Concrete materials compressive strength using soft computing techniques
A robust and reliable method to estimate the strength of concrete materials based on their mix parameters is required, considering their extensive use in construction over the last few decades. Consequently, the relationship between the compressive strength of the concrete and its mixed components i...
        Saved in:
      
    
          | Published in | Multiscale and Multidisciplinary Modeling, Experiments and Design Vol. 7; no. 2; pp. 1209 - 1221 | 
|---|---|
| Main Author | |
| Format | Journal Article | 
| Language | English | 
| Published | 
        Cham
          Springer International Publishing
    
        01.06.2024
     | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 2520-8160 2520-8179  | 
| DOI | 10.1007/s41939-023-00276-4 | 
Cover
| Abstract | A robust and reliable method to estimate the strength of concrete materials based on their mix parameters is required, considering their extensive use in construction over the last few decades. Consequently, the relationship between the compressive strength of the concrete and its mixed components is highly nonlinear. In this study, artificial intelligence techniques are applied to predict the compressive strength of cement-based concrete materials, whether they contain or do not contain metakaolin. A surrogate model, including the TSK fuzzy inference system, has been expanded to forecast the compressive strength of concretes based on experimental data available in the literature. Results indicate that the TSK model can reliably and robustly approximate the compressive strength of concretes. The TSK model has been optimized for mean square error (MSE) to train the inference system. In this regard, motion-based algorithms such as Particle Swarm Optimization (PSO), Colliding Bodies Optimization (CBO), and Charged System Search (CSS) have been used. The TSK fuzzy inference system, as a surrogate model, has been expanded to predict the compressive strength of concrete based on experimental data available in the literature. | 
    
|---|---|
| AbstractList | A robust and reliable method to estimate the strength of concrete materials based on their mix parameters is required, considering their extensive use in construction over the last few decades. Consequently, the relationship between the compressive strength of the concrete and its mixed components is highly nonlinear. In this study, artificial intelligence techniques are applied to predict the compressive strength of cement-based concrete materials, whether they contain or do not contain metakaolin. A surrogate model, including the TSK fuzzy inference system, has been expanded to forecast the compressive strength of concretes based on experimental data available in the literature. Results indicate that the TSK model can reliably and robustly approximate the compressive strength of concretes. The TSK model has been optimized for mean square error (MSE) to train the inference system. In this regard, motion-based algorithms such as Particle Swarm Optimization (PSO), Colliding Bodies Optimization (CBO), and Charged System Search (CSS) have been used. The TSK fuzzy inference system, as a surrogate model, has been expanded to predict the compressive strength of concrete based on experimental data available in the literature. | 
    
| Author | Lu, Chongyang | 
    
| Author_xml | – sequence: 1 givenname: Chongyang surname: Lu fullname: Lu, Chongyang email: Lucy8099@yeah.net organization: College of Civil Engineering, Lanzhou Institute of Technology  | 
    
| BookMark | eNp9kM9KAzEQh4NUsNa-gKd9gejkz2aToxStQsGLnkM2m7QpbbYmWcG3d9uKBw-eZob5fQPzXaNJ7KND6JbAHQFo7jMniikMlGEA2gjML9CU1hSwJI2a_PYCrtA85y0cU4w3EqZoueijTa64am-KS8HscmX7_SG5nMOnq3JJLq7LphpyiOsq976c9kM5jsXZTQwfg8s36NKPrJv_1Bl6f3p8Wzzj1evyZfGwwpYqUrBkHKQ0Cjrw3jDSeU-NpKJlrbWeC9_V3gpQjfBGSOm71klR1x0F1hLFOzZD8nzXpj7n5Ly2oZgS-liSCTtNQB-d6LMTPTrRJyeajyj9gx5S2Jv09T_EzlAew3Htkt72Q4rji_9R34EneBI | 
    
| CitedBy_id | crossref_primary_10_1007_s42107_024_01174_x crossref_primary_10_25046_aj090112 crossref_primary_10_1016_j_nanoso_2024_101373 crossref_primary_10_1007_s42107_024_01245_z  | 
    
