Concrete materials compressive strength using soft computing techniques

A robust and reliable method to estimate the strength of concrete materials based on their mix parameters is required, considering their extensive use in construction over the last few decades. Consequently, the relationship between the compressive strength of the concrete and its mixed components i...

Full description

Saved in:
Bibliographic Details
Published inMultiscale and Multidisciplinary Modeling, Experiments and Design Vol. 7; no. 2; pp. 1209 - 1221
Main Author Lu, Chongyang
Format Journal Article
LanguageEnglish
Published Cham Springer International Publishing 01.06.2024
Subjects
Online AccessGet full text
ISSN2520-8160
2520-8179
DOI10.1007/s41939-023-00276-4

Cover

Abstract A robust and reliable method to estimate the strength of concrete materials based on their mix parameters is required, considering their extensive use in construction over the last few decades. Consequently, the relationship between the compressive strength of the concrete and its mixed components is highly nonlinear. In this study, artificial intelligence techniques are applied to predict the compressive strength of cement-based concrete materials, whether they contain or do not contain metakaolin. A surrogate model, including the TSK fuzzy inference system, has been expanded to forecast the compressive strength of concretes based on experimental data available in the literature. Results indicate that the TSK model can reliably and robustly approximate the compressive strength of concretes. The TSK model has been optimized for mean square error (MSE) to train the inference system. In this regard, motion-based algorithms such as Particle Swarm Optimization (PSO), Colliding Bodies Optimization (CBO), and Charged System Search (CSS) have been used. The TSK fuzzy inference system, as a surrogate model, has been expanded to predict the compressive strength of concrete based on experimental data available in the literature.
AbstractList A robust and reliable method to estimate the strength of concrete materials based on their mix parameters is required, considering their extensive use in construction over the last few decades. Consequently, the relationship between the compressive strength of the concrete and its mixed components is highly nonlinear. In this study, artificial intelligence techniques are applied to predict the compressive strength of cement-based concrete materials, whether they contain or do not contain metakaolin. A surrogate model, including the TSK fuzzy inference system, has been expanded to forecast the compressive strength of concretes based on experimental data available in the literature. Results indicate that the TSK model can reliably and robustly approximate the compressive strength of concretes. The TSK model has been optimized for mean square error (MSE) to train the inference system. In this regard, motion-based algorithms such as Particle Swarm Optimization (PSO), Colliding Bodies Optimization (CBO), and Charged System Search (CSS) have been used. The TSK fuzzy inference system, as a surrogate model, has been expanded to predict the compressive strength of concrete based on experimental data available in the literature.
Author Lu, Chongyang
Author_xml – sequence: 1
  givenname: Chongyang
  surname: Lu
  fullname: Lu, Chongyang
  email: Lucy8099@yeah.net
  organization: College of Civil Engineering, Lanzhou Institute of Technology
