Deep Reinforcement Learning for Multi-Objective Real-Time Pump Operation in Rainwater Pumping Stations
Rainwater pumping stations located near urban centers or agricultural areas help prevent flooding by activating an appropriate number of pumps with varying capacities based on real-time rainwater inflow. However, relying solely on rule-based pump operations that monitor only basin water levels is of...
Saved in:
Published in | Water (Basel) Vol. 16; no. 23; p. 3398 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Basel
MDPI AG
01.12.2024
|
Subjects | |
Online Access | Get full text |
ISSN | 2073-4441 2073-4441 |
DOI | 10.3390/w16233398 |
Cover
Abstract | Rainwater pumping stations located near urban centers or agricultural areas help prevent flooding by activating an appropriate number of pumps with varying capacities based on real-time rainwater inflow. However, relying solely on rule-based pump operations that monitor only basin water levels is often insufficient for effective control. In addition to maintaining a low maximum water level to prevent flooding, pump operation at rainwater stations also requires minimizing the number of pump on/off switches. Reducing pump switch frequency lowers the likelihood of mechanical failure and thus decreases maintenance costs. This paper proposes a real-time pump operation method for rainwater pumping stations using Deep Reinforcement Learning (DRL) to meet these operational requirements simultaneously, based only on currently observable information such as rainfall, inflow, storage volume, basin water level, and outflow. Simulated rainfall data with various return periods and durations were generated using the Huff method to train the model. The Storm Water Management Model (SWMM), configured to simulate the Gasan rainwater pumping station located in Geumcheon-gu, Seoul, South Korea, was used to conduct experiments. The performance of the proposed DRL model was then compared with that of the rule-based pump operation currently used at the station. |
---|---|
AbstractList | Rainwater pumping stations located near urban centers or agricultural areas help prevent flooding by activating an appropriate number of pumps with varying capacities based on real-time rainwater inflow. However, relying solely on rule-based pump operations that monitor only basin water levels is often insufficient for effective control. In addition to maintaining a low maximum water level to prevent flooding, pump operation at rainwater stations also requires minimizing the number of pump on/off switches. Reducing pump switch frequency lowers the likelihood of mechanical failure and thus decreases maintenance costs. This paper proposes a real-time pump operation method for rainwater pumping stations using Deep Reinforcement Learning (DRL) to meet these operational requirements simultaneously, based only on currently observable information such as rainfall, inflow, storage volume, basin water level, and outflow. Simulated rainfall data with various return periods and durations were generated using the Huff method to train the model. The Storm Water Management Model (SWMM), configured to simulate the Gasan rainwater pumping station located in Geumcheon-gu, Seoul, South Korea, was used to conduct experiments. The performance of the proposed DRL model was then compared with that of the rule-based pump operation currently used at the station. |
Audience | Academic |
Author | Kang, Seung-Ho Joo, Jin-Gul Jeong, In-Seon |
Author_xml | – sequence: 1 givenname: Jin-Gul surname: Joo fullname: Joo, Jin-Gul – sequence: 2 givenname: In-Seon surname: Jeong fullname: Jeong, In-Seon – sequence: 3 givenname: Seung-Ho surname: Kang fullname: Kang, Seung-Ho |
BookMark | eNpNUMtOwzAQtFCRKKUH_sASJw4pfuRhH6vylIqKSjlHjrOpXCVOcBwq_h63RYjdw652Z2a1c4lGtrWA0DUlM84ludvTlPHQiTM0ZiTjURzHdPSvv0DTvt-RELEUIiFjVN0DdHgNxlat09CA9XgJylljtziM8OtQexOtih1ob74gQFUdbUwD-G1oOrzqwClvWouNxWtl7F55cMfdQeHdH5f9FTqvVN3D9LdO0Mfjw2bxHC1XTy-L-TLSTFIfCSZ0RSXXsqSZ5jxVLOVUFrGkAFlRKJ7xUqRFkjAmCiEzRiHhpSIESlIxxifo5qTbufZzgN7nu3ZwNpzMOQ0GJDFLSEDNTqitqiE_vO6d0iFLaIwOnlYmzOeCEcKIkGkg3J4I2rV976DKO2ca5b5zSvKD9fmf9fwHApB2dQ |
