Intelligent bearing fault diagnosis using swarm decomposition method and new hybrid particle swarm optimization algorithm

The quality of information extracted from the vibration signals, and the accuracy of the bearing status detection depend on the methods used to process the signal and select the informative features. In this paper, a new hybrid approach is introduced in which the relatively new swarm decomposition (...

Full description

Saved in:
Bibliographic Details
Published inSoft computing (Berlin, Germany) Vol. 26; no. 3; pp. 1475 - 1497
Main Authors Nezamivand Chegini, Saeed, Amini, Pouriya, Ahmadi, Bahman, Bagheri, Ahmad, Amirmostofian, Illia
Format Journal Article
LanguageEnglish
Published Berlin/Heidelberg Springer Berlin Heidelberg 01.02.2022
Subjects
Online AccessGet full text
ISSN1432-7643
1433-7479
DOI10.1007/s00500-021-06307-x

Cover

Abstract The quality of information extracted from the vibration signals, and the accuracy of the bearing status detection depend on the methods used to process the signal and select the informative features. In this paper, a new hybrid approach is introduced in which the relatively new swarm decomposition (SWD) method and the optimized compensation distance evaluation technique (OCDET) are used to enhance the signal processing stage and to improve the optimal features selection process, respectively. Firstly, the vibration signals are decomposed into their Oscillatory Components (OCs) using the SWD. The feature matrix is constructed by computing the time-domain features for the OCs. The CDET method is consequently utilized to select the most sensitive features corresponding to the bearing status. On the other hand, The CDET approach contains a parameter called threshold which affects the number of the selected features. In this way, the hybrid optimization algorithm, which is a combination of the Particle Swarm Optimization (PSO) algorithm with the Sine–Cosine Algorithm (SCA) and the Levy flight distribution, has been used to select the optimal CDET threshold and improve the support vector machine (SVM) classifier. The proposed technique ability is evaluated by vibration signals corresponding to different bearing defects and various speeds. The results indicate the capability of the proposed fault diagnosis method in identifying the very small-size defects under various bearing conditions. Finally, the presented method shows better performance in comparison with other well-known methods in the most of the case studies.
AbstractList The quality of information extracted from the vibration signals, and the accuracy of the bearing status detection depend on the methods used to process the signal and select the informative features. In this paper, a new hybrid approach is introduced in which the relatively new swarm decomposition (SWD) method and the optimized compensation distance evaluation technique (OCDET) are used to enhance the signal processing stage and to improve the optimal features selection process, respectively. Firstly, the vibration signals are decomposed into their Oscillatory Components (OCs) using the SWD. The feature matrix is constructed by computing the time-domain features for the OCs. The CDET method is consequently utilized to select the most sensitive features corresponding to the bearing status. On the other hand, The CDET approach contains a parameter called threshold which affects the number of the selected features. In this way, the hybrid optimization algorithm, which is a combination of the Particle Swarm Optimization (PSO) algorithm with the Sine–Cosine Algorithm (SCA) and the Levy flight distribution, has been used to select the optimal CDET threshold and improve the support vector machine (SVM) classifier. The proposed technique ability is evaluated by vibration signals corresponding to different bearing defects and various speeds. The results indicate the capability of the proposed fault diagnosis method in identifying the very small-size defects under various bearing conditions. Finally, the presented method shows better performance in comparison with other well-known methods in the most of the case studies.
Author Amirmostofian, Illia
Nezamivand Chegini, Saeed
Amini, Pouriya
Ahmadi, Bahman
Bagheri, Ahmad
Author_xml – sequence: 1
  givenname: Saeed
  orcidid: 0000-0002-0744-7919
  surname: Nezamivand Chegini
  fullname: Nezamivand Chegini, Saeed
  email: saeed.nezamivand@gmail.com
  organization: Department of Dynamics, Control, and Vibrations, Faculty of Mechanical Engineering, University of Guilan
– sequence: 2
  givenname: Pouriya
  surname: Amini
  fullname: Amini, Pouriya