BookMark eNp9kM9KAzEQh4NUsNa-gKd9gejkz2aToxStQsGLnkM2m7QpbbYmWcG3d9uKBw-eZob5fQPzXaNJ7KND6JbAHQFo7jMniikMlGEA2gjML9CU1hSwJI2a_PYCrtA85y0cU4w3EqZoueijTa64am-KS8HscmX7_SG5nMOnq3JJLq7LphpyiOsq976c9kM5jsXZTQwfg8s36NKPrJv_1Bl6f3p8Wzzj1evyZfGwwpYqUrBkHKQ0Cjrw3jDSeU-NpKJlrbWeC9_V3gpQjfBGSOm71klR1x0F1hLFOzZD8nzXpj7n5Ly2oZgS-liSCTtNQB-d6LMTPTrRJyeajyj9gx5S2Jv09T_EzlAew3Htkt72Q4rji_9R34EneBI
CitedBy_id crossref_primary_10_1007_s42107_024_01174_x
crossref_primary_10_25046_aj090112
crossref_primary_10_1016_j_nanoso_2024_101373
crossref_primary_10_1007_s42107_024_01245_z
Cites_doi 10.1038/scientificamerican0792-66
10.1016/j.istruc.2022.11.140
10.1016/j.istruc.2020.11.049
10.1007/s00707-009-0270-4
10.1016/j.istruc.2019.10.022
10.1016/j.istruc.2022.10.015
10.1007/s00521-020-05244-4
10.1007/s12205-020-0988-z
10.1016/j.cemconres.2022.106761
10.1016/j.cemconres.2021.106449
10.1080/15376494.2022.2068209
10.1007/978-1-4615-4429-6
10.1016/j.ress.2022.109077
10.1016/j.engstruct.2020.110657
10.1016/j.advengsoft.2005.04.005
10.1016/j.istruc.2022.12.021
10.1016/j.istruc.2022.10.137
10.1016/j.advengsoft.2013.12.007
10.1016/j.advengsoft.2017.01.004
10.1016/j.istruc.2022.09.046
10.1007/s00603-022-03046-9
10.1016/j.advengsoft.2017.07.002
10.1016/j.istruc.2023.03.053
10.1016/j.istruc.2022.12.108
10.1016/j.compstruc.2014.04.005
10.1007/s00521-005-0008-8
10.1016/j.conbuildmat.2022.127298
10.1016/j.measurement.2022.110729
10.1109/TSMC.1985.6313399
10.1016/j.apm.2020.12.021
10.1504/IJMIC.2020.114194
10.1007/s11356-022-22048-2
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer Nature Switzerland AG 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
Copyright_xml – notice: The Author(s), under exclusive licence to Springer Nature Switzerland AG 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
DBID AAYXX
CITATION
DOI 10.1007/s41939-023-00276-4
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2520-8179
EndPage 1221
ExternalDocumentID 10_1007_s41939_023_00276_4
GrantInformation_xml – fundername: Natural Science Foundation project of Gansu
  grantid: 22JR5RA382
GroupedDBID -EM
0R~
406
AAAVM
AACDK
AAHNG
AAIAL
AAJBT
AASML
AATNV
AATVU
AAUYE
ABAKF
ABDZT
ABECU
ABFTV
ABKCH
ABMQK
ABQBU
ABTEG
ABTKH
ABTMW
ABXPI
ACAOD
ACDTI
ACGFS
ACHSB
ACMLO
ACOKC
ACPIV
ACZOJ
ADHHG
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
AEFQL
AEJRE
AEMSY
AESKC
AFBBN
AFQWF
AGDGC
AGJBK
AGMZJ
AGQEE
AGRTI
AIAKS
AIGIU
AILAN
AITGF
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMXSW
AMYLF
AMYQR
AXYYD
BGNMA
CSCUP
DPUIP
EBLON
EBS
EJD
FIGPU
FINBP
FNLPD
FSGXE
GGCAI
H13
IKXTQ
IWAJR
J-C
JZLTJ
KOV
LLZTM
M4Y
NPVJJ
NQJWS
NU0
O9J
PT4
RLLFE
ROL
RSV
SJYHP
SNE
SNPRN
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
TSG
UOJIU
UTJUX
UZXMN
VFIZW
ZMTXR
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
AEZWR
AFDZB
AFHIU
AFOHR
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
ID FETCH-LOGICAL-c291t-834088a90d0ffa31dff2a826b3bccf46fd5fc60976fa688fdbe8655d203b194d3
ISSN 2520-8160
IngestDate Thu Apr 24 23:11:43 EDT 2025
Wed Oct 01 02:48:11 EDT 2025
Fri Feb 21 02:40:32 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords Charged system search
Prediction of strength
Colliding bodies optimization
Particle swarm optimization
TSK model
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c291t-834088a90d0ffa31dff2a826b3bccf46fd5fc60976fa688fdbe8655d203b194d3
PageCount 13
ParticipantIDs crossref_citationtrail_10_1007_s41939_023_00276_4
crossref_primary_10_1007_s41939_023_00276_4
springer_journals_10_1007_s41939_023_00276_4
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20240600
