Deep Reinforcement Learning for Multi-Objective Real-Time Pump Operation in Rainwater Pumping Stations

Rainwater pumping stations located near urban centers or agricultural areas help prevent flooding by activating an appropriate number of pumps with varying capacities based on real-time rainwater inflow. However, relying solely on rule-based pump operations that monitor only basin water levels is of...

Full description

Saved in:
Bibliographic Details
Published inWater (Basel) Vol. 16; no. 23; p. 3398
Main Authors Joo, Jin-Gul, Jeong, In-Seon, Kang, Seung-Ho
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 01.12.2024
Subjects
Online AccessGet full text
ISSN2073-4441
2073-4441
DOI10.3390/w16233398

Cover

Abstract Rainwater pumping stations located near urban centers or agricultural areas help prevent flooding by activating an appropriate number of pumps with varying capacities based on real-time rainwater inflow. However, relying solely on rule-based pump operations that monitor only basin water levels is often insufficient for effective control. In addition to maintaining a low maximum water level to prevent flooding, pump operation at rainwater stations also requires minimizing the number of pump on/off switches. Reducing pump switch frequency lowers the likelihood of mechanical failure and thus decreases maintenance costs. This paper proposes a real-time pump operation method for rainwater pumping stations using Deep Reinforcement Learning (DRL) to meet these operational requirements simultaneously, based only on currently observable information such as rainfall, inflow, storage volume, basin water level, and outflow. Simulated rainfall data with various return periods and durations were generated using the Huff method to train the model. The Storm Water Management Model (SWMM), configured to simulate the Gasan rainwater pumping station located in Geumcheon-gu, Seoul, South Korea, was used to conduct experiments. The performance of the proposed DRL model was then compared with that of the rule-based pump operation currently used at the station.
AbstractList Rainwater pumping stations located near urban centers or agricultural areas help prevent flooding by activating an appropriate number of pumps with varying capacities based on real-time rainwater inflow. However, relying solely on rule-based pump operations that monitor only basin water levels is often insufficient for effective control. In addition to maintaining a low maximum water level to prevent flooding, pump operation at rainwater stations also requires minimizing the number of pump on/off switches. Reducing pump switch frequency lowers the likelihood of mechanical failure and thus decreases maintenance costs. This paper proposes a real-time pump operation method for rainwater pumping stations using Deep Reinforcement Learning (DRL) to meet these operational requirements simultaneously, based only on currently observable information such as rainfall, inflow, storage volume, basin water level, and outflow. Simulated rainfall data with various return periods and durations were generated using the Huff method to train the model. The Storm Water Management Model (SWMM), configured to simulate the Gasan rainwater pumping station located in Geumcheon-gu, Seoul, South Korea, was used to conduct experiments. The performance of the proposed DRL model was then compared with that of the rule-based pump operation currently used at the station.
Audience Academic
Author Kang, Seung-Ho
Joo, Jin-Gul
Jeong, In-Seon
Author_xml – sequence: 1
  givenname: Jin-Gul
  surname: Joo
  fullname: Joo, Jin-Gul
– sequence: 2
  givenname: In-Seon
  surname: Jeong
  fullname: Jeong, In-Seon
– sequence: 3
  givenname: Seung-Ho
  surname: Kang
  fullname: Kang, Seung-Ho
BookMark eNpNUMtOwzAQtFCRKKUH_sASJw4pfuRhH6vylIqKSjlHjrOpXCVOcBwq_h63RYjdw652Z2a1c4lGtrWA0DUlM84ludvTlPHQiTM0ZiTjURzHdPSvv0DTvt-RELEUIiFjVN0DdHgNxlat09CA9XgJylljtziM8OtQexOtih1ob74gQFUdbUwD-G1oOrzqwClvWouNxWtl7F55cMfdQeHdH5f9FTqvVN3D9LdO0Mfjw2bxHC1XTy-L-TLSTFIfCSZ0RSXXsqSZ5jxVLOVUFrGkAFlRKJ7xUqRFkjAmCiEzRiHhpSIESlIxxifo5qTbufZzgN7nu3ZwNpzMOQ0GJDFLSEDNTqitqiE_vO6d0iFLaIwOnlYmzOeCEcKIkGkg3J4I2rV976DKO2ca5b5zSvKD9fmf9fwHApB2dQ
Cites_doi 10.1016/j.jhydrol.2020.124571
10.1016/j.watres.2023.120912
