CR15) 2020; 20 Amini Digehsara, Nezamivand Chegini, Bagheri, Pourabd Roknsaraei (CR3) 2020; 7 Yang, Han, An (CR45) 2004; 18 Guenther, Schonlau (CR18) 2016; 16 Scholkopf, Smola (CR32) 2001 Yin, Qiao, Fu, Xia (CR46) 2014; 5 Deng, Zhang, Zhao, Yang (CR13) 2018; 6 Zhang, Miao, Zhang, Wang (CR48) 2018; 108 Zhang, Zhang, Chen, Sun, Qin, Li (CR49) 2018; 275 Bruns (CR6) 2004; 137 Nezamivand Chegini, Bagheri, Najafi (CR28) 2019; 144 Wei, Huang, Yao, Hu, Fan, Huang (CR38) 2020; 96 Wu, Huang (CR40) 2009; 1 Miao, Zhao, Makis, Lin (CR25) 2019; 22 Zhang, Liang, Zhou (CR47) 2015; 69 Yan, Jia (CR43) 2019; 122 Amini Digehsara, Bagheri, Moshfegh (CR2) 2019; 13 Vapnik (CR37) 2013 Hu, He, Zhang, Zi (CR19) 2007; 2 Apostolidis, Hadjileontiadis (CR4) 2017; 132 Zhang, Li, Wang, Wu (CR50) 2021; 173 Cortes, Vapnik (CR9) 1995; 20 Xu, Zhao, Lin, Lei (CR42) 2016; 91 Chen, Li, Pan, Chen, Zi, Yuan, Chen, He (CR7) 2016; 70 Mirjalili (CR26) 2016; 96 Daubechies (CR11) 1990; 36 Ali, Fnaiech, Saidi, Chebel-Morello, Fnaiech (CR1) 2015; 1 Shao, Fu, Tan, Wang (CR33) 2021; 173 Liu, Yang, Zio, Chen (CR24) 2018; 108 Jardine, Lin, Banjevic (CR21) 2006; 20 M Kedadouche (6307_CR22) 2016; 81 BS Yang (6307_CR44) 2006; 20 N Guenther (6307_CR18) 2016; 16 6307_CR5 R Liu (6307_CR24) 2018; 108 X Zhang (6307_CR47) 2015; 69 X Zhang (6307_CR48) 2018; 108 B Scholkopf (6307_CR32) 2001 W Teng (6307_CR35) 2019; 136 W Deng (6307_CR12) 2017; 19 AK Jardine (6307_CR21) 2006; 20 S Nezamivand Chegini (6307_CR27) 2018; 73 P Amini Digehsara (6307_CR3) 2020; 7 Y Miao (6307_CR25) 2019; 22 X Yan (6307_CR43) 2019; 122 Q Hu (6307_CR19) 2007; 2 P Amini Digehsara (6307_CR2) 2019; 13 W Deng (6307_CR13) 2018; 6 X Zhang (6307_CR50) 2021; 173 K Shao (6307_CR33) 2021; 173 C Gao (6307_CR16) 2018; 5 J Chen (6307_CR7) 2016; 70 I Daubechies (6307_CR11) 1990; 36 Z Wu (6307_CR40) 2009; 1 A Widodo (6307_CR39) 2007; 21 X Xu (6307_CR42) 2016; 91 J Ding (6307_CR14) 2020; 21 X Zhang (6307_CR49) 2018; 275 H Yin (6307_CR46) 2014; 5 A Rao (6307_CR31) 2000; 8 6307_CR34 6307_CR36 Y Lei (6307_CR23) 2008; 22 A Bruns (6307_CR6) 2004; 137 D Xiao (6307_CR41) 2019; 9 N Cristianini (6307_CR10) 2000 J Ding (6307_CR15) 2020; 20 K Pratyay (6307_CR30) 2015; 30 S Mirjalili (6307_CR26) 2016; 96 H Chih-Wei (6307_CR8) 2002; 13 J Wei (6307_CR38) 2020; 96 BS Yang (6307_CR45) 2004; 18 JB Ali (6307_CR1) 2015; 1 GK Apostolidis (6307_CR4) 2017; 132 C Cortes (6307_CR9) 1995; 20 S Nezamivand Chegini (6307_CR29) 2019; 11 J Gilles (6307_CR17) 2013; 61 V Vapnik (6307_CR37) 2013 NE Huang (6307_CR20) 1998; 454 S Nezamivand Chegini (6307_CR28) 2019; 144 |
| References_xml | – year: 2013 ident: CR37 publication-title: The nature of statistical learning theory – volume: 70 start-page: 1 year: 2016 end-page: 35 ident: CR7 article-title: Wavelet transform based on inner product in fault diagnosis of rotating machinery: a review publication-title: Mech Syst Signal Process doi: 10.1016/j.ymssp.2015.08.023 – volume: 13 start-page: 113 issue: 2 year: 2019 end-page: 130 ident: CR2 article-title: Interval search with quadratic interpolation and stable deviation quantum-behaved particle