PublicationDateYYYYMMDD 2024-06-01
PublicationDate_xml – month: 6
  year: 2024
  text: 20240600
PublicationDecade 2020
PublicationPlace Cham
PublicationPlace_xml – name: Cham
PublicationTitle Multiscale and Multidisciplinary Modeling, Experiments and Design
PublicationTitleAbbrev Multiscale and Multidiscip. Model. Exp. and Des
PublicationYear 2024
Publisher Springer International Publishing
Publisher_xml – name: Springer International Publishing
References Chatterjee, Watanabe (CR10) 2006; 15
Mirjalili, Mirjalili, Lewis (CR20) 2014; 69
Mirjalili, Gandomi, Mirjalili, Saremi, Faris, Mirjalili (CR21) 2017; 114
Wu, Li (CR35) 2022; 190
Armaghani, Asteris (CR1) 2021; 33
Azar, Veladi, Talatahari, Raeesi (CR7) 2020; 24
Raeesi, Veladi, Azar, Talatahari (CR25) 2020; 35
Sandeep, Tiprak, Kaewunruen, Pheinsusom, Pansuk (CR27) 2023; 47
Charrier, Ouellet-Plamondon (CR9) 2022; 156
Erol, Eksin (CR12) 2006; 37
Raeesi, Shirgir, Azar, Veladi, Ghaffarzadeh (CR24) 2020; 18
Wu, Zhou (CR38) 2023; 30
Kar, Pandit, Biswal (CR16) 2020; 23
Saremi, Mirjalili, Lewis (CR28) 2017; 105
Yazdanpanah, Chang, Park, Kim (CR39) 2022; 45
Peng, Yan, Yu, Luo (CR23) 2021; 29
Azizi (CR8) 2021; 93
Dubois, Prade (CR11) 2000
Shirgir, Azar, Hadidi (CR30) 2020; 18
Kaveh, Talatahari (CR18) 2010; 213
Azar, Veladi, Raeesi, Talatahari (CR6) 2020; 214
Asteris, Ashrafian, Rezaie-Balf (CR3) 2019; 24
Mamdani (CR19) 1974; 121
Tipu, Panchal, Pandya (CR34) 2022; 45
Wu, Zhou (CR36) 2022
Wu, Zhou (CR37) 2022; 29
Raeesi, Veladi, Azar, Shirgir, Jafarpurian (CR26) 2023; 86
Mohanty, Mishra, Sahu (CR22) 2023; 47
Ashrafian, Panahi, Salehi, Karoglou, Asteris (CR2) 2023; 48
Shirgir, Shamsaddinlou, Zare, Zehtabiyan, Bonab (CR31) 2023; 232
Asteris, Skentou, Bardhan, Samui, Pilakoutas (CR4) 2021; 145
İpek, Güneyisi, Güneyisi (CR15) 2022; 46
Feng (CR13) 2010
Kaveh, Mahdavi (CR17) 2014; 139
Holland (CR14) 1992; 267
Skentou, Bardhan, Mamou, Lemonis, Kumar, Samui (CR32) 2023; 56
Atashpaz-Gargari, Lucas (CR5) 2007; 2007
Shamsaddinlou, Shirgir, Hadidi, Azar (CR29) 2023; 51
Takagi, Sugeno (CR33) 1985; 15
F Raeesi (276_CR26) 2023; 86
Y Wu (276_CR37) 2022; 29
S Saremi (276_CR28) 2017; 105
JH Holland (276_CR14) 1992; 267
S Shirgir (276_CR30) 2020; 18
M Azizi (276_CR8) 2021; 93
Y Wu (276_CR35) 2022; 190
E Atashpaz-Gargari (276_CR5) 2007; 2007
OK Erol (276_CR12) 2006; 37
F Raeesi (276_CR25) 2020; 35
BF Azar (276_CR6) 2020; 214
N Mohanty (276_CR22) 2023; 47
A Shamsaddinlou (276_CR29) 2023; 51
O Yazdanpanah (276_CR39) 2022; 45
PG Asteris (276_CR3) 2019; 24
DJ Armaghani (276_CR1) 2021; 33
A Ashrafian (276_CR2) 2023; 48
EH Mamdani (276_CR19) 1974; 121
Y Wu (276_CR38) 2023; 30
A Chatterjee (276_CR10) 2006; 15
F Raeesi (276_CR24) 2020; 18
AD Skentou (276_CR32) 2023; 56
D Dubois (276_CR11) 2000
S Kar (276_CR16) 2020; 23
T Takagi (276_CR33) 1985; 15
BF Azar (276_CR7) 2020; 24
S İpek (276_CR15) 2022; 46
S Mirjalili (276_CR21) 2017; 114
H Peng (276_CR23) 2021; 29
MS Sandeep (276_CR27) 2023; 47
A Kaveh (276_CR17) 2014; 139
S Mirjalili (276_CR20) 2014; 69
S Shirgir (276_CR31) 2023; 232
A Kaveh (276_CR18) 2010; 213
RK Tipu (276_CR34) 2022; 45
Y Wu (276_CR36) 2022
M Charrier (276_CR9) 2022; 156
G Feng (276_CR13) 2010
PG Asteris (276_CR4) 2021; 145
References_xml – volume: 267
  start-page: 66
  year: 1992
  end-page: 73
  ident: CR14
  article-title: Genetic algorithms
  publication-title: Sci Am
  doi: 10.1038/scientificamerican0792-66
– volume: 47
  start-page: 1196
  year: 2023
  end-page: 1211
  ident: CR27
  article-title: Shear strength prediction of reinforced concrete beams using machine learning