10.1364/JOSAB.35.000617
10.1029/WR003i004p01007
10.1109/EUROCON52738.2021.9535587
10.1038/nature14236
10.1061/(ASCE)HE.1943-5584.0002122
10.1115/1.4044397
10.2166/hydro.2019.058
10.1146/annurev-control-042920-020211
10.1016/j.advwatres.2020.103600
10.3390/w12113222
10.1007/s11831-019-09344-w
10.1016/j.apenergy.2012.10.028
10.1109/ACCESS.2022.3163742
10.1007/s11269-018-2076-4
10.3390/w12020406
10.3115/v1/D14-1179
10.1109/ACCESS.2023.3304992
10.1061/(ASCE)WR.1943-5452.0000775
10.1016/j.watres.2022.118973
10.1061/(ASCE)WR.1943-5452.0001409
10.2166/hydro.2020.080
10.3390/en15145005
10.21105/joss.02292
10.1109/MSP.2017.2743240
10.3390/w15081528
10.3390/w15061131
10.1007/s10462-021-09967-1
10.1016/j.jhydrol.2023.129435
10.28991/CEJ-2023-09-04-07
10.1038/s41598-020-70816-2
10.1109/ACCESS.2020.3017277
10.1016/j.asoc.2023.110543
10.1109/ALLERTON.2018.8636075
ContentType Journal Article
Copyright COPYRIGHT 2024 MDPI AG
2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: COPYRIGHT 2024 MDPI AG
– notice: 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
DOI 10.3390/w16233398
DatabaseName CrossRef
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest One Community College
ProQuest Central Korea
Proquest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
DatabaseTitle CrossRef
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList CrossRef

Publicly Available Content Database
Database_xml – sequence: 1
  dbid: BENPR
  name: ProQuest Central
  url: http://www.proquest.com/pqcentral?accountid=15518
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2073-4441
ExternalDocumentID A820020896
10_3390_w16233398
GeographicLocations South Korea
GeographicLocations_xml – name: South Korea
GroupedDBID 2XV
5VS
7XC
8CJ
8FE
8FH
A8Z
AADQD
AAFWJ
AAHBH
AAYXX
ADBBV
ADMLS
AENEX
AFKRA
AFZYC
ALMA_UNASSIGNED_HOLDINGS
BCNDV
BENPR
CCPQU
CITATION
D1J
E3Z
ECGQY
EDH
GX1
IAO
ITC
KQ8
MODMG
M~E
OK1
OZF
PHGZM
PHGZT
PIMPY
PROAC
PMFND
ABUWG
AZQEC
DWQXO
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
ID FETCH-LOGICAL-c291t-828cf193c9d17c336a26319b491ee7bba373d86b55228b89721e53da00ed0f223
IEDL.DBID BENPR
ISSN 2073-4441
IngestDate Mon Jun 30 13:41:01 EDT 2025
Tue Jun 10 21:05:19 EDT 2025
Tue Jul 01 02:41:07 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 23
Language English
License https://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c291t-828cf193c9d17c336a26319b491ee7bba373d86b55228b89721e53da00ed0f223
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
OpenAccessLink https://www.proquest.com/docview/3144154250?pq-origsite=%requestingapplication%&accountid=15518
PQID 3144154250
PQPubID 2032318
ParticipantIDs proquest_journals_3144154250
gale_infotracacademiconefile_A820020896
crossref_primary_10_3390_w16233398
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-12-01
PublicationDateYYYYMMDD 2024-12-01
PublicationDate_xml – month: 12
  year: 2024
  text: 2024-12-01
  day: 01
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Water (Basel)
PublicationYear 2024
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References McDonnell (ref_32) 2020; 5
ref_14
Tian (ref_20) 2024; 249
ref_35
Xu (ref_24) 2021; 147
Mullapudi (ref_21) 2020; 140
ref_31
Martel (ref_3) 2021; 26
Brunke (ref_27) 2022; 5
ref_30
Fu (ref_15) 2022; 223
ref_17
ref_39
ref_38
Zhang (ref_13) 2021; 54
Bachtiar (ref_5) 2023; 9
Baumeister (ref_10) 2018; 35
Zhao (ref_28) 2023; 11
Jafari (ref_6) 2018; 32
Arulkumaran (ref_36) 2017; 34
Dargan (ref_12) 2020; 27
Bowes (ref_22) 2021; 23
Lee (ref_11) 2019; 141
ref_23
Zhuan (ref_4) 2013; 104
Mounce (ref_7) 2020; 22
Ismail (ref_25) 2022; 10
Wu (ref_16) 2020; 8
ref_41
ref_40
ref_1
ref_2
Sadler (ref_8) 2020; 583
ref_29
ref_26
Lee (ref_34) 2017; 143
ref_9
Tian (ref_18) 2023; 620
Li (ref_19) 2023; 144
Huff (ref_33) 1967; 3
Mnih (ref_37) 2015; 518
References_xml – volume: 583
  start-page: 124571
  year: 2020
  ident: ref_8
  article-title: Exploring real-time control of stormwater systems for mitigating flood risk due to sea level rise
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2020.124571
– volume: 249
  start-page: 120912
  year: 2024
  ident: ref_20
  article-title: Improving the interpretability of deep reinforcement learning in urban drainage system operation
  publication-title: Water Res.