| Cites_doi | 10.1038/scientificamerican0792-66 10.1016/j.istruc.2022.11.140 10.1016/j.istruc.2020.11.049 10.1007/s00707-009-0270-4 10.1016/j.istruc.2019.10.022 10.1016/j.istruc.2022.10.015 10.1007/s00521-020-05244-4 10.1007/s12205-020-0988-z 10.1016/j.cemconres.2022.106761 10.1016/j.cemconres.2021.106449 10.1080/15376494.2022.2068209 10.1007/978-1-4615-4429-6 10.1016/j.ress.2022.109077 10.1016/j.engstruct.2020.110657 10.1016/j.advengsoft.2005.04.005 10.1016/j.istruc.2022.12.021 10.1016/j.istruc.2022.10.137 10.1016/j.advengsoft.2013.12.007 10.1016/j.advengsoft.2017.01.004 10.1016/j.istruc.2022.09.046 10.1007/s00603-022-03046-9 10.1016/j.advengsoft.2017.07.002 10.1016/j.istruc.2023.03.053 10.1016/j.istruc.2022.12.108 10.1016/j.compstruc.2014.04.005 10.1007/s00521-005-0008-8 10.1016/j.conbuildmat.2022.127298 10.1016/j.measurement.2022.110729 10.1109/TSMC.1985.6313399 10.1016/j.apm.2020.12.021 10.1504/IJMIC.2020.114194 10.1007/s11356-022-22048-2  | 
    
| ContentType | Journal Article | 
    
| Copyright | The Author(s), under exclusive licence to Springer Nature Switzerland AG 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. | 
    
| Copyright_xml | – notice: The Author(s), under exclusive licence to Springer Nature Switzerland AG 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. | 
    
| DBID | AAYXX CITATION  | 
    
| DOI | 10.1007/s41939-023-00276-4 | 
    
| DatabaseName | CrossRef | 
    
| DatabaseTitle | CrossRef | 
    
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Engineering | 
    
| EISSN | 2520-8179 | 
    
| EndPage | 1221 | 
    
| ExternalDocumentID | 10_1007_s41939_023_00276_4 | 
    
| GrantInformation_xml | – fundername: Natural Science Foundation project of Gansu grantid: 22JR5RA382  | 
    
| GroupedDBID | -EM 0R~ 406 AAAVM AACDK AAHNG AAIAL AAJBT AASML AATNV AATVU AAUYE ABAKF ABDZT ABECU ABFTV ABKCH ABMQK ABQBU ABTEG ABTKH ABTMW ABXPI ACAOD ACDTI ACGFS ACHSB ACMLO ACOKC ACPIV ACZOJ ADHHG ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF AEFQL AEJRE AEMSY AESKC AFBBN AFQWF AGDGC AGJBK AGMZJ AGQEE AGRTI AIAKS AIGIU AILAN AITGF AJZVZ ALMA_UNASSIGNED_HOLDINGS AMKLP AMXSW AMYLF AMYQR AXYYD BGNMA CSCUP DPUIP EBLON EBS EJD FIGPU FINBP FNLPD FSGXE GGCAI H13 IKXTQ IWAJR J-C JZLTJ KOV LLZTM M4Y NPVJJ NQJWS NU0 O9J PT4 RLLFE ROL RSV SJYHP SNE SNPRN SOHCF SOJ SPISZ SRMVM SSLCW STPWE TSG UOJIU UTJUX UZXMN VFIZW ZMTXR AAYXX ABBRH ABDBE ABFSG ABRTQ ACSTC AEZWR AFDZB AFHIU AFOHR AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION  | 
    
| ID | FETCH-LOGICAL-c291t-834088a90d0ffa31dff2a826b3bccf46fd5fc60976fa688fdbe8655d203b194d3 | 
    
| ISSN | 2520-8160 | 
    
| IngestDate | Thu Apr 24 23:11:43 EDT 2025 Wed Oct 01 02:48:11 EDT 2025 Fri Feb 21 02:40:32 EST 2025  | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Issue | 2 | 
    
| Keywords | Charged system search Prediction of strength Colliding bodies optimization Particle swarm optimization TSK model  | 
    