  organization: Institute of Acoustics and Speech Communication
– sequence: 3
  givenname: Bahman
  surname: Ahmadi
  fullname: Ahmadi, Bahman
  organization: Department of Mechanical Engineering, Faculty of Engineering, University of Kurdistan
– sequence: 4
  givenname: Ahmad
  surname: Bagheri
  fullname: Bagheri, Ahmad
  organization: Department of Dynamics, Control, and Vibrations, Faculty of Mechanical Engineering, University of Guilan
– sequence: 5
  givenname: Illia
  surname: Amirmostofian
  fullname: Amirmostofian, Illia
  organization: Department of Dynamics, Control, and Vibrations, Faculty of Mechanical Engineering, University of Guilan
BookMark eNp9kMtqwzAQRUVJoWnaH-hKP6BWsiwrXpbQRyDQTbs2Y0tyFGzJSApJ-vV1HqsusprhMmfgnns0cd5phJ4YfWaUypdIqaCU0IwRWnAqyf4GTVnOOZG5LCenPSOyyPkduo9xQ8dLKfgUHZYu6a6zrXYJ1xqCdS02sO0SVhZa56ONeBuPadxB6LHSje-HMU7WO9zrtPYKg1PY6R1eH-pgFR4gJNt0-oL4Idne_sKJgK71waZ1_4BuDXRRP17mDP28v30vPsnq62O5eF2RJitZInMOJTCq5jxTCkwhtACjG5mzkopC0UzVJm8anZemKCUXhWRAQaiSG1FDJvgMZee_TfAxBm2qIdgewqFitDrKq87yqlFJdZJX7Udo_g9qbDoVSAFsdx3lZzQOR5k6VBu_DW6seI36A6W3ivA
CitedBy_id crossref_primary_10_1109_ACCESS_2023_3295113
crossref_primary_10_1016_j_cnsns_2024_107917
crossref_primary_10_1007_s11071_023_09126_x
crossref_primary_10_1088_1361_6501_ad6178
crossref_primary_10_1177_16878132221131291
crossref_primary_10_1007_s00500_024_09716_w
crossref_primary_10_1016_j_engappai_2023_107357
crossref_primary_10_3390_math10152785
crossref_primary_10_3390_machines11080835
crossref_primary_10_1109_JSEN_2024_3392427
crossref_primary_10_1007_s00500_024_09822_9
crossref_primary_10_1007_s00500_023_08255_0
crossref_primary_10_1109_TIM_2022_3231324
crossref_primary_10_1155_2022_2604761
crossref_primary_10_1016_j_renene_2023_119310
Cites_doi 10.1016/j.ymssp.2015.08.023
10.21152/1750-9548.13.2.113
10.1109/TSP.2013.2265222
10.1016/j.knosys.2015.12.022
10.1109/89.841207
10.1109/5254.708428
10.1109/18.57199
10.1109/ACCESS.2020.2968382
10.1016/j.asoc.2018.09.019
10.1016/j.measurement.2015.03.017
10.1016/j.ymssp.2006.01.007
10.1016/j.ymssp.2017.11.029
10.2991/jrnal.2018.5.1.3
10.1016/j.measurement.2016.05.073
10.3390/s20071946
10.3390/app9245424
10.1016/j.sigpro.2016.09.004
10.1016/j.engappai.2020.103966
10.1016/j.jneumeth.2004.03.002
10.1016/j.apacoust.2014.08.016
10.1016/j.measurement.2019.05.049
10.1016/j.measurement.2020.108580
10.1016/j.measurement.2020.108644
10.1017/CBO9780511801389
10.1007/s00500-019-04516-z
10.1080/23311916.2020.1737383
10.1109/ACCESS.2018.2834540
10.1098/rspa.1998.0193
10.1016/S0888-3270(03)00073-6
10.1016/j.ymssp.2007.07.013
10.1016/j.neucom.2017.11.016
10.1007/BF00994018
10.1016/j.ymssp.2004.10.010
10.1016/j.ymssp.2006.12.007
10.1016/j.ymssp.2005.09.012
10.1016/j.ymssp.2018.02.016
10.1016/j.renene.2018.12.094
10.1142/S1793536909000047
10.1016/j.ymssp.2018.12.022
10.1016/j.ymssp.2016.02.049
10.1109/72.991427
10.1016/j.asoc.2014.11.062
10.21595/jve.2017.18052
10.1016/j.ymssp.2018.12.034
10.7551/mitpress/4175.001.0001
10.1109/ICASSP.2011.5947265
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2021
Copyright_xml – notice: The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2021
DBID AAYXX
CITATION
DOI 10.1007/s00500-021-06307-x
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
EISSN 1433-7479
EndPage 1497
ExternalDocumentID 10_1007_s00500_021_06307_x
GrantInformation_xml – fundername: University of Guilan
  grantid: 1
GroupedDBID -5B
-5G
-BR
-EM
-Y2
-~C
.86
.VR
06D
0R~
0VY
1N0
1SB
203
29~
2J2
2JN
2JY
2KG
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
5VS
67Z
6NX
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTD
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACZOJ
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
BA0
BDATZ
BENPR
BGLVJ
BGNMA
BSONS
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
EBLON
EBS
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IHE
IJ-
IKXTQ
IWAJR
IXC
IXD
IXE
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K7-
KDC
KOV
LAS
LLZTM
M4Y
MA-
N2Q
NB0
NPVJJ
NQJWS
NU0
O9-
O93
O9J
OAM
P2P
P9P
PF0
PT4
PT5
QOS
R89
R9I
RIG
RNI
ROL
RPX
RSV
RZK
S16
S1Z
S27
S3B
SAP
SDH
SEG
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
Z5O
Z7R
Z7X
Z7Y
Z7Z
Z81
Z83
Z88
ZMTXR
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADHKG
ADKFA
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
PQGLB
PUEGO
ID FETCH-LOGICAL-c291t-83a9a10d832ddaf65e5afec7419056d02dbf4cce49f69735671a0a5d93f5ba253
IEDL.DBID AGYKE
ISSN 1432-7643
IngestDate Wed Oct 01 03:00:17 EDT 2025
Thu Apr 24 22:48:45 EDT 2025
Fri Feb 21 02:46:29 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords Bearing fault diagnosis
Swarm decomposition