  doi: 10.1016/j.watres.2023.120912
– volume: 35
  start-page: 617
  year: 2018
  ident: ref_10
  article-title: Deep learning and model predictive control for self-tuning mode-locked lasers
  publication-title: J. Opt. Soc. Am. B
  doi: 10.1364/JOSAB.35.000617
– volume: 3
  start-page: 1007
  year: 1967
  ident: ref_33
  article-title: Time distribution of rainfall in heavy storms
  publication-title: Water Resour. Res.
  doi: 10.1029/WR003i004p01007
– ident: ref_17
  doi: 10.1109/EUROCON52738.2021.9535587
– ident: ref_26
– volume: 518
  start-page: 529
  year: 2015
  ident: ref_37
  article-title: Human-level control through deep reinforcement learning
  publication-title: Nature
  doi: 10.1038/nature14236
– volume: 26
  start-page: 03121001
  year: 2021
  ident: ref_3
  article-title: Climate Change and Rainfall Intensity–Duration–Frequency Curves: Overview of Science and Guidelines for Adaptation
  publication-title: J. Hydrol. Eng.
  doi: 10.1061/(ASCE)HE.1943-5584.0002122
– volume: 141
  start-page: 111401
  year: 2019
  ident: ref_11
  article-title: A Case Study of Deep Reinforcement Learning for Engineering Design: Application to Microfluidic Devices for Flow Sculpting
  publication-title: J. Mech. Des.
  doi: 10.1115/1.4044397
– volume: 22
  start-page: 281
  year: 2020
  ident: ref_7
  article-title: Optimisation of a fuzzy logic based local real-time control system for mitigation of sewer flooding using genetic algorithms
  publication-title: J. Hydroinform.
  doi: 10.2166/hydro.2019.058
– ident: ref_40
– volume: 5
  start-page: 411
  year: 2022
  ident: ref_27
  article-title: Safe learning in robotics: From learning-based control to safe reinforcement learning
  publication-title: Annu. Rev. Control Robot. Auton. Syst.
  doi: 10.1146/annurev-control-042920-020211
– volume: 140
  start-page: 103600
  year: 2020
  ident: ref_21
  article-title: Deep reinforcement learning for the real time control of stormwater systems
  publication-title: Adv. Water Resour.
  doi: 10.1016/j.advwatres.2020.103600
– ident: ref_1
– ident: ref_23
  doi: 10.3390/w12113222
– ident: ref_35
– volume: 27
  start-page: 1071
  year: 2020
  ident: ref_12
  article-title: A Survey of Deep Learning and Its Applications: A New Paradigm to Machine Learning
  publication-title: Arch. Comput. Methods Eng.
  doi: 10.1007/s11831-019-09344-w
– volume: 104
  start-page: 250
  year: 2013
  ident: ref_4
  article-title: Optimal operation scheduling of a pumping station with multiple pumps
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2012.10.028
– volume: 10
  start-page: 35942
  year: 2022
  ident: ref_25
  article-title: IoT-Based Water Management Systems: Survey and Future Research Direction
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2022.3163742
– volume: 32
  start-page: 4643
  year: 2018
  ident: ref_6
  article-title: Real-time operation of pumping systems for urban flood mitigation: Single-period vs. multi-period optimization
  publication-title: Water Resour. Manag.
  doi: 10.1007/s11269-018-2076-4
– ident: ref_9
  doi: 10.3390/w12020406
– ident: ref_31
– ident: ref_39
  doi: 10.3115/v1/D14-1179
– volume: 11
  start-page: 86645
  year: 2023
  ident: ref_28
  article-title: Intelligent Control of Multilegged Robot Smooth Motion: A Review
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2023.3304992
– volume: 143
  start-page: 04017024
  year: 2017
  ident: ref_34
  article-title: Investigating the Impact of Proactive Pump Operation and Capacity Expansion on Urban Drainage System Resilience
  publication-title: J. Water Resour. Plan. Manag.