| Language | English | 
    
| LinkModel | OpenURL | 
    
| MergedId | FETCHMERGED-LOGICAL-c291t-834088a90d0ffa31dff2a826b3bccf46fd5fc60976fa688fdbe8655d203b194d3 | 
    
| PageCount | 13 | 
    
| ParticipantIDs | crossref_citationtrail_10_1007_s41939_023_00276_4 crossref_primary_10_1007_s41939_023_00276_4 springer_journals_10_1007_s41939_023_00276_4  | 
    
| ProviderPackageCode | CITATION AAYXX  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 20240600 | 
    
| PublicationDateYYYYMMDD | 2024-06-01 | 
    
| PublicationDate_xml | – month: 6 year: 2024 text: 20240600  | 
    
| PublicationDecade | 2020 | 
    
| PublicationPlace | Cham | 
    
| PublicationPlace_xml | – name: Cham | 
    
| PublicationTitle | Multiscale and Multidisciplinary Modeling, Experiments and Design | 
    
| PublicationTitleAbbrev | Multiscale and Multidiscip. Model. Exp. and Des | 
    
| PublicationYear | 2024 | 
    
| Publisher | Springer International Publishing | 
    
| Publisher_xml | – name: Springer International Publishing | 
    
| References | Chatterjee, Watanabe (CR10) 2006; 15 Mirjalili, Mirjalili, Lewis (CR20) 2014; 69 Mirjalili, Gandomi, Mirjalili, Saremi, Faris, Mirjalili (CR21) 2017; 114 Wu, Li (CR35) 2022; 190 Armaghani, Asteris (CR1) 2021; 33 Azar, Veladi, Talatahari, Raeesi (CR7) 2020; 24 Raeesi, Veladi, Azar, Talatahari (CR25) 2020; 35 Sandeep, Tiprak, Kaewunruen, Pheinsusom, Pansuk (CR27) 2023; 47 Charrier, Ouellet-Plamondon (CR9) 2022; 156 Erol, Eksin (CR12) 2006; 37 Raeesi, Shirgir, Azar, Veladi, Ghaffarzadeh (CR24) 2020; 18 Wu, Zhou (CR38) 2023; 30 Kar, Pandit, Biswal (CR16) 2020; 23 Saremi, Mirjalili, Lewis (CR28) 2017; 105 Yazdanpanah, Chang, Park, Kim (CR39) 2022; 45 Peng, Yan, Yu, Luo (CR23) 2021; 29 Azizi (CR8) 2021; 93 Dubois, Prade (CR11) 2000 Shirgir, Azar, Hadidi (CR30) 2020; 18 Kaveh, Talatahari (CR18) 2010; 213 Azar, Veladi, Raeesi, Talatahari (CR6) 2020; 214 Asteris, Ashrafian, Rezaie-Balf (CR3) 2019; 24 Mamdani (CR19) 1974; 121 Tipu, Panchal, Pandya (CR34) 2022; 45 Wu, Zhou (CR36) 2022 Wu, Zhou (CR37) 2022; 29 Raeesi, Veladi, Azar, Shirgir, Jafarpurian (CR26) 2023; 86 Mohanty, Mishra, Sahu (CR22) 2023; 47 Ashrafian, Panahi, Salehi, Karoglou, Asteris (CR2) 2023; 48 Shirgir, Shamsaddinlou, Zare, Zehtabiyan, Bonab (CR31) 2023; 232 Asteris, Skentou, Bardhan, Samui, Pilakoutas (CR4) 2021; 145 İpek, Güneyisi, Güneyisi (CR15) 2022; 46 Feng (CR13) 2010 Kaveh, Mahdavi (CR17) 2014; 139 Holland (CR14) 1992; 267 Skentou, Bardhan, Mamou, Lemonis, Kumar, Samui (CR32) 2023; 56 Atashpaz-Gargari, Lucas (CR5) 2007; 2007 Shamsaddinlou, Shirgir, Hadidi, Azar (CR29) 2023; 51 Takagi, Sugeno (CR33) 1985; 15 F Raeesi (276_CR26) 2023; 86 Y Wu (276_CR37) 2022; 29 S Saremi (276_CR28) 2017; 105 JH Holland (276_CR14) 1992; 267 S Shirgir (276_CR30) 2020; 18 M Azizi (276_CR8) 2021; 93 Y Wu (276_CR35) 2022; 190 E Atashpaz-Gargari (276_CR5) 2007; 2007 OK Erol (276_CR12) 2006; 37 F Raeesi (276_CR25) 2020; 35 BF Azar (276_CR6) 2020; 214 N Mohanty (276_CR22) 2023; 47 A Shamsaddinlou (276_CR29) 2023; 51 O Yazdanpanah (276_CR39) 2022; 45 PG Asteris (276_CR3) 2019; 24 DJ Armaghani (276_CR1) 2021; 33 A Ashrafian (276_CR2) 2023; 48 EH Mamdani (276_CR19) 1974; 121 Y Wu (276_CR38) 2023; 30 A Chatterjee (276_CR10) 2006; 15 F Raeesi (276_CR24) 2020; 18 AD Skentou (276_CR32) 2023; 56 D Dubois (276_CR11) 2000 S Kar (276_CR16) 2020; 23 T Takagi (276_CR33) 1985; 15 BF Azar (276_CR7) 2020; 24 S İpek (276_CR15) 2022; 46 S Mirjalili (276_CR21) 2017; 114 H Peng (276_CR23) 2021; 29 MS Sandeep (276_CR27) 2023; 47 A Kaveh (276_CR17) 2014; 139 S Mirjalili (276_CR20) 2014; 69 S Shirgir (276_CR31) 2023; 232 A Kaveh (276_CR18) 2010; 213 RK Tipu (276_CR34) 2022; 45 Y Wu (276_CR36) 2022 M Charrier (276_CR9) 2022; 156 G Feng (276_CR13) 2010 PG Asteris (276_CR4) 2021; 145  | 
    