Optimized compensation distance evaluation
Support vector machine
Hybrid particle swarm optimization algorithm
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c291t-83a9a10d832ddaf65e5afec7419056d02dbf4cce49f69735671a0a5d93f5ba253
ORCID 0000-0002-0744-7919
PageCount 23
ParticipantIDs crossref_primary_10_1007_s00500_021_06307_x
crossref_citationtrail_10_1007_s00500_021_06307_x
springer_journals_10_1007_s00500_021_06307_x
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20220200
2022-02-00
PublicationDateYYYYMMDD 2022-02-01
PublicationDate_xml – month: 2
  year: 2022
  text: 20220200
PublicationDecade 2020
PublicationPlace Berlin/Heidelberg
PublicationPlace_xml – name: Berlin/Heidelberg
PublicationSubtitle A Fusion of Foundations, Methodologies and Applications
PublicationTitle Soft computing (Berlin, Germany)
PublicationTitleAbbrev Soft Comput
PublicationYear 2022
Publisher Springer Berlin Heidelberg
Publisher_xml – name: Springer Berlin Heidelberg
References Deng, Yao, Sun, Zhao, Luo, Dong (CR12) 2017; 19
Gilles (CR17) 2013; 61
Kedadouche, Thomas, Tahan (CR22) 2016; 81
Chih-Wei, Chih-Jen (CR8) 2002; 13
Gao, Wu, Fu (CR16) 2018; 5
CR36
Xiao, Ding, Li, Huang (CR41) 2019; 9
CR34
Pratyay, Paramita (CR30) 2015; 30
Cristianini, Shawe-Taylor (CR10) 2000
Nezamivand Chegini, Bagheri, Najafi (CR27) 2018; 73
Widodo, Yang (CR39) 2007; 21
Yang, Kim (CR44) 2006; 20
Lei, He, Zi, Chen (CR23) 2008; 22
Rao, Kumaresan (CR31) 2000; 8
Teng, Ding, Cheng, Han, Liu, Mu (CR35) 2019; 136
Huang, Shen, Long, Wu, Shih, Zheng, Yen, Tung, Liu (CR20) 1998; 454
Ding, Xiao, Li (CR14) 2020; 21
Nezamivand Chegini, Bagheri, Najafi (CR29) 2019; 11
CR5
Ding, Huang, Xiao (CR15) 2020; 20
Amini Digehsara, Nezamivand Chegini, Bagheri, Pourabd Roknsaraei (CR3) 2020; 7
Yang, Han, An (CR45) 2004; 18
Guenther, Schonlau (CR18) 2016; 16
Scholkopf, Smola (CR32) 2001
Yin, Qiao, Fu, Xia (CR46) 2014; 5
Deng, Zhang, Zhao, Yang (CR13) 2018; 6
Zhang, Miao, Zhang, Wang (CR48) 2018; 108
Zhang, Zhang, Chen, Sun, Qin, Li (CR49) 2018; 275
Bruns (CR6) 2004; 137
Nezamivand Chegini, Bagheri, Najafi (CR28) 2019; 144
Wei, Huang, Yao, Hu, Fan, Huang (CR38) 2020; 96
Wu, Huang (CR40) 2009; 1
Miao, Zhao, Makis, Lin (CR25) 2019; 22
Zhang, Liang, Zhou (CR47) 2015; 69
Yan, Jia (CR43) 2019; 122
Amini Digehsara, Bagheri, Moshfegh (CR2) 2019; 13
Vapnik (CR37) 2013
Hu, He, Zhang, Zi (CR19) 2007; 2
Apostolidis, Hadjileontiadis (CR4) 2017; 132
Zhang, Li, Wang, Wu (CR50) 2021; 173
Cortes, Vapnik (CR9) 1995; 20
Xu, Zhao, Lin, Lei (CR42) 2016; 91
Chen, Li, Pan, Chen, Zi, Yuan, Chen, He (CR7) 2016; 70
Mirjalili (CR26) 2016; 96
Daubechies (CR11) 1990; 36
Ali, Fnaiech, Saidi, Chebel-Morello, Fnaiech (CR1) 2015; 1
Shao, Fu, Tan, Wang (CR33) 2021; 173
Liu, Yang, Zio, Chen (CR24) 2018; 108
Jardine, Lin, Banjevic (CR21) 2006; 20
M Kedadouche (6307_CR22) 2016; 81
BS Yang (6307_CR44) 2006; 20
N Guenther (6307_CR18) 2016; 16
6307_CR5
R Liu (6307_CR24) 2018; 108
X Zhang (6307_CR47) 2015; 69
X Zhang (6307_CR48) 2018; 108
B Scholkopf (6307_CR32) 2001
W Teng (6307_CR35) 2019; 136
W Deng (6307_CR12) 2017; 19
AK Jardine (6307_CR21) 2006; 20
S Nezamivand Chegini (6307_CR27) 2018; 73
P Amini Digehsara (6307_CR3) 2020; 7
Y Miao (6307_CR25) 2019; 22
X Yan (6307_CR43) 2019; 122
Q Hu (6307_CR19) 2007; 2
P Amini Digehsara (6307_CR2) 2019; 13
W Deng (6307_CR13) 2018; 6
X Zhang (6307_CR50) 2021; 173
K Shao (6307_CR33) 2021; 173
C Gao (6307_CR16) 2018; 5
J Chen (6307_CR7) 2016; 70
I Daubechies (6307_CR11) 1990; 36
Z Wu (6307_CR40) 2009; 1
A Widodo (6307_CR39) 2007; 21
X Xu (6307_CR42) 2016; 91
J Ding (6307_CR14) 2020; 21
X Zhang (6307_CR49) 2018; 275
H Yin (6307_CR46) 2014; 5
A Rao (6307_CR31) 2000; 8
6307_CR34
6307_CR36
Y Lei (6307_CR23) 2008; 22
A Bruns (6307_CR6) 2004; 137
D Xiao (6307_CR41) 2019; 9
N Cristianini (6307_CR10) 2000
J Ding (6307_CR15) 2020; 20
K Pratyay (6307_CR30) 2015; 30
S Mirjalili (6307_CR26) 2016; 96
H Chih-Wei (6307_CR8) 2002; 13
J Wei (6307_CR38) 2020; 96
BS Yang (6307_CR45) 2004; 18
JB Ali (6307_CR1) 2015; 1
GK Apostolidis (6307_CR4) 2017; 132
C Cortes (6307_CR9) 1995; 20
S Nezamivand Chegini (6307_CR29) 2019; 11
J Gilles (6307_CR17) 2013; 61
V Vapnik (6307_CR37) 2013
NE Huang (6307_CR20) 1998; 454
S Nezamivand Chegini (6307_CR28) 2019; 144
References_xml – year: 2013
  ident: CR37
  publication-title: The nature of statistical learning theory
– volume: 70
  start-page: 1
  year: 2016
  end-page: 35
  ident: CR7
  article-title: Wavelet transform based on inner product in fault diagnosis of rotating machinery: a review
  publication-title: Mech Syst Signal Process
  doi: 10.1016/j.ymssp.2015.08.023
– volume: 13
  start-page: 113
  issue: 2