swarm optimization (IQS-QPSO) publication-title: Int J Multiphys doi: 10.21152/1750-9548.13.2.113 – volume: 61 start-page: 3999 issue: 16 year: 2013 end-page: 4010 ident: CR17 article-title: Empirical wavelet transform publication-title: IEEE Trans Signal Process doi: 10.1109/TSP.2013.2265222 – volume: 96 start-page: 120 year: 2016 end-page: 133 ident: CR26 article-title: SCA: a sine cosine algorithm for solving optimization problems publication-title: Knowl-Based Syst doi: 10.1016/j.knosys.2015.12.022 – volume: 8 start-page: 240 issue: 3 year: 2000 end-page: 254 ident: CR31 article-title: On decomposing speech into modulated components publication-title: IEEE Trans Speech Audio Process doi: 10.1109/89.841207 – volume: 16 start-page: 917 issue: 4 year: 2016 end-page: 937 ident: CR18 article-title: Support Vector Machines publication-title: Stata J doi: 10.1109/5254.708428 – volume: 36 start-page: 961 issue: 5 year: 1990 end-page: 1005 ident: CR11 article-title: The wavelet transform, time-frequency localization and signal analysis publication-title: IEEE Trans Inf Theory doi: 10.1109/18.57199 – volume: 21 start-page: 18456 issue: 8 year: 2020 end-page: 18474 ident: CR14 article-title: Gear fault diagnosis based on genetic mutation particle swarm optimization VMD and probabilistic neural network algorithm publication-title: IEEE Access doi: 10.1109/ACCESS.2020.2968382 – volume: 73 start-page: 697 year: 2018 end-page: 726 ident: CR27 article-title: PSOSCALF: a new hybrid PSO based on Sine Cosine Algorithm and Levy flight for solving optimization problems publication-title: Appl Soft Comput doi: 10.1016/j.asoc.2018.09.019 – volume: 69 start-page: 164 year: 2015 end-page: 179 ident: CR47 article-title: A novel bearing fault diagnosis model integrated permutation entropy, ensemble empirical mode decomposition and optimized SVM publication-title: Measurement doi: 10.1016/j.measurement.2015.03.017 – volume: 2 start-page: 688 year: 2007 end-page: 705 ident: CR19 article-title: Fault diagnosis of rotating machinery based on improved wavelet package transform and SVMs ensemble publication-title: Mech Syst Signal Process doi: 10.1016/j.ymssp.2006.01.007 – year: 2001 ident: CR32 publication-title: Learning with kernels: support vector machines, regularization, optimization, and beyond – volume: 108 start-page: 58 year: 2018 end-page: 72 ident: CR48 article-title: A parameter-adaptive VMD method based on grasshopper optimization algorithm to analyze vibration signals from rotating machinery publication-title: Mech Syst Signal Process doi: 10.1016/j.ymssp.2017.11.029 – volume: 5 start-page: 10 issue: 1 year: 2018 end-page: 14 ident: CR16 article-title: Advanced rolling bearing fault diagnosis using ensemble empirical mode decomposition, principal component analysis and probabilistic neural network publication-title: J Robot Netw Artif Life doi: 10.2991/jrnal.2018.5.1.3 – volume: 91 start-page: 385 year: 2016 end-page: 397 ident: CR42 article-title: Envelope harmonic-to-noise ratio for periodic impulses detection and its application to bearing diagnosis publication-title: Measurement doi: 10.1016/j.measurement.2016.05.073 – volume: 20 start-page: 1946 issue: 7 year: 2020 ident: CR15 article-title: Li X (2020b) GMPSO-VMD algorithm and its application to rolling bearing fault feature extraction publication-title: Sensors doi: 10.3390/s20071946 – volume: 9 start-page: 5424 issue: 24 year: 2019 ident: CR41 article-title: Gear fault diagnosis based on kurtosis criterion VMD and SOM neural network publication-title: Appl Sci doi: 10.3390/app9245424 – volume: 132 start-page: 40 year: 2017 end-page: 50 ident: CR4 article-title: Swarm decomposition: a novel signal analysis using swarm intelligence publication-title: Signal Process doi: 10.1016/j.sigpro.2016.09.004 – volume: 96 year: 2020 ident: CR38 article-title: New imbalanced fault diagnosis framework based on Cluster-MWMOTE and MFO-optimized LS-SVM using limited and complex bearing data publication-title: Eng Appl Artif Intell doi: 10.1016/j.engappai.2020.103966 – volume: 137 start-page: 321 issue: 2 year: 2004 end-page: 332 ident: CR6 article-title: Fourier-, Hilbert-and wavelet-based signal analysis: are they really different approaches? publication-title: J Neurosci Methods doi: 10.1016/j.jneumeth.2004.03.002 – volume: 1 start-page: 16 issue: 89 year: 2015 end-page: 27 ident: CR1 article-title: Application of empirical mode decomposition and artificial neural network for automatic bearing fault diagnosis based on vibration signals publication-title: Appl Acoust doi: 10.1016/j.apacoust.2014.08.016 – volume: 144 start-page: 275 year: 2019 end-page: 297 ident: CR28 article-title: Application of a new EWT-Based denoising technique in bearing fault diagnosis publication-title: Measurement doi: 10.1016/j.measurement.2019.05.049 – volume: 173 year: 2021 ident: CR33 article-title: Coordinated approach fusing time-shift multiscale dispersion entropy and vibrational Harris hawks optimization-based SVM for fault diagnosis of rolling bearing publication-title: Measurement doi: 10.1016/j.measurement.2020.108580 – ident: CR36 – ident: CR5 – volume: 173 year: 2021 ident: CR50 article-title: A novel fault diagnosis procedure based on improved symplectic geometry mode decomposition and optimized SVM publication-title: Measurement doi: 10.1016/j.measurement.2020.108644 – year: 2000 ident: CR10 publication-title: An introduction to support vector machines and other kernel-based learning methods doi: 10.1017/CBO9780511801389 – volume: 11 start-page: 1 year: 2019 end-page: 9 ident: CR29 article-title: A new intelligent fault diagnosis method for bearing in different speeds based on the FDAF-score algorithm, binary particle swarm optimization, and support vector machine publication-title: SOFT COMPUT doi: 10.1007/s00500-019-04516-z – volume: 7 start-page: 1737383 issue: 1 year: 2020 ident: CR3 article-title: An improved particle swarm optimization based on the reinforcement of the population initialization phase by scrambled Halton sequence publication-title: Cogent Eng doi: 10.1080/23311916.2020.1737383 – volume: 6 start-page: 35042 year: 2018 end-page: 35056 ident: CR13 article-title: A novel fault