| References_xml | – volume: 267 start-page: 66 year: 1992 end-page: 73 ident: CR14 article-title: Genetic algorithms publication-title: Sci Am doi: 10.1038/scientificamerican0792-66 – volume: 47 start-page: 1196 year: 2023 end-page: 1211 ident: CR27 article-title: Shear strength prediction of reinforced concrete beams using machine learning publication-title: Structures doi: 10.1016/j.istruc.2022.11.140 – volume: 29 start-page: 1016 year: 2021 end-page: 1031 ident: CR23 article-title: Time series estimation based on deep Learning for structural dynamic nonlinear prediction publication-title: Structures doi: 10.1016/j.istruc.2020.11.049 – volume: 213 start-page: 267 year: 2010 end-page: 289 ident: CR18 article-title: A novel heuristic optimization method: charged system search publication-title: Acta Mech doi: 10.1007/s00707-009-0270-4 – volume: 121 start-page: 1585 year: 1974 end-page: 1588 ident: CR19 article-title: Applications of fuzzy algorithms for simple dynamic plants publication-title: Proc IEEE – volume: 23 start-page: 702 year: 2020 end-page: 717 ident: CR16 article-title: Prediction of FRP shear contribution for wrapped shear deficient RC beams using adaptive neuro-fuzzy inference system (ANFIS) publication-title: Structures doi: 10.1016/j.istruc.2019.10.022 – volume: 45 start-page: 1990 year: 2022 end-page: 2006 ident: CR39 article-title: Seismic response prediction of RC bridge piers through stacked long short-term memory network publication-title: Structures doi: 10.1016/j.istruc.2022.10.015 – volume: 33 start-page: 4501 year: 2021 end-page: 4532 ident: CR1 article-title: A comparative study of ANN and ANFIS models for the prediction of cement-based concrete materials compressive strength publication-title: Neural Comput Appl doi: 10.1007/s00521-020-05244-4 – volume: 24 start-page: 867 year: 2020 end-page: 878 ident: CR7 article-title: Optimal design of magnetorheological damper based on tuning Bouc-Wen model parameters using hybrid algorithms publication-title: KSCE J Civil Eng doi: 10.1007/s12205-020-0988-z – volume: 86 start-page: 197 year: 2023 ident: CR26 article-title: salp swarm algorithm for optimal design of semi-active MR dampers in buildings publication-title: Struct Eng Mech – volume: 156 year: 2022 ident: CR9 article-title: Artificial neural network for the prediction of the fresh properties of cementitious materials publication-title: Cem Concr Res doi: 10.1016/j.cemconres.2022.106761 – volume: 145 year: 2021 ident: CR4 article-title: Predicting concrete compressive strength using hybrid ensembling of surrogate machine learning models publication-title: Cem Concr Res doi: 10.1016/j.cemconres.2021.106449 – volume: 24 start-page: 137 year: 2019 end-page: 150 ident: CR3 article-title: Prediction of the compressive strength of self-compacting concrete using surrogate models publication-title: Comput Concr – volume: 30 start-page: 3086 year: 2023 end-page: 3096 ident: CR38 article-title: Prediction and feature analysis of punching shear strength of two-way reinforced concrete slabs using optimized machine learning algorithm and Shapley additive explanations publication-title: Mech Adv Mater Struct doi: 10.1080/15376494.2022.2068209 – volume: 18 start-page: 719 year: 2020 ident: CR24 article-title: Enhanced salp swarm algorithm based on opposition learning and merit function