  year: 2019
  end-page: 130
  ident: CR2
  article-title: Interval search with quadratic interpolation and stable deviation quantum-behaved particle swarm optimization (IQS-QPSO)
  publication-title: Int J Multiphys
  doi: 10.21152/1750-9548.13.2.113
– volume: 61
  start-page: 3999
  issue: 16
  year: 2013
  end-page: 4010
  ident: CR17
  article-title: Empirical wavelet transform
  publication-title: IEEE Trans Signal Process
  doi: 10.1109/TSP.2013.2265222
– volume: 96
  start-page: 120
  year: 2016
  end-page: 133
  ident: CR26
  article-title: SCA: a sine cosine algorithm for solving optimization problems
  publication-title: Knowl-Based Syst
  doi: 10.1016/j.knosys.2015.12.022
– volume: 8
  start-page: 240
  issue: 3
  year: 2000
  end-page: 254
  ident: CR31
  article-title: On decomposing speech into modulated components
  publication-title: IEEE Trans Speech Audio Process
  doi: 10.1109/89.841207
– volume: 16
  start-page: 917
  issue: 4
  year: 2016
  end-page: 937
  ident: CR18
  article-title: Support Vector Machines
  publication-title: Stata J
  doi: 10.1109/5254.708428
– volume: 36
  start-page: 961
  issue: 5
  year: 1990
  end-page: 1005
  ident: CR11
  article-title: The wavelet transform, time-frequency localization and signal analysis
  publication-title: IEEE Trans Inf Theory
  doi: 10.1109/18.57199
– volume: 21
  start-page: 18456
  issue: 8
  year: 2020
  end-page: 18474
  ident: CR14
  article-title: Gear fault diagnosis based on genetic mutation particle swarm optimization VMD and probabilistic neural network algorithm
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.2968382
– volume: 73
  start-page: 697
  year: 2018
  end-page: 726
  ident: CR27
  article-title: PSOSCALF: a new hybrid PSO based on Sine Cosine Algorithm and Levy flight for solving optimization problems
  publication-title: Appl Soft Comput
  doi: 10.1016/j.asoc.2018.09.019
– volume: 69
  start-page: 164
  year: 2015
  end-page: 179
  ident: CR47
  article-title: A novel bearing fault diagnosis model integrated permutation entropy, ensemble empirical mode decomposition and optimized SVM
  publication-title: Measurement
  doi: 10.1016/j.measurement.2015.03.017
– volume: 2
  start-page: 688
  year: 2007
  end-page: 705
  ident: CR19
  article-title: Fault diagnosis of rotating machinery based on improved wavelet package transform and SVMs ensemble
  publication-title: Mech Syst Signal Process
  doi: 10.1016/j.ymssp.2006.01.007
– year: 2001
  ident: CR32
  publication-title: Learning with kernels: support vector machines, regularization, optimization, and beyond
– volume: 108
  start-page: 58
  year: 2018
  end-page: 72
  ident: CR48
  article-title: A parameter-adaptive VMD method based on grasshopper optimization algorithm to analyze vibration signals from rotating machinery
  publication-title: Mech Syst Signal Process
  doi: 10.1016/j.ymssp.2017.11.029
– volume: 5
  start-page: 10
  issue: 1
  year: 2018
  end-page: 14
  ident: CR16
  article-title: Advanced rolling bearing fault diagnosis using ensemble empirical mode decomposition, principal component analysis and probabilistic neural network
  publication-title: J Robot Netw Artif Life
  doi: 10.2991/jrnal.2018.5.1.3
– volume: 91
  start-page: 385
  year: 2016
  end-page: 397
  ident: CR42
  article-title: Envelope harmonic-to-noise ratio for periodic impulses detection and its application to bearing diagnosis
  publication-title: Measurement
  doi: 10.1016/j.measurement.2016.05.073
– volume: 20
  start-page: 1946
  issue: 7
  year: 2020
  ident: CR15
  article-title: Li X (2020b) GMPSO-VMD algorithm and its application to rolling bearing fault feature extraction
  publication-title: Sensors
  doi: 10.3390/s20071946
– volume: 9
  start-page: 5424
  issue: 24
  year: 2019
  ident: CR41
  article-title: Gear fault diagnosis based on kurtosis criterion VMD and SOM neural network
  publication-title: Appl Sci
  doi: 10.3390/app9245424
– volume: 132
  start-page: 40
  year: 2017
  end-page: 50
  ident: CR4
  article-title: Swarm decomposition: a novel signal analysis using swarm intelligence
  publication-title: Signal Process
  doi: 10.1016/j.sigpro.2016.09.004
– volume: 96
  year: 2020
  ident: CR38
  article-title: New imbalanced fault diagnosis framework based on Cluster-MWMOTE and MFO-optimized LS-SVM using limited and complex bearing data
  publication-title: Eng Appl Artif Intell
  doi: 10.1016/j.engappai.2020.103966
– volume: 137
  start-page: 321
  issue: 2
  year: 2004
  end-page: 332
  ident: CR6
  article-title: Fourier-, Hilbert-and wavelet-based signal analysis: are they really different approaches?