diagnosis method based on integrating empirical wavelet transform and fuzzy entropy for motor bearing publication-title: IEEE Access doi: 10.1109/ACCESS.2018.2834540 – volume: 454 start-page: 903 issue: 1971 year: 1998 end-page: 995 ident: CR20 article-title: The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis publication-title: Proc R Soc Lond Ser A Math Phys Eng Sci doi: 10.1098/rspa.1998.0193 – volume: 18 start-page: 645 issue: 3 year: 2004 end-page: 657 ident: CR45 article-title: ART–KOHONEN neural network for fault diagnosis of rotating machinery publication-title: Mech Syst Signal Process doi: 10.1016/S0888-3270(03)00073-6 – volume: 22 start-page: 419 issue: 2 year: 2008 end-page: 435 ident: CR23 article-title: New clustering algorithm-based fault diagnosis using compensation distance evaluation technique publication-title: Mech Syst Signal Process doi: 10.1016/j.ymssp.2007.07.013 – volume: 275 start-page: 2426 year: 2018 end-page: 2439 ident: CR49 article-title: A two-stage feature selection and intelligent fault diagnosis method for rotating machinery using hybrid filter and wrapper method publication-title: Neurocomputing doi: 10.1016/j.neucom.2017.11.016 – volume: 20 start-page: 273 issue: 3 year: 1995 end-page: 297 ident: CR9 article-title: Support-vector networks publication-title: Mach Learn doi: 10.1007/BF00994018 – volume: 20 start-page: 403 issue: 2 year: 2006 end-page: 420 ident: CR44 article-title: Application of Dempster-Shafer theory in fault diagnosis of induction motors using vibration and current signals publication-title: Mech Syst Signal Process doi: 10.1016/j.ymssp.2004.10.010 – volume: 21 start-page: 2560 issue: 6 year: 2007 end-page: 2574 ident: CR39 article-title: Support vector machine in machine condition monitoring and fault diagnosis publication-title: Mech Syst Signal Process doi: 10.1016/j.ymssp.2006.12.007 – volume: 20 start-page: 1483 issue: 7 year: 2006 end-page: 1510 ident: CR21 article-title: A review on machinery diagnostics and prognostics implementing condition-based maintenance publication-title: Mech Syst Signal Process doi: 10.1016/j.ymssp.2005.09.012 – volume: 5 start-page: 731 issue: 4 year: 2014 end-page: 739 ident: CR46 article-title: Face feature selection with binary particle swarm optimization and support vector machine publication-title: J Inf Hiding Multimed Signal Process – volume: 108 start-page: 33 year: 2018 end-page: 47 ident: CR24 article-title: Artificial intelligence for fault diagnosis of rotating machinery: a review publication-title: Mech Syst Signal Process doi: 10.1016/j.ymssp.2018.02.016 – volume: 136 start-page: 393 year: 2019 end-page: 402 ident: CR35 article-title: Compound faults diagnosis and analysis for a wind turbine gearbox via a novel vibration model and empirical wavelet transform publication-title: Renew Energy doi: 10.1016/j.renene.2018.12.094 – ident: CR34 – volume: 1 start-page: 1 issue: 01 year: 2009 end-page: 41 ident: CR40 article-title: Ensemble empirical mode decomposition: a noise-assisted data analysis method publication-title: Adv Adapt Data Anal doi: 