  doi: 10.1061/(ASCE)WR.1943-5452.0000775
– volume: 223
  start-page: 118973
  year: 2022
  ident: ref_15
  article-title: The role of deep learning in urban water management: A critical review
  publication-title: Water Res.
  doi: 10.1016/j.watres.2022.118973
– volume: 147
  start-page: 04021045
  year: 2021
  ident: ref_24
  article-title: Deep Reinforcement Learning for Optimal Hydropower Reservoir Operation
  publication-title: J. Water Resour. Plan. Manag.
  doi: 10.1061/(ASCE)WR.1943-5452.0001409
– volume: 23
  start-page: 529
  year: 2021
  ident: ref_22
  article-title: Flood mitigation in coastal urban catchments using real-time stormwater infrastructure control and reinforcement learning
  publication-title: J. Hydroinform.
  doi: 10.2166/hydro.2020.080
– ident: ref_14
  doi: 10.3390/en15145005
– volume: 5
  start-page: 1
  year: 2020
  ident: ref_32
  article-title: PySWMM: The Python Interface to Stormwater Management Model (SWMM)
  publication-title: J. Open Source Softw.
  doi: 10.21105/joss.02292
– volume: 34
  start-page: 26
  year: 2017
  ident: ref_36
  article-title: Deep Reinforcement Learning: A Brief Survey
  publication-title: IEEE Signal Process. Mag.
  doi: 10.1109/MSP.2017.2743240
– ident: ref_38
– ident: ref_30
  doi: 10.3390/w15081528
– ident: ref_29
  doi: 10.3390/w15061131
– volume: 54
  start-page: 5633
  year: 2021
  ident: ref_13
  article-title: Application of deep learning algorithms in geotechnical engineering: A short critical review
  publication-title: Artif. Intell. Rev.
  doi: 10.1007/s10462-021-09967-1
– volume: 620
  start-page: 129435
  year: 2023
  ident: ref_18
  article-title: Flooding mitigation through safe & trustworthy reinforcement learning
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2023.129435
– volume: 9
  start-page: 860
  year: 2023
  ident: ref_5
  article-title: Optimization of Integrated Reservoir for Supporting the Raw Water Supply
  publication-title: Civ. Eng. J.
  doi: 10.28991/CEJ-2023-09-04-07
– ident: ref_2
  doi: 10.1038/s41598-020-70816-2
– volume: 8
  start-page: 151938
  year: 2020
  ident: ref_16
  article-title: Real-Time Prediction of the Water Accumulation Process of Urban Stormy Accumulation Points Based on Deep Learning
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.3017277
– volume: 144
  start-page: 110543
  year: 2023
  ident: ref_19
  article-title: Deep reinforcement learning for optimal rescue path planning in uncertain and complex urban pluvial flood scenarios
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2023.110543
– ident: ref_41
  doi: 10.1109/ALLERTON.2018.8636075
SSID ssj0000498850
Score 2.3521578
Snippet Rainwater pumping stations located near urban centers or agricultural areas help prevent flooding by activating an appropriate number of pumps with varying...