  publication-title: J Neurosci Methods
  doi: 10.1016/j.jneumeth.2004.03.002
– volume: 1
  start-page: 16
  issue: 89
  year: 2015
  end-page: 27
  ident: CR1
  article-title: Application of empirical mode decomposition and artificial neural network for automatic bearing fault diagnosis based on vibration signals
  publication-title: Appl Acoust
  doi: 10.1016/j.apacoust.2014.08.016
– volume: 144
  start-page: 275
  year: 2019
  end-page: 297
  ident: CR28
  article-title: Application of a new EWT-Based denoising technique in bearing fault diagnosis
  publication-title: Measurement
  doi: 10.1016/j.measurement.2019.05.049
– volume: 173
  year: 2021
  ident: CR33
  article-title: Coordinated approach fusing time-shift multiscale dispersion entropy and vibrational Harris hawks optimization-based SVM for fault diagnosis of rolling bearing
  publication-title: Measurement
  doi: 10.1016/j.measurement.2020.108580
– ident: CR36
– ident: CR5
– volume: 173
  year: 2021
  ident: CR50
  article-title: A novel fault diagnosis procedure based on improved symplectic geometry mode decomposition and optimized SVM
  publication-title: Measurement
  doi: 10.1016/j.measurement.2020.108644
– year: 2000
  ident: CR10
  publication-title: An introduction to support vector machines and other kernel-based learning methods
  doi: 10.1017/CBO9780511801389
– volume: 11
  start-page: 1
  year: 2019
  end-page: 9
  ident: CR29
  article-title: A new intelligent fault diagnosis method for bearing in different speeds based on the FDAF-score algorithm, binary particle swarm optimization, and support vector machine
  publication-title: SOFT COMPUT
  doi: 10.1007/s00500-019-04516-z
– volume: 7
  start-page: 1737383
  issue: 1
  year: 2020
  ident: CR3
  article-title: An improved particle swarm optimization based on the reinforcement of the population initialization phase by scrambled Halton sequence
  publication-title: Cogent Eng
  doi: 10.1080/23311916.2020.1737383
– volume: 6
  start-page: 35042
  year: 2018
  end-page: 35056
  ident: CR13
  article-title: A novel fault diagnosis method based on integrating empirical wavelet transform and fuzzy entropy for motor bearing
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2018.2834540
– volume: 454
  start-page: 903
  issue: 1971
  year: 1998
  end-page: 995
  ident: CR20
  article-title: The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis
  publication-title: Proc R Soc Lond Ser A Math Phys Eng Sci
  doi: 10.1098/rspa.1998.0193
– volume: 18
  start-page: 645
  issue: 3
  year: 2004
  end-page: 657
  ident: CR45
  article-title: ART–KOHONEN neural network for fault diagnosis of rotating machinery
  publication-title: Mech Syst Signal Process
  doi: 10.1016/S0888-3270(03)00073-6
– volume: 22
  start-page: 419
  issue: 2
  year: 2008
  end-page: 435
  ident: CR23
  article-title: New clustering algorithm-based fault diagnosis using compensation distance evaluation technique
  publication-title: Mech Syst Signal Process
  doi: 10.1016/j.ymssp.2007.07.013
– volume: 275
  start-page: 2426
  year: 2018
  end-page: 2439
  ident: CR49
  article-title: A two-stage feature selection and intelligent fault diagnosis method for rotating machinery using hybrid filter and wrapper method
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2017.11.016
– volume: 20
  start-page: 273
  issue: 3
  year: 1995
  end-page: 297
  ident: CR9
  article-title: Support-vector networks
  publication-title: Mach Learn
  doi: 10.1007/BF00994018
– volume: 20
  start-page: 403
  issue: 2
  year: 2006
  end-page: 420
  ident: CR44
  article-title: Application of Dempster-Shafer theory in fault diagnosis of induction motors using vibration and current signals
  publication-title: Mech Syst Signal Process
  doi: 10.1016/j.ymssp.2004.10.010
– volume: 21
  start-page: 2560
  issue: 6
  year: 2007
  end-page: 2574
  ident: CR39
  article-title: Support vector machine in machine condition monitoring and fault diagnosis
  publication-title: Mech Syst Signal Process
  doi: 10.1016/j.ymssp.2006.12.007
– volume: 20
  start-page: 1483
  issue: 7
  year: 2006
  end-page: 1510
  ident: CR21
  article-title: A review on machinery diagnostics and prognostics implementing condition-based maintenance
  publication-title: Mech Syst Signal Process
  doi: 10.1016/j.ymssp.2005.09.012
– volume: 5
  start-page: 731
  issue: 4
  year: 2014
  end-page: 739
  ident: CR46
  article-title: Face feature selection with binary particle swarm optimization and support vector machine
  publication-title: J Inf Hiding Multimed Signal Process
– volume: 108
  start-page: 33
  year: 2018
  end-page: 47