  publication-title: Structures
  doi: 10.1016/j.istruc.2022.11.140
– volume: 29
  start-page: 1016
  year: 2021
  end-page: 1031
  ident: CR23
  article-title: Time series estimation based on deep Learning for structural dynamic nonlinear prediction
  publication-title: Structures
  doi: 10.1016/j.istruc.2020.11.049
– volume: 213
  start-page: 267
  year: 2010
  end-page: 289
  ident: CR18
  article-title: A novel heuristic optimization method: charged system search
  publication-title: Acta Mech
  doi: 10.1007/s00707-009-0270-4
– volume: 121
  start-page: 1585
  year: 1974
  end-page: 1588
  ident: CR19
  article-title: Applications of fuzzy algorithms for simple dynamic plants
  publication-title: Proc IEEE
– volume: 23
  start-page: 702
  year: 2020
  end-page: 717
  ident: CR16
  article-title: Prediction of FRP shear contribution for wrapped shear deficient RC beams using adaptive neuro-fuzzy inference system (ANFIS)
  publication-title: Structures
  doi: 10.1016/j.istruc.2019.10.022
– volume: 45
  start-page: 1990
  year: 2022
  end-page: 2006
  ident: CR39
  article-title: Seismic response prediction of RC bridge piers through stacked long short-term memory network
  publication-title: Structures
  doi: 10.1016/j.istruc.2022.10.015
– volume: 33
  start-page: 4501
  year: 2021
  end-page: 4532
  ident: CR1
  article-title: A comparative study of ANN and ANFIS models for the prediction of cement-based concrete materials compressive strength
  publication-title: Neural Comput Appl
  doi: 10.1007/s00521-020-05244-4
– volume: 24
  start-page: 867
  year: 2020
  end-page: 878
  ident: CR7
  article-title: Optimal design of magnetorheological damper based on tuning Bouc-Wen model parameters using hybrid algorithms
  publication-title: KSCE J Civil Eng
  doi: 10.1007/s12205-020-0988-z
– volume: 86
  start-page: 197
  year: 2023
  ident: CR26
  article-title: salp swarm algorithm for optimal design of semi-active MR dampers in buildings
  publication-title: Struct Eng Mech
– volume: 156
  year: 2022
  ident: CR9
  article-title: Artificial neural network for the prediction of the fresh properties of cementitious materials
  publication-title: Cem Concr Res
  doi: 10.1016/j.cemconres.2022.106761
– volume: 145
  year: 2021
  ident: CR4
  article-title: Predicting concrete compressive strength using hybrid ensembling of surrogate machine learning models
  publication-title: Cem Concr Res
  doi: 10.1016/j.cemconres.2021.106449
– volume: 24
  start-page: 137
  year: 2019
  end-page: 150
  ident: CR3
  article-title: Prediction of the compressive strength of self-compacting concrete using surrogate models
  publication-title: Comput Concr
– volume: 30
  start-page: 3086
  year: 2023
  end-page: 3096
  ident: CR38
  article-title: Prediction and feature analysis of punching shear strength of two-way reinforced concrete slabs using optimized machine learning algorithm and Shapley additive explanations
  publication-title: Mech Adv Mater Struct
  doi: 10.1080/15376494.2022.2068209
– volume: 18
  start-page: 719
  year: 2020
  ident: CR24
  article-title: Enhanced salp swarm algorithm based on opposition learning and merit function methods for optimum design of MTMD
  publication-title: Earthq Struct
– year: 2000
  ident: CR11
  publication-title: Fundamentals of fuzzy sets
  doi: 10.1007/978-1-4615-4429-6
– volume: 232
  year: 2023
  ident: CR31
  article-title: An efficient double-loop reliability-based optimization with metaheuristic algorithms to design soil nail walls under uncertain condition