10.1142/S1793536909000047 – volume: 122 start-page: 56 year: 2019 end-page: 86 ident: CR43 article-title: Application of CSA-VMD and optimal scale morphological slice bispectrum in enhancing outer race fault detection of rolling element bearings publication-title: Mech Syst Signal Process doi: 10.1016/j.ymssp.2018.12.022 – volume: 81 start-page: 88 year: 2016 end-page: 107 ident: CR22 article-title: A comparative study between empirical wavelet transforms and empirical mode decomposition methods: application to bearing defect diagnosis publication-title: Mech Syst Signal Process doi: 10.1016/j.ymssp.2016.02.049 – volume: 13 start-page: 415 issue: 2 year: 2002 end-page: 425 ident: CR8 article-title: A comparison of methods for multiclass support vector machines publication-title: IEEE Trans Neural Netw doi: 10.1109/72.991427 – volume: 30 start-page: 341 year: 2015 end-page: 352 ident: CR30 article-title: Multi-class fault diagnosis of induction motor using Hilbertand Wavelet Transform publication-title: Appl Soft Comput doi: 10.1016/j.asoc.2014.11.062 – volume: 19 start-page: 2562 issue: 4 year: 2017 end-page: 2577 ident: CR12 article-title: Study on a novel fault diagnosis method based on integrating EMD, fuzzy entropy, improved PSO and SVM publication-title: J Vibroeng doi: 10.21595/jve.2017.18052 – volume: 22 start-page: 673 year: 2019 end-page: 691 ident: CR25 article-title: Optimal swarm decomposition with whale optimization algorithm for weak feature extraction from multicomponent modulation signal publication-title: Mech Syst Signal Process doi: 10.1016/j.ymssp.2018.12.034 – volume: 275 start-page: 2426 year: 2018 ident: 6307_CR49 publication-title: Neurocomputing doi: 10.1016/j.neucom.2017.11.016 – ident: 6307_CR34 – volume: 136 start-page: 393 year: 2019 ident: 6307_CR35 publication-title: Renew Energy doi: 10.1016/j.renene.2018.12.094 – volume: 9 start-page: 5424 issue: 24 year: 2019 ident: 6307_CR41 publication-title: Appl Sci doi: 10.3390/app9245424 – volume: 18 start-page: 645 issue: 3 year: 2004 ident: 6307_CR45 publication-title: Mech Syst Signal Process doi: 10.1016/S0888-3270(03)00073-6 – volume: 13 start-page: 415 issue: 2 year: 2002 ident: 6307_CR8 publication-title: IEEE Trans Neural Netw doi: 10.1109/72.991427 – volume: 144 start-page: 275 year: 2019 ident: 6307_CR28 publication-title: Measurement doi: 10.1016/j.measurement.2019.05.049 – volume: 81 start-page: 88 year: 2016 ident: 6307_CR22 publication-title: Mech Syst Signal Process doi: 10.1016/j.ymssp.2016.02.049 – volume: 173 year: 2021 ident: 6307_CR33 publication-title: Measurement doi: 10.1016/j.measurement.2020.108580 – ident: 6307_CR5 – volume: 173 year: 2021 ident: 6307_CR50 publication-title: Measurement doi: 10.1016/j.measurement.2020.108644 – volume: 20 start-page: 1483 issue: 7 year: 2006 ident: 6307_CR21 publication-title: Mech Syst Signal Process doi: 10.1016/j.ymssp.2005.09.012 – volume: 5 start-page: 10 issue: 1 year: 2018 ident: 6307_CR16 publication-title: J Robot Netw Artif Life doi: 10.2991/jrnal.2018.5.1.3 – volume: 30 start-page: 341 year: 2015 ident: 6307_CR30 