  ident: CR24
  article-title: Artificial intelligence for fault diagnosis of rotating machinery: a review
  publication-title: Mech Syst Signal Process
  doi: 10.1016/j.ymssp.2018.02.016
– volume: 136
  start-page: 393
  year: 2019
  end-page: 402
  ident: CR35
  article-title: Compound faults diagnosis and analysis for a wind turbine gearbox via a novel vibration model and empirical wavelet transform
  publication-title: Renew Energy
  doi: 10.1016/j.renene.2018.12.094
– ident: CR34
– volume: 1
  start-page: 1
  issue: 01
  year: 2009
  end-page: 41
  ident: CR40
  article-title: Ensemble empirical mode decomposition: a noise-assisted data analysis method
  publication-title: Adv Adapt Data Anal
  doi: 10.1142/S1793536909000047
– volume: 122
  start-page: 56
  year: 2019
  end-page: 86
  ident: CR43
  article-title: Application of CSA-VMD and optimal scale morphological slice bispectrum in enhancing outer race fault detection of rolling element bearings
  publication-title: Mech Syst Signal Process
  doi: 10.1016/j.ymssp.2018.12.022
– volume: 81
  start-page: 88
  year: 2016
  end-page: 107
  ident: CR22
  article-title: A comparative study between empirical wavelet transforms and empirical mode decomposition methods: application to bearing defect diagnosis
  publication-title: Mech Syst Signal Process
  doi: 10.1016/j.ymssp.2016.02.049
– volume: 13
  start-page: 415
  issue: 2
  year: 2002
  end-page: 425
  ident: CR8
  article-title: A comparison of methods for multiclass support vector machines
  publication-title: IEEE Trans Neural Netw
  doi: 10.1109/72.991427
– volume: 30
  start-page: 341
  year: 2015
  end-page: 352
  ident: CR30
  article-title: Multi-class fault diagnosis of induction motor using Hilbertand Wavelet Transform
  publication-title: Appl Soft Comput
  doi: 10.1016/j.asoc.2014.11.062
– volume: 19
  start-page: 2562
  issue: 4
  year: 2017
  end-page: 2577
  ident: CR12
  article-title: Study on a novel fault diagnosis method based on integrating EMD, fuzzy entropy, improved PSO and SVM
  publication-title: J Vibroeng
  doi: 10.21595/jve.2017.18052
– volume: 22
  start-page: 673
  year: 2019
  end-page: 691
  ident: CR25
  article-title: Optimal swarm decomposition with whale optimization algorithm for weak feature extraction from multicomponent modulation signal
  publication-title: Mech Syst Signal Process
  doi: 10.1016/j.ymssp.2018.12.034
– volume: 275
  start-page: 2426
  year: 2018
  ident: 6307_CR49
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2017.11.016
– ident: 6307_CR34
– volume: 136
  start-page: 393
  year: 2019
  ident: 6307_CR35
  publication-title: Renew Energy
  doi: 10.1016/j.renene.2018.12.094
– volume: 9
  start-page: 5424
  issue: 24
  year: 2019
  ident: 6307_CR41
  publication-title: Appl Sci
  doi: 10.3390/app9245424
– volume: 18
  start-page: 645
  issue: 3
  year: 2004
  ident: 6307_CR45
  publication-title: Mech Syst Signal Process
  doi: 10.1016/S0888-3270(03)00073-6
– volume: 13
  start-page: 415
  issue: 2
  year: 2002
  ident: 6307_CR8
  publication-title: IEEE Trans Neural Netw
  doi: 10.1109/72.991427
– volume: 144
  start-page: 275
  year: 2019
  ident: 6307_CR28
  publication-title: Measurement
  doi: 10.1016/j.measurement.2019.05.049
– volume: 81
  start-page: 88
  year: 2016
  ident: 6307_CR22
  publication-title: Mech Syst Signal Process
  doi: 10.1016/j.ymssp.2016.02.049
– volume: 173
  year: 2021
  ident: 6307_CR33
  publication-title: Measurement
  doi: 10.1016/j.measurement.2020.108580
– ident: 6307_CR5
– volume: 173
  year: 2021
  ident: 6307_CR50
  publication-title: Measurement
  doi: 10.1016/j.measurement.2020.108644
– volume: 20
  start-page: 1483
  issue: 7
  year: 2006
  ident: 6307_CR21
  publication-title: Mech Syst Signal Process
  doi: 10.1016/j.ymssp.2005.09.012
– volume: 5
  start-page: 10
  issue: 1
  year: 2018
  ident: 6307_CR16
  publication-title: J Robot Netw Artif Life
  doi: 10.2991/jrnal.2018.5.1.3
– volume: 30
  start-page: 341
  year: 2015
  ident: 6307_CR30
  publication-title: Appl Soft Comput
  doi: 10.1016/j.asoc.2014.11.062
– volume-title: Learning with kernels: support vector machines, regularization, optimization, and beyond
  year: 2001
  ident: 6307_CR32
  doi: 10.7551/mitpress/4175.001.0001
– ident: 6307_CR36
  doi: 10.1109/ICASSP.2011.5947265
– volume: 19
  start-page: 2562
  issue: 4
  year: 2017
  ident: 6307_CR12
  publication-title: J Vibroeng
  doi: 10.21595/jve.2017.18052
– volume: 6
  start-page: 35042
  year: 2018
  ident: 6307_CR13
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2018.2834540
– volume: 108
  start-page: 58
  year: 2018
  ident: 6307_CR48