  publication-title: Reliab Eng Syst Saf
  doi: 10.1016/j.ress.2022.109077
– volume: 214
  year: 2020
  ident: CR6
  article-title: Control of the nonlinear building using an optimum inverse TSK model of MR damper based on modified grey wolf optimizer
  publication-title: Eng Struct
  doi: 10.1016/j.engstruct.2020.110657
– volume: 37
  start-page: 106
  year: 2006
  end-page: 111
  ident: CR12
  article-title: A new optimization method: big bang–big crunch
  publication-title: Adv Eng Softw
  doi: 10.1016/j.advengsoft.2005.04.005
– volume: 47
  start-page: 1836
  year: 2023
  end-page: 1845
  ident: CR22
  article-title: An adaptive neuro fuzzy inference system model for studying free in plane and out of plane vibration behavior of curved beams
  publication-title: Structures
  doi: 10.1016/j.istruc.2022.12.021
– volume: 46
  start-page: 1863
  year: 2022
  end-page: 1880
  ident: CR15
  article-title: Data-driven models for prediction of peak strength of R-CFST circular columns subjected to axial loading
  publication-title: Structures
  doi: 10.1016/j.istruc.2022.10.137
– volume: 2007
  start-page: 4661
  year: 2007
  end-page: 4667
  ident: CR5
  article-title: Imperialist competitive algorithm: an algorithm for optimization inspired by imperialistic competition
  publication-title: IEEE Congr Evolut Comput
– volume: 69
  start-page: 46
  year: 2014
  end-page: 61
  ident: CR20
  article-title: Grey wolf optimizer
  publication-title: Adv Eng Softw
  doi: 10.1016/j.advengsoft.2013.12.007
– volume: 105
  start-page: 30
  year: 2017
  end-page: 47
  ident: CR28
  article-title: Grasshopper optimisation algorithm: theory and application
  publication-title: Adv Eng Softw
  doi: 10.1016/j.advengsoft.2017.01.004
– volume: 45
  start-page: 500
  year: 2022
  end-page: 508
  ident: CR34
  article-title: An ensemble approach to improve BPNN model precision for predicting compressive strength of high-performance concrete
  publication-title: Structures
  doi: 10.1016/j.istruc.2022.09.046
– volume: 56
  start-page: 487
  year: 2023
  end-page: 514
  ident: CR32
  article-title: Closed-form equation for estimating unconfined compressive strength of granite from three non-destructive tests using soft computing models
  publication-title: Rock Mech Rock Eng
  doi: 10.1007/s00603-022-03046-9
– volume: 114
  start-page: 163
  year: 2017
  end-page: 191
  ident: CR21
  article-title: Salp swarm algorithm: a bio-inspired optimizer for engineering design problems
  publication-title: Adv Eng Softw
  doi: 10.1016/j.advengsoft.2017.07.002
– volume: 18
  start-page: 493
  year: 2020
  ident: CR30
  article-title: Opposition based charged system search for parameter identification problem in a simplified Bouc-Wen model
  publication-title: Earthq Struct
– volume: 51
  start-page: 258
  year: 2023
  end-page: 274
  ident: CR29
  article-title: An efficient reliability-based design of TMD & MTMD in nonlinear structures under uncertainty
  publication-title: Structures
  doi: 10.1016/j.istruc.2023.03.053
– volume: 48
  start-page: 1209
  year: 2023
  end-page: 1229
  ident: CR2
  article-title: Mapping the strength of agro-ecological lightweight concrete containing oil palm by-product using artificial intelligence techniques
  publication-title: InStructures
  doi: 10.1016/j.istruc.2022.12.108
– volume: 139
  start-page: 18
  year: 2014
  end-page: 27
  ident: CR17
  article-title: Colliding bodies optimization: a novel meta-heuristic method