Cites_doi | 10.1016/j.jhydrol.2020.124571 10.1016/j.watres.2023.120912 10.1364/JOSAB.35.000617 10.1029/WR003i004p01007 10.1109/EUROCON52738.2021.9535587 10.1038/nature14236 10.1061/(ASCE)HE.1943-5584.0002122 10.1115/1.4044397 10.2166/hydro.2019.058 10.1146/annurev-control-042920-020211 10.1016/j.advwatres.2020.103600 10.3390/w12113222 10.1007/s11831-019-09344-w 10.1016/j.apenergy.2012.10.028 10.1109/ACCESS.2022.3163742 10.1007/s11269-018-2076-4 10.3390/w12020406 10.3115/v1/D14-1179 10.1109/ACCESS.2023.3304992 10.1061/(ASCE)WR.1943-5452.0000775 10.1016/j.watres.2022.118973 10.1061/(ASCE)WR.1943-5452.0001409 10.2166/hydro.2020.080 10.3390/en15145005 10.21105/joss.02292 10.1109/MSP.2017.2743240 10.3390/w15081528 10.3390/w15061131 10.1007/s10462-021-09967-1 10.1016/j.jhydrol.2023.129435 10.28991/CEJ-2023-09-04-07 10.1038/s41598-020-70816-2 10.1109/ACCESS.2020.3017277 10.1016/j.asoc.2023.110543 10.1109/ALLERTON.2018.8636075 |
ContentType | Journal Article |
Copyright | COPYRIGHT 2024 MDPI AG 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: COPYRIGHT 2024 MDPI AG – notice: 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | AAYXX CITATION ABUWG AFKRA AZQEC BENPR CCPQU DWQXO PHGZM PHGZT PIMPY PKEHL PQEST PQQKQ PQUKI PRINS |
DOI | 10.3390/w16233398 |
DatabaseName | CrossRef ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central ProQuest One Community College ProQuest Central Korea Proquest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China |
DatabaseTitle | CrossRef Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest One Academic Eastern Edition ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Academic UKI Edition ProQuest Central Korea ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) |
DatabaseTitleList | CrossRef Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: BENPR name: ProQuest Central url: http://www.proquest.com/pqcentral?accountid=15518 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2073-4441 |
ExternalDocumentID | A820020896 10_3390_w16233398 |
GeographicLocations | South Korea |
GeographicLocations_xml | – name: South Korea |
GroupedDBID | 2XV 5VS 7XC 8CJ 8FE 8FH A8Z AADQD AAFWJ AAHBH AAYXX ADBBV ADMLS AENEX AFKRA AFZYC ALMA_UNASSIGNED_HOLDINGS BCNDV BENPR CCPQU CITATION D1J E3Z ECGQY EDH GX1 IAO ITC KQ8 MODMG M~E OK1 OZF PHGZM PHGZT PIMPY PROAC PMFND ABUWG AZQEC DWQXO PKEHL PQEST PQQKQ PQUKI PRINS |
ID | FETCH-LOGICAL-c291t-828cf193c9d17c336a26319b491ee7bba373d86b55228b89721e53da00ed0f223 |
IEDL.DBID | BENPR |
ISSN | 2073-4441 |
IngestDate | Mon Jun 30 13:41:01 EDT 2025 Tue Jun 10 21:05:19 EDT 2025 Tue Jul 01 02:41:07 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 23 |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c291t-828cf193c9d17c336a26319b491ee7bba373d86b55228b89721e53da00ed0f223 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
OpenAccessLink | https://www.proquest.com/docview/3144154250?pq-origsite=%requestingapplication%&accountid=15518 |
PQID | 3144154250 |
PQPubID | 2032318 |
ParticipantIDs | proquest_journals_3144154250 gale_infotracacademiconefile_A820020896 crossref_primary_10_3390_w16233398 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-12-01 |
PublicationDateYYYYMMDD | 2024-12-01 |
PublicationDate_xml | – month: 12 year: 2024 text: 2024-12-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Basel |
PublicationPlace_xml | – name: Basel |
PublicationTitle | Water (Basel) |
PublicationYear | 2024 |
Publisher | MDPI AG |
Publisher_xml | – name: MDPI AG |
References | McDonnell (ref_32) 2020; 5 ref_14 Tian (ref_20) 2024; 249 ref_35 Xu (ref_24) 2021; 147 Mullapudi (ref_21) 2020; 140 ref_31 Martel (ref_3) 2021; 26 Brunke (ref_27) 2022; 5 ref_30 Fu (ref_15) 2022; 223 ref_17 ref_39 ref_38 Zhang (ref_13) 2021; 54 Bachtiar (ref_5) 2023; 9 Baumeister (ref_10) 2018; 35 Zhao (ref_28) 2023; 11 Jafari (ref_6) 2018; 32 Arulkumaran (ref_36) 2017; 34 Dargan (ref_12) 2020; 27 Bowes (ref_22) 2021; 23 Lee (ref_11) 2019; 141 ref_23 Zhuan (ref_4) 2013; 104 Mounce (ref_7) 2020; 22 Ismail (ref_25) 2022; 10 Wu (ref_16) 2020; 8 ref_41 ref_40 ref_1 ref_2 Sadler (ref_8) 2020; 583 ref_29 ref_26 Lee (ref_34) 2017; 143 ref_9 Tian (ref_18) 2023; 620 Li (ref_19) 2023; 144 Huff (ref_33) 1967; 3 Mnih (ref_37) 2015; 518 |