methods for optimum design of MTMD publication-title: Earthq Struct – year: 2000 ident: CR11 publication-title: Fundamentals of fuzzy sets doi: 10.1007/978-1-4615-4429-6 – volume: 232 year: 2023 ident: CR31 article-title: An efficient double-loop reliability-based optimization with metaheuristic algorithms to design soil nail walls under uncertain condition publication-title: Reliab Eng Syst Saf doi: 10.1016/j.ress.2022.109077 – volume: 214 year: 2020 ident: CR6 article-title: Control of the nonlinear building using an optimum inverse TSK model of MR damper based on modified grey wolf optimizer publication-title: Eng Struct doi: 10.1016/j.engstruct.2020.110657 – volume: 37 start-page: 106 year: 2006 end-page: 111 ident: CR12 article-title: A new optimization method: big bang–big crunch publication-title: Adv Eng Softw doi: 10.1016/j.advengsoft.2005.04.005 – volume: 47 start-page: 1836 year: 2023 end-page: 1845 ident: CR22 article-title: An adaptive neuro fuzzy inference system model for studying free in plane and out of plane vibration behavior of curved beams publication-title: Structures doi: 10.1016/j.istruc.2022.12.021 – volume: 46 start-page: 1863 year: 2022 end-page: 1880 ident: CR15 article-title: Data-driven models for prediction of peak strength of R-CFST circular columns subjected to axial loading publication-title: Structures doi: 10.1016/j.istruc.2022.10.137 – volume: 2007 start-page: 4661 year: 2007 end-page: 4667 ident: CR5 article-title: Imperialist competitive algorithm: an algorithm for optimization inspired by imperialistic competition publication-title: IEEE Congr Evolut Comput – volume: 69 start-page: 46 year: 2014 end-page: 61 ident: CR20 article-title: Grey wolf optimizer publication-title: Adv Eng Softw doi: 10.1016/j.advengsoft.2013.12.007 – volume: 105 start-page: 30 year: 2017 end-page: 47 ident: CR28 article-title: Grasshopper optimisation algorithm: theory and application publication-title: Adv Eng Softw doi: 10.1016/j.advengsoft.2017.01.004 – volume: 45 start-page: 500 year: 2022 end-page: 508 ident: CR34 article-title: An ensemble approach to improve BPNN model precision for predicting compressive strength of high-performance concrete publication-title: Structures doi: 10.1016/j.istruc.2022.09.046 – volume: 56 start-page: 487 year: 2023 end-page: 514 ident: CR32 article-title: Closed-form equation for estimating unconfined compressive strength of granite from three non-destructive tests using soft computing models publication-title: Rock Mech Rock Eng doi: 10.1007/s00603-022-03046-9 – volume: 114 start-page: 163 year: 2017 end-page: 191 ident: CR21 article-title: Salp swarm algorithm: a bio-inspired optimizer for engineering design problems publication-title: Adv Eng Softw doi: 10.1016/j.advengsoft.2017.07.002 – volume: 18 start-page: 493 year: 2020 ident: CR30 article-title: Opposition based charged system search for parameter identification problem in a simplified Bouc-Wen model publication-title: Earthq Struct – volume: 51 start-page: 258 year: 2023 end-page: 274 ident: CR29 article-title: An efficient reliability-based design of TMD & MTMD in nonlinear structures under uncertainty publication-title: Structures doi: 10.1016/j.istruc.2023.03.053 – volume: 48 start-page: 1209 year: 2023 end-page: 1229 ident: CR2 article-title: Mapping the strength of agro-ecological