publication-title: Appl Soft Comput doi: 10.1016/j.asoc.2014.11.062 – volume-title: Learning with kernels: support vector machines, regularization, optimization, and beyond year: 2001 ident: 6307_CR32 doi: 10.7551/mitpress/4175.001.0001 – ident: 6307_CR36 doi: 10.1109/ICASSP.2011.5947265 – volume: 19 start-page: 2562 issue: 4 year: 2017 ident: 6307_CR12 publication-title: J Vibroeng doi: 10.21595/jve.2017.18052 – volume: 6 start-page: 35042 year: 2018 ident: 6307_CR13 publication-title: IEEE Access doi: 10.1109/ACCESS.2018.2834540 – volume: 108 start-page: 58 year: 2018 ident: 6307_CR48 publication-title: Mech Syst Signal Process doi: 10.1016/j.ymssp.2017.11.029 – volume: 454 start-page: 903 issue: 1971 year: 1998 ident: 6307_CR20 publication-title: Proc R Soc Lond Ser A Math Phys Eng Sci doi: 10.1098/rspa.1998.0193 – volume: 70 start-page: 1 year: 2016 ident: 6307_CR7 publication-title: Mech Syst Signal Process doi: 10.1016/j.ymssp.2015.08.023 – volume: 22 start-page: 673 year: 2019 ident: 6307_CR25 publication-title: Mech Syst Signal Process doi: 10.1016/j.ymssp.2018.12.034 – volume: 61 start-page: 3999 issue: 16 year: 2013 ident: 6307_CR17 publication-title: IEEE Trans Signal Process doi: 10.1109/TSP.2013.2265222 – volume: 96 year: 2020 ident: 6307_CR38 publication-title: Eng Appl Artif Intell doi: 10.1016/j.engappai.2020.103966 – volume: 13 start-page: 113 issue: 2 year: 2019 ident: 6307_CR2 publication-title: Int J Multiphys doi: 10.21152/1750-9548.13.2.113 – volume: 21 start-page: 2560 issue: 6 year: 2007 ident: 6307_CR39 publication-title: Mech Syst Signal Process doi: 10.1016/j.ymssp.2006.12.007 – volume: 20 start-page: 403 issue: 2 year: 2006 ident: 6307_CR44 publication-title: Mech Syst Signal Process doi: 10.1016/j.ymssp.2004.10.010 – volume: 108 start-page: 33 year: 2018 ident: 6307_CR24 publication-title: Mech Syst Signal Process doi: 10.1016/j.ymssp.2018.02.016 – volume: 96 start-page: 120 year: 2016 ident: 6307_CR26 publication-title: Knowl-Based Syst doi: 10.1016/j.knosys.2015.12.022 – volume: 8 start-page: 240 issue: 3 year: 2000 ident: 6307_CR31 publication-title: IEEE Trans Speech Audio Process doi: 10.1109/89.841207 – volume: 22 start-page: 419 issue: 2 year: 2008 ident: 6307_CR23 publication-title: Mech Syst Signal Process doi: 10.1016/j.ymssp.2007.07.013 – volume-title: The nature of statistical learning theory year: 2013 ident: 6307_CR37 – volume: 5 start-page: 731 issue: 4 year: 2014 ident: 6307_CR46 publication-title: J Inf Hiding Multimed Signal Process – volume: 36 start-page: 961 issue: 5 year: 1990 ident: 6307_CR11 publication-title: IEEE Trans Inf Theory doi: 10.1109/18.57199 – volume: 2 start-page: 688 year: 2007 ident: 6307_CR19 publication-title: Mech Syst Signal Process doi: 10.1016/j.ymssp.2006.01.007 – volume: 16 start-page: 917 issue: 4 year: 2016 ident: 6307_CR18 publication-title: Stata J doi: 10.1109/5254.708428 – volume: 20 start-page: 273 issue: 3 year: 1995 ident: 6307_CR9 publication-title: Mach Learn doi: 10.1007/BF00994018 – volume: 21 start-page: 18456 issue: 8 year: 2020 ident: 6307_CR14 publication-title: IEEE Access