  publication-title: Comput Struct
  doi: 10.1016/j.compstruc.2014.04.005
– volume: 15
  start-page: 55
  year: 2006
  end-page: 61
  ident: CR10
  article-title: An optimized Takagi-Sugeno type neuro-fuzzy system for modeling robot manipulators
  publication-title: Neural Comput Appl
  doi: 10.1007/s00521-005-0008-8
– year: 2022
  ident: CR36
  article-title: Hybrid machine learning model and Shapley additive explanations for compressive strength of sustainable concrete
  publication-title: Constr Build Mater
  doi: 10.1016/j.conbuildmat.2022.127298
– volume: 190
  year: 2022
  ident: CR35
  article-title: Damage degree evaluation of masonry using optimized SVM-based acoustic emission monitoring and rate process theory
  publication-title: Measurement
  doi: 10.1016/j.measurement.2022.110729
– volume: 15
  start-page: 116
  year: 1985
  end-page: 132
  ident: CR33
  article-title: Fuzzy identification of systems and its applications to modeling and control
  publication-title: IEEE Trans Syst Man Cybern
  doi: 10.1109/TSMC.1985.6313399
– volume: 93
  start-page: 657
  year: 2021
  end-page: 683
  ident: CR8
  article-title: Atomic orbital search: a novel metaheuristic algorithm
  publication-title: Appl Math Model
  doi: 10.1016/j.apm.2020.12.021
– year: 2010
  ident: CR13
  publication-title: Analysis and synthesis of fuzzy control systems: a model-based approach
– volume: 35
  start-page: 191
  year: 2020
  end-page: 202
  ident: CR25
  article-title: A hybrid CSS-GW algorithm for finding optimum location of multi semi-active MR dampers in buildings
  publication-title: Int J Model Identif Control
  doi: 10.1504/IJMIC.2020.114194
– volume: 29
  start-page: 89198
  issue: 59
  year: 2022
  end-page: 89209
  ident: CR37
  article-title: Splitting tensile strength prediction of sustainable high-performance concrete using machine learning techniques
  publication-title: Environ Sci Pollut Res
  doi: 10.1007/s11356-022-22048-2
– volume: 18
  start-page: 719
  year: 2020
  ident: 276_CR24
  publication-title: Earthq Struct
– volume: 139
  start-page: 18
  year: 2014
  ident: 276_CR17
  publication-title: Comput Struct
  doi: 10.1016/j.compstruc.2014.04.005
– volume: 35
  start-page: 191
  year: 2020
  ident: 276_CR25
  publication-title: Int J Model Identif Control
  doi: 10.1504/IJMIC.2020.114194
– volume: 145
  year: 2021
  ident: 276_CR4
  publication-title: Cem Concr Res
  doi: 10.1016/j.cemconres.2021.106449
– volume: 29
  start-page: 1016
  year: 2021
  ident: 276_CR23
  publication-title: Structures
  doi: 10.1016/j.istruc.2020.11.049
– volume: 190
  year: 2022
  ident: 276_CR35
  publication-title: Measurement
  doi: 10.1016/j.measurement.2022.110729
– volume: 18
  start-page: 493
  year: 2020
  ident: 276_CR30
  publication-title: Earthq Struct
– volume: 69
  start-page: 46
  year: 2014
  ident: 276_CR20
  publication-title: Adv Eng Softw
  doi: 10.1016/j.advengsoft.2013.12.007
– volume: 47
  start-page: 1196
  year: 2023
  ident: 276_CR27
  publication-title: Structures
  doi: 10.1016/j.istruc.2022.11.140
– volume: 37
  start-page: 106
  year: 2006
  ident: 276_CR12
  publication-title: Adv Eng Softw
  doi: 10.1016/j.advengsoft.2005.04.005
– volume: 2007
  start-page: 4661
  year: 2007
  ident: 276_CR5
  publication-title: IEEE Congr Evolut Comput
– volume-title: Analysis and synthesis of fuzzy control systems: a model-based approach
  year: 2010
  ident: 276_CR13
– volume: 114
  start-page: 163
  year: 2017
  ident: 276_CR21
  publication-title: Adv Eng Softw