lightweight concrete containing oil palm by-product using artificial intelligence techniques publication-title: InStructures doi: 10.1016/j.istruc.2022.12.108 – volume: 139 start-page: 18 year: 2014 end-page: 27 ident: CR17 article-title: Colliding bodies optimization: a novel meta-heuristic method publication-title: Comput Struct doi: 10.1016/j.compstruc.2014.04.005 – volume: 15 start-page: 55 year: 2006 end-page: 61 ident: CR10 article-title: An optimized Takagi-Sugeno type neuro-fuzzy system for modeling robot manipulators publication-title: Neural Comput Appl doi: 10.1007/s00521-005-0008-8 – year: 2022 ident: CR36 article-title: Hybrid machine learning model and Shapley additive explanations for compressive strength of sustainable concrete publication-title: Constr Build Mater doi: 10.1016/j.conbuildmat.2022.127298 – volume: 190 year: 2022 ident: CR35 article-title: Damage degree evaluation of masonry using optimized SVM-based acoustic emission monitoring and rate process theory publication-title: Measurement doi: 10.1016/j.measurement.2022.110729 – volume: 15 start-page: 116 year: 1985 end-page: 132 ident: CR33 article-title: Fuzzy identification of systems and its applications to modeling and control publication-title: IEEE Trans Syst Man Cybern doi: 10.1109/TSMC.1985.6313399 – volume: 93 start-page: 657 year: 2021 end-page: 683 ident: CR8 article-title: Atomic orbital search: a novel metaheuristic algorithm publication-title: Appl Math Model doi: 10.1016/j.apm.2020.12.021 – year: 2010 ident: CR13 publication-title: Analysis and synthesis of fuzzy control systems: a model-based approach – volume: 35 start-page: 191 year: 2020 end-page: 202 ident: CR25 article-title: A hybrid CSS-GW algorithm for finding optimum location of multi semi-active MR dampers in buildings publication-title: Int J Model Identif Control doi: 10.1504/IJMIC.2020.114194 – volume: 29 start-page: 89198 issue: 59 year: 2022 end-page: 89209 ident: CR37 article-title: Splitting tensile strength prediction of sustainable high-performance concrete using machine learning techniques publication-title: Environ Sci Pollut Res doi: 10.1007/s11356-022-22048-2 – volume: 18 start-page: 719 year: 2020 ident: 276_CR24 publication-title: Earthq Struct – volume: 139 start-page: 18 year: 2014 ident: 276_CR17 publication-title: Comput Struct doi: 10.1016/j.compstruc.2014.04.005 – volume: 35 start-page: 191 year: 2020 ident: 276_CR25 publication-title: Int J Model Identif Control doi: 10.1504/IJMIC.2020.114194 – volume: 145 year: 2021 ident: 276_CR4 publication-title: Cem Concr Res doi: 10.1016/j.cemconres.2021.106449 – volume: 29 start-page: 1016 year: 2021 ident: 276_CR23 publication-title: Structures doi: 10.1016/j.istruc.2020.11.049 – volume: 190 year: 2022 ident: 276_CR35 publication-title: Measurement doi: 10.1016/j.measurement.2022.110729 – volume: 18 start-page: 493 year: 2020 ident: 276_CR30 publication-title: Earthq Struct – volume: 69 start-page: 46 year: 2014 ident: 276_CR20 publication-title: Adv Eng Softw doi: 10.1016/j.advengsoft.2013.12.007 – volume: 47 start-page: 1196 year: 2023 ident: 276_CR27 publication-title: Structures doi: 10.1016/j.istruc.2022.11.140 – volume: 37 start-page: 106 year: 2006 ident: 276_CR12 publication-title: Adv Eng Softw doi: 10.1016/j.advengsoft.2005.04.005 – volume: 2007 start-page: 4661 year: 