doi: 10.1109/ACCESS.2020.2968382 – volume: 7 start-page: 1737383 issue: 1 year: 2020 ident: 6307_CR3 publication-title: Cogent Eng doi: 10.1080/23311916.2020.1737383 – volume: 69 start-page: 164 year: 2015 ident: 6307_CR47 publication-title: Measurement doi: 10.1016/j.measurement.2015.03.017 – volume: 91 start-page: 385 year: 2016 ident: 6307_CR42 publication-title: Measurement doi: 10.1016/j.measurement.2016.05.073 – volume: 122 start-page: 56 year: 2019 ident: 6307_CR43 publication-title: Mech Syst Signal Process doi: 10.1016/j.ymssp.2018.12.022 – volume: 132 start-page: 40 year: 2017 ident: 6307_CR4 publication-title: Signal Process doi: 10.1016/j.sigpro.2016.09.004 – volume: 137 start-page: 321 issue: 2 year: 2004 ident: 6307_CR6 publication-title: J Neurosci Methods doi: 10.1016/j.jneumeth.2004.03.002 – volume: 1 start-page: 1 issue: 01 year: 2009 ident: 6307_CR40 publication-title: Adv Adapt Data Anal doi: 10.1142/S1793536909000047 – volume: 1 start-page: 16 issue: 89 year: 2015 ident: 6307_CR1 publication-title: Appl Acoust doi: 10.1016/j.apacoust.2014.08.016 – volume: 20 start-page: 1946 issue: 7 year: 2020 ident: 6307_CR15 publication-title: Sensors doi: 10.3390/s20071946 – volume: 73 start-page: 697 year: 2018 ident: 6307_CR27 publication-title: Appl Soft Comput doi: 10.1016/j.asoc.2018.09.019 – volume: 11 start-page: 1 year: 2019 ident: 6307_CR29 publication-title: SOFT COMPUT doi: 10.1007/s00500-019-04516-z – volume-title: An introduction to support vector machines and other kernel-based learning methods year: 2000 ident: 6307_CR10 doi: 10.1017/CBO9780511801389 |
| SSID | ssj0021753 |
| Score | 2.386443 |
| Snippet | The quality of information extracted from the vibration signals, and the accuracy of the bearing status detection depend on the methods used to process the... |
| SourceID | crossref springer |
| SourceType | Enrichment Source Index Database Publisher |
| StartPage | 1475 |
| SubjectTerms | Application of Soft Computing Artificial Intelligence Computational Intelligence Control Engineering Mathematical Logic and Foundations Mechatronics Robotics |
| Title | Intelligent bearing fault diagnosis using swarm decomposition method and new hybrid particle swarm optimization algorithm |
| URI | https://link.springer.com/article/10.1007/s00500-021-06307-x |
| Volume | 26 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVLSH databaseName: SpringerLink Journals customDbUrl: mediaType: online eissn: 1433-7479 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0021753 issn: 1432-7643 databaseCode: AFBBN dateStart: 19970401 isFulltext: true providerName: Library Specific Holdings – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 1433-7479 dateEnd: 20241105 omitProxy: true ssIdentifier: ssj0021753 issn: 1432-7643 databaseCode: BENPR dateStart: 20090101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVAVX databaseName: SpringerLINK - Czech Republic Consortium customDbUrl: eissn: 1433-7479 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0021753 issn: 1432-7643 databaseCode: AGYKE dateStart: 19970101 isFulltext: true titleUrlDefault: http://link.springer.com providerName: Springer Nature – providerCode: PRVAVX databaseName: SpringerLink Journals (ICM) customDbUrl: eissn: 1433-7479 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0021753 issn: 1432-7643 databaseCode: U2A dateStart: 19970404 isFulltext: true titleUrlDefault: http://www.springerlink.com/journals/ providerName: Springer Nature |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwED5Bu8BAoYAoj8oDGxglqZ02Y4taXqITlWCKHNsBRB-oTQXl13NOnIgiVIk1sh3LPp-_k7_7DuA0FiqKPJdRDz0hNeW1KcYqmraU9FuaxRGT5kX3vu9fD9jtI3-0SWGznO2eP0mmnrpIdjNSJQ41lAKjE9WkiBzLqd5WCcrtq6e7bhFoWfVJhAKIHvHKtckyf4-yfCEtv4aml0yvAoN8ehm35O1inkQX8uuXcuN_578NWxZ1knZmJjuwpsdVqOQVHYg94FXY_CFPuAuLm0KvMyERHgn8SmIxHyZEZQy91xkxxPlnMvsQ0xFR2jDULQ2MZMWpiRgrgtidvCxMchh5t7Zqu0zQZY1sLigRw-fJ9DV5Ge3BoNd9uLymtlQDlV7gJrTVEIFwHYX-QSkR-1xzEWuJcCVAhKUcT0Uxk1KzIPaDZoP7TVc4gqugEfNIeLyxD6XxZKwPgDBuJBolho1NjN2V05JGuxRRLRf4K8Zq4Ob7FUqrY27KaQzDQoE5XekQVzpMVzr8rMFZ0ec9U_FY2fo838HQnujZiuaH_2t-BBueSaFImd_HUEqmc32CwCaJ6mjHvU6nX7f2XIf1gdf-Bgez8oI |
| linkProvider | Springer Nature |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LawIxEA7FHtoe-rAttc8cemsD-0j2cZRS0VY9KXhbsklWBV1FV1r_fSe72aVCEXpdJruwM8l8Q775BqHnhMs4dmxKHDgJiR6vTaBWUSSQwgsUTWIq9I1ur--1h_RjxEamKWxdst3LK8n8pK6a3bRUiUU0pUDrRPkEkOOhFrDSivlDp1mVWUZ7EoAAYEdIuKZV5u937Kaj3bvQPMW0ztGpwYa4WTjzAh2otI7OyrkL2GzDOjr5JSJ4ibadSlUzwzEELjzFCd_MMiwLHt10jTW9fYzXX3w1x1JpHrkha-FihDTmqcSAsPFkq1u48NJElFmygINlbjo2MZ-NF6tpNplfoWHrffDWJmagAhFOaGckcHnIbUvCLpaSJx5TjCdKAKgIAQdJy5FxQoVQNEy80HeZ59vc4kyGbsJi7jD3GtXSRapuEKZMCykKKO58qLClFQitMArYk3H4FKUNZJf_NRJGbVwPvZhFlU5y7osIfBHlvoi-G-ilWrMstDb2Wr-W7orMvlvvMb_9n_kTOmoPet2o2-l_3qFjRzc95Fzte1TLVhv1AFAkix_zyPsBDr7V1A |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1ba8IwFA7DwdgednEbc9c87G0L9pJU-yjbRHeRPUzwraS5qKBVtLL573fSxqIwhL2WpIWek-Q75Pu-g9C95jKOPZcSD3ZCYtprE6hVFKlLEdQV1TEV5kb3oxO0uvS1x3prKv6M7b66ksw1DcalKUmrU6mrhfDN2JY4xNALjGdUjQCK3KXGKAEyuus1ipLL-lACKAAcCYevlc38_Y7No2nzXjQ7bprH6NDiRNzIA3uCdlRSRkerHgzYLskyOlgzFDxFy3bhsJniGJIYnmLNF6MUy5xTN5xjQ3Xv4_k3n42xVIZTbolbOG8njXkiMaBtPFgaORee2uyyUyawyYytehPzUX8yG6aD8RnqNl--nlrENlcgwgvdlNR9HnLXkbCipeQ6YIpxrQQAjBAwkXQ8GWsqhKKhDsKaz4Kayx3OZOhrFnOP-eeolEwSdYEwZcZUUUChV4NqWzp1YdxGAYcyDp-itILc1X-NhHUeNw0wRlHhmZzFIoJYRFksop8KeijmTHPfja2jH1fhiuwanG8Zfvm_4Xdo7_O5Gb23O29XaN8z-oeMtn2NSulsoW4AlaTxbZZ4v3di2hA |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Intelligent+bearing+fault+diagnosis+using+swarm+decomposition+method+and+new+hybrid+particle+swarm+optimization+algorithm&rft.jtitle=Soft+computing+%28Berlin%2C+Germany%29&rft.au=Nezamivand+Chegini%2C+Saeed&rft.au=Amini%2C+Pouriya&rft.au=Ahmadi%2C+Bahman&rft.au=Bagheri%2C+Ahmad&rft.date=2022-02-01&rft.pub=Springer+Berlin+Heidelberg&rft.issn=1432-7643&rft.eissn=1433-7479&rft.volume=26&rft.issue=3&rft.spage=1475&rft.epage=1497&rft_id=info:doi/10.1007%2Fs00500-021-06307-x&rft.externalDocID=10_1007_s00500_021_06307_x |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1432-7643&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1432-7643&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1432-7643&client=summon |