  publication-title: Mech Syst Signal Process
  doi: 10.1016/j.ymssp.2017.11.029
– volume: 454
  start-page: 903
  issue: 1971
  year: 1998
  ident: 6307_CR20
  publication-title: Proc R Soc Lond Ser A Math Phys Eng Sci
  doi: 10.1098/rspa.1998.0193
– volume: 70
  start-page: 1
  year: 2016
  ident: 6307_CR7
  publication-title: Mech Syst Signal Process
  doi: 10.1016/j.ymssp.2015.08.023
– volume: 22
  start-page: 673
  year: 2019
  ident: 6307_CR25
  publication-title: Mech Syst Signal Process
  doi: 10.1016/j.ymssp.2018.12.034
– volume: 61
  start-page: 3999
  issue: 16
  year: 2013
  ident: 6307_CR17
  publication-title: IEEE Trans Signal Process
  doi: 10.1109/TSP.2013.2265222
– volume: 96
  year: 2020
  ident: 6307_CR38
  publication-title: Eng Appl Artif Intell
  doi: 10.1016/j.engappai.2020.103966
– volume: 13
  start-page: 113
  issue: 2
  year: 2019
  ident: 6307_CR2
  publication-title: Int J Multiphys
  doi: 10.21152/1750-9548.13.2.113
– volume: 21
  start-page: 2560
  issue: 6
  year: 2007
  ident: 6307_CR39
  publication-title: Mech Syst Signal Process
  doi: 10.1016/j.ymssp.2006.12.007
– volume: 20
  start-page: 403
  issue: 2
  year: 2006
  ident: 6307_CR44
  publication-title: Mech Syst Signal Process
  doi: 10.1016/j.ymssp.2004.10.010
– volume: 108
  start-page: 33
  year: 2018
  ident: 6307_CR24
  publication-title: Mech Syst Signal Process
  doi: 10.1016/j.ymssp.2018.02.016
– volume: 96
  start-page: 120
  year: 2016
  ident: 6307_CR26
  publication-title: Knowl-Based Syst
  doi: 10.1016/j.knosys.2015.12.022
– volume: 8
  start-page: 240
  issue: 3
  year: 2000
  ident: 6307_CR31
  publication-title: IEEE Trans Speech Audio Process
  doi: 10.1109/89.841207
– volume: 22
  start-page: 419
  issue: 2
  year: 2008
  ident: 6307_CR23
  publication-title: Mech Syst Signal Process
  doi: 10.1016/j.ymssp.2007.07.013
– volume-title: The nature of statistical learning theory
  year: 2013
  ident: 6307_CR37
– volume: 5
  start-page: 731
  issue: 4
  year: 2014
  ident: 6307_CR46
  publication-title: J Inf Hiding Multimed Signal Process
– volume: 36
  start-page: 961
  issue: 5
  year: 1990
  ident: 6307_CR11
  publication-title: IEEE Trans Inf Theory
  doi: 10.1109/18.57199
– volume: 2
  start-page: 688
  year: 2007
  ident: 6307_CR19
  publication-title: Mech Syst Signal Process
  doi: 10.1016/j.ymssp.2006.01.007
– volume: 16
  start-page: 917
  issue: 4
  year: 2016
  ident: 6307_CR18
  publication-title: Stata J
  doi: 10.1109/5254.708428
– volume: 20
  start-page: 273
  issue: 3
  year: 1995
  ident: 6307_CR9
  publication-title: Mach Learn
  doi: 10.1007/BF00994018
– volume: 21
  start-page: 18456
  issue: 8
  year: 2020
  ident: 6307_CR14
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.2968382
– volume: 7
  start-page: 1737383
  issue: 1
  year: 2020
  ident: 6307_CR3
  publication-title: Cogent Eng
  doi: 10.1080/23311916.2020.1737383
– volume: 69
  start-page: 164
  year: 2015
  ident: 6307_CR47
  publication-title: Measurement
  doi: 10.1016/j.measurement.2015.03.017
– volume: 91
  start-page: 385
  year: 2016
  ident: 6307_CR42
  publication-title: Measurement
  doi: 10.1016/j.measurement.2016.05.073
– volume: 122
  start-page: 56
  year: 2019
  ident: 6307_CR43
  publication-title: Mech Syst Signal Process
  doi: 10.1016/j.ymssp.2018.12.022
– volume: 132
  start-page: 40
  year: 2017
  ident: 6307_CR4
  publication-title: Signal Process
  doi: 10.1016/j.sigpro.2016.09.004
– volume: 137
  start-page: 321
  issue: 2
  year: 2004
  ident: 6307_CR6
  publication-title: J Neurosci Methods
  doi: 10.1016/j.jneumeth.2004.03.002
– volume: 1
  start-page: 1
  issue: 01
  year: 2009
  ident: 6307_CR40
  publication-title: Adv Adapt Data Anal
  doi: 10.1142/S1793536909000047
– volume: 1
  start-page: 16
  issue: 89
  year: 2015
  ident: 6307_CR1
  publication-title: Appl Acoust
  doi: 10.1016/j.apacoust.2014.08.016
– volume: 20
  start-page: 1946
  issue: 7
  year: 2020
  ident: 6307_CR15
  publication-title: Sensors
  doi: 10.3390/s20071946
– volume: 73
  start-page: 697
  year: 2018
  ident: 6307_CR27
  publication-title: Appl Soft Comput
  doi: 10.1016/j.asoc.2018.09.019
– volume: 11
  start-page: 1
  year: 2019
  ident: 6307_CR29
  publication-title: SOFT COMPUT
  doi: 10.1007/s00500-019-04516-z
– volume-title: An introduction to support vector machines and other kernel-based learning methods
  year: 2000
  ident: 6307_CR10
  doi: 10.1017/CBO9780511801389
SSID ssj0021753
Score 2.386443
Snippet The quality of information extracted from the vibration signals, and the accuracy of the bearing status detection depend on the methods used to process the...