2007 ident: 276_CR5 publication-title: IEEE Congr Evolut Comput – volume-title: Analysis and synthesis of fuzzy control systems: a model-based approach year: 2010 ident: 276_CR13 – volume: 114 start-page: 163 year: 2017 ident: 276_CR21 publication-title: Adv Eng Softw doi: 10.1016/j.advengsoft.2017.07.002 – volume: 33 start-page: 4501 year: 2021 ident: 276_CR1 publication-title: Neural Comput Appl doi: 10.1007/s00521-020-05244-4 – volume: 29 start-page: 89198 issue: 59 year: 2022 ident: 276_CR37 publication-title: Environ Sci Pollut Res doi: 10.1007/s11356-022-22048-2 – volume: 48 start-page: 1209 year: 2023 ident: 276_CR2 publication-title: InStructures doi: 10.1016/j.istruc.2022.12.108 – volume: 213 start-page: 267 year: 2010 ident: 276_CR18 publication-title: Acta Mech doi: 10.1007/s00707-009-0270-4 – volume: 121 start-page: 1585 year: 1974 ident: 276_CR19 publication-title: Proc IEEE – volume: 86 start-page: 197 year: 2023 ident: 276_CR26 publication-title: Struct Eng Mech – volume: 56 start-page: 487 year: 2023 ident: 276_CR32 publication-title: Rock Mech Rock Eng doi: 10.1007/s00603-022-03046-9 – year: 2022 ident: 276_CR36 publication-title: Constr Build Mater doi: 10.1016/j.conbuildmat.2022.127298 – volume: 93 start-page: 657 year: 2021 ident: 276_CR8 publication-title: Appl Math Model doi: 10.1016/j.apm.2020.12.021 – volume: 214 year: 2020 ident: 276_CR6 publication-title: Eng Struct doi: 10.1016/j.engstruct.2020.110657 – volume: 232 year: 2023 ident: 276_CR31 publication-title: Reliab Eng Syst Saf doi: 10.1016/j.ress.2022.109077 – volume: 45 start-page: 500 year: 2022 ident: 276_CR34 publication-title: Structures doi: 10.1016/j.istruc.2022.09.046 – volume: 156 year: 2022 ident: 276_CR9 publication-title: Cem Concr Res doi: 10.1016/j.cemconres.2022.106761 – volume: 105 start-page: 30 year: 2017 ident: 276_CR28 publication-title: Adv Eng Softw doi: 10.1016/j.advengsoft.2017.01.004 – volume: 15 start-page: 116 year: 1985 ident: 276_CR33 publication-title: IEEE Trans Syst Man Cybern doi: 10.1109/TSMC.1985.6313399 – volume: 30 start-page: 3086 year: 2023 ident: 276_CR38 publication-title: Mech Adv Mater Struct doi: 10.1080/15376494.2022.2068209 – volume: 267 start-page: 66 year: 1992 ident: 276_CR14 publication-title: Sci Am doi: 10.1038/scientificamerican0792-66 – volume: 15 start-page: 55 year: 2006 ident: 276_CR10 publication-title: Neural Comput Appl doi: 10.1007/s00521-005-0008-8 – volume: 24 start-page: 137 year: 2019 ident: 276_CR3 publication-title: Comput Concr – volume: 46 start-page: 1863 year: 2022 ident: 276_CR15 publication-title: Structures doi: 10.1016/j.istruc.2022.10.137 – volume: 24 start-page: 867 year: 2020 ident: 276_CR7 publication-title: KSCE J Civil Eng doi: 10.1007/s12205-020-0988-z – volume: 47 start-page: 1836 year: 2023 ident: 276_CR22 publication-title: Structures doi: 10.1016/j.istruc.2022.12.021 – volume: 45 start-page: 1990 year: 2022 ident: 276_CR39 publication-title: Structures doi: 10.1016/j.istruc.2022.10.015 – volume: 23 start-page: 702 year: 2020 ident: 276_CR16 publication-title: Structures doi: 10.1016/j.istruc.2019.10.022 – volume-title: Fundamentals of fuzzy sets year: 2000 ident: 276_CR11 doi: 10.1007/978-1-4615-4429-6 – volume: 51 start-page: 258 year: 2023 ident: 276_CR29 publication-title: Structures doi: 10.1016/j.istruc.2023.03.053  | 
    