SourceID proquest
gale
crossref
SourceType Aggregation Database
Index Database
StartPage 3398
SubjectTerms Algorithms
Artificial intelligence
Climate change
Deep learning
Drainage
Dynamic programming
Energy consumption
Flood control
Floods
Heuristic
Linear programming
Machine learning
Maintenance costs
Optimization
Pumping stations
Rain
Retention
Storm damage
Stormwater management
Technology application
Title Deep Reinforcement Learning for Multi-Objective Real-Time Pump Operation in Rainwater Pumping Stations
URI https://www.proquest.com/docview/3144154250
Volume 16
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1bS8MwFD7M-aIP4hWncwQRfCqmTdulDyLzOnzYxlTYW0nSRBTp6qz49z1JWy8gvpUmtPAlOedLcs53AI7QyQXKUKv8GAZeKJPYSxgVnjHMN5GIKTdO7XMUDx_C21k0a8GoyYWxYZWNTXSGOpsre0Z-whzzxxlGz4pXz1aNsrerTQkNUZdWyE6dxNgSLKNJjmgbls-vRpPp16kL8mHOI1pJDDHc7598-EgA8In_ckx_m2fnc67XYa0mi2RQje4GtHS-Cas_JAS3wFxqXZCpdgKoyp31kVoz9ZHgK-IybL2xfK4sG3YVL55N_CATHEkyLnQ1B8hTTuxlzweSz4Vrs1-4q27q37bh4frq_mLo1bUTPBUkfmmzw5VBcqaSzO8rxmIRxLjaZJj4WvelFKzPMh7LCPkXl9xq-OiIZYJSnVGDnGEH2vk817tAJI0UpyaSOjYh04prJkIhcC8klR8o3YHDBri0qCQyUtxaWHTTL3Q7cGwhTS0a5UIoUUf_4y-sAFU64IGrF5rEHeg2qKf1enpLv0d_7__mfVgJkHZUASddaJeLd32AtKGUvXou9GDpZuZ_ArH_w8w
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3LSsQwFL3IuFAX4hPHZxDFVTFN2k66EPHJ-BrFB7irSZqIIuM4MzL4c36bN2nrA8Sdu9KWFk5Pc09ucs8FWMMgx7SlzvkxYkGk0iRIOZWBtTy0sUyosN7ts5U0b6Lj2_h2CN6rWhi3rbIaE_1AnT9rlyPf5F75I8PoduclcF2j3Opq1UJDlq0V8i1vMVYWdpyYtwFO4XpbR_v4vdcZOzy43msGZZeBQLM07Ls6am1Rxug0Dxua80SyBHmpojQ0pqGU5A2ei0TFqFSEEs7txsQ8l5SanFrmjA8wBAxHLoFSg-Hdg9bF5WeWB_W3EDEtLI04T-nmIETBgUfiRyD8PRz4GHc4AeOlOCU7BZsmYci0p2Dsm2XhNNh9Yzrk0njDVe1zi6T0aL0neIr4it7gXD0WIyneKp8CV2hCLpA55LxjCs6RhzZxi0sDFLtdf8094arYGdCbgZt_QXEWau3ntpkDomisBbWxMomNuNHCcBlJiXMvpUOmTR1WK-CyTmHJkeFUxqGbfaJbhw0HaebQ6HellmW1Ab7CGV5lO4L5_qRpUofFCvWs_H972Rfb5v--vAIjzeuz0-z0qHWyAKMMJU-x2WURav3uq1lCydJXyyUvCNz9NxU_AG4m_mg
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Ra9swED5KCmV7GFu3snTtJsbGnkxkyXbkh1LapSFdRhK6FfLmSrJUWkaaJR5hf3G_qidZ7loofcubsYwNp8-676S77wA-oZNj2lKn_JiwKFF5FuWcyshaHttUZlRYr_Y5ygbnybdpOt2Af00tjEurbNZEv1CXN9rtkXe4Z_6IMNqxIS1i0usfzn9HroOUO2lt2mnI0GahPPByY6HIY2j-rjCcWx6c9nDuPzPWP_n5dRCFjgORZnlcuZpqbZHS6LyMu5rzTLIMMaqSPDamq5TkXV6KTKXIWoQSTvnGpLyUlJqSWuZEENAdbHbR62MguHl8Mpqc3e34IBcXIqW1vBHnOe2sYiQfeCUeOMXHXYP3d_2X8CIQVXJUI-sVbJjZNjy_J1_4GmzPmDk5M158Vft9RhL0Wi8J3iK-ujcaq-t6VcVH5a_IFZ2QCaKIjOemxh-5mhF30LRC4rvwY-4NP-osgeUbOF-LFXegNbuZmbdAFE21oDZVJrMJN1oYLhMpMQ5TOmbatOFjY7hiXstzFBjWOOsWd9Ztwxdn0sJZo1pILUPlAX7CiV8VR4L5XqV51oa9xupF-JeXxX_k7T49_AG2EJLF99PR8B08Y8h-6ryXPWhViz9mH9lLpd4HWBC4WDcSbwEjegK7
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Deep+Reinforcement+Learning+for+Multi-Objective+Real-Time+Pump+Operation+in+Rainwater+Pumping+Stations&rft.jtitle=Water+%28Basel%29&rft.au=Jin-Gul%2C+Joo&rft.au=Jeong%2C+In-Seon&rft.au=Seung-Ho%2C+Kang&rft.date=2024-12-01&rft.pub=MDPI+AG&rft.eissn=2073-4441&rft.volume=16&rft.issue=23&rft.spage=3398&rft_id=info:doi/10.3390%2Fw16233398&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2073-4441&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2073-4441&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2073-4441&client=summon