SourceID crossref
springer
SourceType Enrichment Source
Index Database
Publisher
StartPage 1475
SubjectTerms Application of Soft Computing
Artificial Intelligence
Computational Intelligence
Control
Engineering
Mathematical Logic and Foundations
Mechatronics
Robotics
Title Intelligent bearing fault diagnosis using swarm decomposition method and new hybrid particle swarm optimization algorithm
URI https://link.springer.com/article/10.1007/s00500-021-06307-x
Volume 26
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVLSH
  databaseName: SpringerLink Journals
  customDbUrl:
  mediaType: online
  eissn: 1433-7479
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0021753
  issn: 1432-7643
  databaseCode: AFBBN
  dateStart: 19970401
  isFulltext: true
  providerName: Library Specific Holdings
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 1433-7479
  dateEnd: 20241105
  omitProxy: true
  ssIdentifier: ssj0021753
  issn: 1432-7643
  databaseCode: BENPR
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: SpringerLINK - Czech Republic Consortium
  customDbUrl:
  eissn: 1433-7479
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0021753
  issn: 1432-7643
  databaseCode: AGYKE
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://link.springer.com
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: SpringerLink Journals (ICM)
  customDbUrl:
  eissn: 1433-7479
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0021753
  issn: 1432-7643
  databaseCode: U2A
  dateStart: 19970404
  isFulltext: true
  titleUrlDefault: http://www.springerlink.com/journals/
  providerName: Springer Nature
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwED5Bu8BAoYAoj8oDGxglqZ02Y4taXqITlWCKHNsBRB-oTQXl13NOnIgiVIk1sh3LPp-_k7_7DuA0FiqKPJdRDz0hNeW1KcYqmraU9FuaxRGT5kX3vu9fD9jtI3-0SWGznO2eP0mmnrpIdjNSJQ41lAKjE9WkiBzLqd5WCcrtq6e7bhFoWfVJhAKIHvHKtckyf4-yfCEtv4aml0yvAoN8ehm35O1inkQX8uuXcuN_578NWxZ1knZmJjuwpsdVqOQVHYg94FXY_CFPuAuLm0KvMyERHgn8SmIxHyZEZQy91xkxxPlnMvsQ0xFR2jDULQ2MZMWpiRgrgtidvCxMchh5t7Zqu0zQZY1sLigRw-fJ9DV5Ge3BoNd9uLymtlQDlV7gJrTVEIFwHYX-QSkR-1xzEWuJcCVAhKUcT0Uxk1KzIPaDZoP7TVc4gqugEfNIeLyxD6XxZKwPgDBuJBolho1NjN2V05JGuxRRLRf4K8Zq4Ob7FUqrY27KaQzDQoE5XekQVzpMVzr8rMFZ0ec9U_FY2fo838HQnujZiuaH_2t-BBueSaFImd_HUEqmc32CwCaJ6mjHvU6nX7f2XIf1gdf-Bgez8oI
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LawIxEA7FHtoe-rAttc8cemsD-0j2cZRS0VY9KXhbsklWBV1FV1r_fSe72aVCEXpdJruwM8l8Q775BqHnhMs4dmxKHDgJiR6vTaBWUSSQwgsUTWIq9I1ur--1h_RjxEamKWxdst3LK8n8pK6a3bRUiUU0pUDrRPkEkOOhFrDSivlDp1mVWUZ7EoAAYEdIuKZV5u937Kaj3bvQPMW0ztGpwYa4WTjzAh2otI7OyrkL2GzDOjr5JSJ4ibadSlUzwzEELjzFCd_MMiwLHt10jTW9fYzXX3w1x1JpHrkha-FihDTmqcSAsPFkq1u48NJElFmygINlbjo2MZ-NF6tpNplfoWHrffDWJmagAhFOaGckcHnIbUvCLpaSJx5TjCdKAKgIAQdJy5FxQoVQNEy80HeZ59vc4kyGbsJi7jD3GtXSRapuEKZMCykKKO58qLClFQitMArYk3H4FKUNZJf_NRJGbVwPvZhFlU5y7osIfBHlvoi-G-ilWrMstDb2Wr-W7orMvlvvMb_9n_kTOmoPet2o2-l_3qFjRzc95Fzte1TLVhv1AFAkix_zyPsBDr7V1A
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1ba8IwFA7DwdgednEbc9c87G0L9pJU-yjbRHeRPUzwraS5qKBVtLL573fSxqIwhL2WpIWek-Q75Pu-g9C95jKOPZcSD3ZCYtprE6hVFKlLEdQV1TEV5kb3oxO0uvS1x3prKv6M7b66ksw1DcalKUmrU6mrhfDN2JY4xNALjGdUjQCK3KXGKAEyuus1ipLL-lACKAAcCYevlc38_Y7No2nzXjQ7bprH6NDiRNzIA3uCdlRSRkerHgzYLskyOlgzFDxFy3bhsJniGJIYnmLNF6MUy5xTN5xjQ3Xv4_k3n42xVIZTbolbOG8njXkiMaBtPFgaORee2uyyUyawyYytehPzUX8yG6aD8RnqNl--nlrENlcgwgvdlNR9HnLXkbCipeQ6YIpxrQQAjBAwkXQ8GWsqhKKhDsKaz4Kayx3OZOhrFnOP-eeolEwSdYEwZcZUUUChV4NqWzp1YdxGAYcyDp-itILc1X-NhHUeNw0wRlHhmZzFIoJYRFksop8KeijmTHPfja2jH1fhiuwanG8Zfvm_4Xdo7_O5Gb23O29XaN8z-oeMtn2NSulsoW4AlaTxbZZ4v3di2hA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Intelligent+bearing+fault+diagnosis+using+swarm+decomposition+method+and+new+hybrid+particle+swarm+optimization+algorithm&rft.jtitle=Soft+computing+%28Berlin%2C+Germany%29&rft.au=Nezamivand+Chegini%2C+Saeed&rft.au=Amini%2C+Pouriya&rft.au=Ahmadi%2C+Bahman&rft.au=Bagheri%2C+Ahmad&rft.date=2022-02-01&rft.pub=Springer+Berlin+Heidelberg&rft.issn=1432-7643&rft.eissn=1433-7479&rft.volume=26&rft.issue=3&rft.spage=1475&rft.epage=1497&rft_id=info:doi/10.1007%2Fs00500-021-06307-x&rft.externalDocID=10_1007_s00500_021_06307_x
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1432-7643&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1432-7643&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1432-7643&client=summon