  doi: 10.1016/j.advengsoft.2017.07.002
– volume: 33
  start-page: 4501
  year: 2021
  ident: 276_CR1
  publication-title: Neural Comput Appl
  doi: 10.1007/s00521-020-05244-4
– volume: 29
  start-page: 89198
  issue: 59
  year: 2022
  ident: 276_CR37
  publication-title: Environ Sci Pollut Res
  doi: 10.1007/s11356-022-22048-2
– volume: 48
  start-page: 1209
  year: 2023
  ident: 276_CR2
  publication-title: InStructures
  doi: 10.1016/j.istruc.2022.12.108
– volume: 213
  start-page: 267
  year: 2010
  ident: 276_CR18
  publication-title: Acta Mech
  doi: 10.1007/s00707-009-0270-4
– volume: 121
  start-page: 1585
  year: 1974
  ident: 276_CR19
  publication-title: Proc IEEE
– volume: 86
  start-page: 197
  year: 2023
  ident: 276_CR26
  publication-title: Struct Eng Mech
– volume: 56
  start-page: 487
  year: 2023
  ident: 276_CR32
  publication-title: Rock Mech Rock Eng
  doi: 10.1007/s00603-022-03046-9
– year: 2022
  ident: 276_CR36
  publication-title: Constr Build Mater
  doi: 10.1016/j.conbuildmat.2022.127298
– volume: 93
  start-page: 657
  year: 2021
  ident: 276_CR8
  publication-title: Appl Math Model
  doi: 10.1016/j.apm.2020.12.021
– volume: 214
  year: 2020
  ident: 276_CR6
  publication-title: Eng Struct
  doi: 10.1016/j.engstruct.2020.110657
– volume: 232
  year: 2023
  ident: 276_CR31
  publication-title: Reliab Eng Syst Saf
  doi: 10.1016/j.ress.2022.109077
– volume: 45
  start-page: 500
  year: 2022
  ident: 276_CR34
  publication-title: Structures
  doi: 10.1016/j.istruc.2022.09.046
– volume: 156
  year: 2022
  ident: 276_CR9
  publication-title: Cem Concr Res
  doi: 10.1016/j.cemconres.2022.106761
– volume: 105
  start-page: 30
  year: 2017
  ident: 276_CR28
  publication-title: Adv Eng Softw
  doi: 10.1016/j.advengsoft.2017.01.004
– volume: 15
  start-page: 116
  year: 1985
  ident: 276_CR33
  publication-title: IEEE Trans Syst Man Cybern
  doi: 10.1109/TSMC.1985.6313399
– volume: 30
  start-page: 3086
  year: 2023
  ident: 276_CR38
  publication-title: Mech Adv Mater Struct
  doi: 10.1080/15376494.2022.2068209
– volume: 267
  start-page: 66
  year: 1992
  ident: 276_CR14
  publication-title: Sci Am
  doi: 10.1038/scientificamerican0792-66
– volume: 15
  start-page: 55
  year: 2006
  ident: 276_CR10
  publication-title: Neural Comput Appl
  doi: 10.1007/s00521-005-0008-8
– volume: 24
  start-page: 137
  year: 2019
  ident: 276_CR3
  publication-title: Comput Concr
– volume: 46
  start-page: 1863
  year: 2022
  ident: 276_CR15
  publication-title: Structures
  doi: 10.1016/j.istruc.2022.10.137
– volume: 24
  start-page: 867
  year: 2020
  ident: 276_CR7
  publication-title: KSCE J Civil Eng
  doi: 10.1007/s12205-020-0988-z
– volume: 47
  start-page: 1836
  year: 2023
  ident: 276_CR22
  publication-title: Structures
  doi: 10.1016/j.istruc.2022.12.021
– volume: 45
  start-page: 1990
  year: 2022
  ident: 276_CR39
  publication-title: Structures
  doi: 10.1016/j.istruc.2022.10.015
– volume: 23
  start-page: 702
  year: 2020
  ident: 276_CR16
  publication-title: Structures
  doi: 10.1016/j.istruc.2019.10.022
– volume-title: Fundamentals of fuzzy sets
  year: 2000
  ident: 276_CR11
  doi: 10.1007/978-1-4615-4429-6
– volume: 51
  start-page: 258
  year: 2023
  ident: 276_CR29
  publication-title: Structures
  doi: 10.1016/j.istruc.2023.03.053
SSID ssj0002734780
ssib042110740
Score 2.2809992
Snippet A robust and reliable method to estimate the strength of concrete materials based on their mix parameters is required, considering their extensive use in...