| SSID | ssj0002734780 ssib042110740  | 
    
| Score | 2.2809992 | 
    
| Snippet | A robust and reliable method to estimate the strength of concrete materials based on their mix parameters is required, considering their extensive use in... | 
    
| SourceID | crossref springer  | 
    
| SourceType | Enrichment Source Index Database Publisher  | 
    
| StartPage | 1209 | 
    
| SubjectTerms | Characterization and Evaluation of Materials Engineering Mathematical Applications in the Physical Sciences Mechanical Engineering Numerical and Computational Physics Original Paper Simulation Solid Mechanics  | 
    
| Title | Concrete materials compressive strength using soft computing techniques | 
    
| URI | https://link.springer.com/article/10.1007/s41939-023-00276-4 | 
    
| Volume | 7 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVLSH databaseName: SpringerLink Journals customDbUrl: mediaType: online eissn: 2520-8179 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002734780 issn: 2520-8160 databaseCode: AFBBN dateStart: 20180301 isFulltext: true providerName: Library Specific Holdings  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3JTsMwELWgXOCAWEXZ5AO3YpTFSZMjVAWEoKcicYtiJwYhlCKSIMHXM16yUUDAJW3dSRfPy3jGmTeD0BHYO3DjuSDSFyc0DjwSMxESxpOYyxJpjEk28s3Ev7ylV3feXXO7QLFLCnbC37_klfxHqzAGepUs2T9otv5QGIDnoF84gobh-Csdj2YZOH2FzEEt9PepFHGV2vqaKh5Idl88DEq1IZCDxVXvl7o5RFW9NW87qIqQm4PiTAqGfNlh7srmaU-mEcq4bg-Qm5TmdjrIdanv58-y-7fYLJBmf8GhTR5UZ3_x0w5ls0nWGCzHg1A0sHV_gJO0PaYbxlQWd9gCltOynpLH21qJbUeTp-esvE7syCk4nyEBp4PI4No3bKFu9ey6KrMSjkA4UsIRXURL8OhYPbR0en52NqmsEFUhsamA82gKAA1VC776Dxr2leJgzv2KrofTvb2uvJbpGlo14QY-1dhZRwtptoFWWkUoN9FFhSJcowi3UIQrFGGFIixRhGsU4QZFW-j2fDwdXRLTXoNwJ7QLErgUlpg4tBJLiNi1EyGcGKJN5jLOBfVF4gnuW-CvitgPApGwVLKYE8dymR3SxN1GvWyWpTsI24FvCwGxN1h4mkAIOoQ580HMc0OXpmkf2dWURNzUnpctUJ6i7_XTR4P6nGddeeVH6eNqpiNzheY_iO_-TXwPLTeXxj7qFS9legDOaMEODXo-AFgphoY | 
    
| linkProvider | Library Specific Holdings | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Concrete+materials+compressive+strength+using+soft+computing+techniques&rft.jtitle=Multiscale+and+Multidisciplinary+Modeling%2C+Experiments+and+Design&rft.au=Lu%2C+Chongyang&rft.date=2024-06-01&rft.pub=Springer+International+Publishing&rft.issn=2520-8160&rft.eissn=2520-8179&rft.volume=7&rft.issue=2&rft.spage=1209&rft.epage=1221&rft_id=info:doi/10.1007%2Fs41939-023-00276-4&rft.externalDocID=10_1007_s41939_023_00276_4 | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2520-8160&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2520-8160&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2520-8160&client=summon |