SourceID crossref
springer
SourceType Enrichment Source
Index Database
Publisher
StartPage 1209
SubjectTerms Characterization and Evaluation of Materials
Engineering
Mathematical Applications in the Physical Sciences
Mechanical Engineering
Numerical and Computational Physics
Original Paper
Simulation
Solid Mechanics
Title Concrete materials compressive strength using soft computing techniques
URI https://link.springer.com/article/10.1007/s41939-023-00276-4
Volume 7
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVLSH
  databaseName: SpringerLink Journals
  customDbUrl:
  mediaType: online
  eissn: 2520-8179
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002734780
  issn: 2520-8160
  databaseCode: AFBBN
  dateStart: 20180301
  isFulltext: true
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3JTsMwELWgXOCAWEXZ5AO3YpTFSZMjVAWEoKcicYtiJwYhlCKSIMHXM16yUUDAJW3dSRfPy3jGmTeD0BHYO3DjuSDSFyc0DjwSMxESxpOYyxJpjEk28s3Ev7ylV3feXXO7QLFLCnbC37_klfxHqzAGepUs2T9otv5QGIDnoF84gobh-Csdj2YZOH2FzEEt9PepFHGV2vqaKh5Idl88DEq1IZCDxVXvl7o5RFW9NW87qIqQm4PiTAqGfNlh7srmaU-mEcq4bg-Qm5TmdjrIdanv58-y-7fYLJBmf8GhTR5UZ3_x0w5ls0nWGCzHg1A0sHV_gJO0PaYbxlQWd9gCltOynpLH21qJbUeTp-esvE7syCk4nyEBp4PI4No3bKFu9ey6KrMSjkA4UsIRXURL8OhYPbR0en52NqmsEFUhsamA82gKAA1VC776Dxr2leJgzv2KrofTvb2uvJbpGlo14QY-1dhZRwtptoFWWkUoN9FFhSJcowi3UIQrFGGFIixRhGsU4QZFW-j2fDwdXRLTXoNwJ7QLErgUlpg4tBJLiNi1EyGcGKJN5jLOBfVF4gnuW-CvitgPApGwVLKYE8dymR3SxN1GvWyWpTsI24FvCwGxN1h4mkAIOoQ580HMc0OXpmkf2dWURNzUnpctUJ6i7_XTR4P6nGddeeVH6eNqpiNzheY_iO_-TXwPLTeXxj7qFS9legDOaMEODXo-AFgphoY
linkProvider Library Specific Holdings
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Concrete+materials+compressive+strength+using+soft+computing+techniques&rft.jtitle=Multiscale+and+Multidisciplinary+Modeling%2C+Experiments+and+Design&rft.au=Lu%2C+Chongyang&rft.date=2024-06-01&rft.pub=Springer+International+Publishing&rft.issn=2520-8160&rft.eissn=2520-8179&rft.volume=7&rft.issue=2&rft.spage=1209&rft.epage=1221&rft_id=info:doi/10.1007%2Fs41939-023-00276-4&rft.externalDocID=10_1007_s41939_023_00276_4
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2520-8160&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2520-8160&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2520-8160&client=summon