References_xml | – volume: 583 start-page: 124571 year: 2020 ident: ref_8 article-title: Exploring real-time control of stormwater systems for mitigating flood risk due to sea level rise publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2020.124571 – volume: 249 start-page: 120912 year: 2024 ident: ref_20 article-title: Improving the interpretability of deep reinforcement learning in urban drainage system operation publication-title: Water Res. doi: 10.1016/j.watres.2023.120912 – volume: 35 start-page: 617 year: 2018 ident: ref_10 article-title: Deep learning and model predictive control for self-tuning mode-locked lasers publication-title: J. Opt. Soc. Am. B doi: 10.1364/JOSAB.35.000617 – volume: 3 start-page: 1007 year: 1967 ident: ref_33 article-title: Time distribution of rainfall in heavy storms publication-title: Water Resour. Res. doi: 10.1029/WR003i004p01007 – ident: ref_17 doi: 10.1109/EUROCON52738.2021.9535587 – ident: ref_26 – volume: 518 start-page: 529 year: 2015 ident: ref_37 article-title: Human-level control through deep reinforcement learning publication-title: Nature doi: 10.1038/nature14236 – volume: 26 start-page: 03121001 year: 2021 ident: ref_3 article-title: Climate Change and Rainfall Intensity–Duration–Frequency Curves: Overview of Science and Guidelines for Adaptation publication-title: J. Hydrol. Eng. doi: 10.1061/(ASCE)HE.1943-5584.0002122 – volume: 141 start-page: 111401 year: 2019 ident: ref_11 article-title: A Case Study of Deep Reinforcement Learning for Engineering Design: Application to Microfluidic Devices for Flow Sculpting publication-title: J. Mech. Des. doi: 10.1115/1.4044397 – volume: 22 start-page: 281 year: 2020 ident: ref_7 article-title: Optimisation of a fuzzy logic based local real-time control system for mitigation of sewer flooding using genetic algorithms publication-title: J. Hydroinform. doi: 10.2166/hydro.2019.058 – ident: ref_40 – volume: 5 start-page: 411 year: 2022 ident: ref_27 article-title: Safe learning in robotics: From learning-based control to safe reinforcement learning publication-title: Annu. Rev. Control Robot. Auton. Syst. doi: 10.1146/annurev-control-042920-020211 – volume: 140 start-page: 103600 year: 2020 ident: ref_21 article-title: Deep reinforcement learning for the real time control of stormwater systems publication-title: Adv. Water Resour. doi: 10.1016/j.advwatres.2020.103600 – ident: ref_1 – ident: ref_23 doi: 10.3390/w12113222 – ident: ref_35 – volume: 27 start-page: 1071 year: 2020 ident: ref_12 article-title: A Survey of Deep Learning and Its Applications: A New Paradigm to Machine Learning publication-title: Arch. Comput. Methods Eng. doi: 10.1007/s11831-019-09344-w – volume: 104 start-page: 250 year: 2013 ident: ref_4 article-title: Optimal operation scheduling of a pumping station with multiple pumps publication-title: Appl. Energy doi: 10.1016/j.apenergy.2012.10.028 – volume: 10 start-page: 35942 year: 2022 ident: ref_25 article-title: IoT-Based Water Management Systems: Survey and Future Research Direction publication-title: IEEE Access doi: 10.1109/ACCESS.2022.3163742 – volume: 32 start-page: 4643 year: 2018 ident: ref_6 article-title: Real-time operation of pumping systems for urban flood mitigation: Single-period vs. multi-period optimization publication-title: Water Resour. Manag. doi: 10.1007/s11269-018-2076-4 – ident: ref_9 doi: 10.3390/w12020406 – ident: ref_31 – ident: ref_39 doi: 10.3115/v1/D14-1179 – volume: 11 start-page: 86645 year: 2023 ident: ref_28 article-title: Intelligent Control of Multilegged Robot Smooth Motion: A Review publication-title: IEEE Access doi: 10.1109/ACCESS.2023.3304992 – volume: 143 start-page: 04017024 year: 2017 ident: ref_34 article-title: Investigating the Impact of Proactive Pump Operation and Capacity Expansion on Urban Drainage System Resilience publication-title: J. Water Resour. Plan. Manag. doi: 10.1061/(ASCE)WR.1943-5452.0000775 – volume: 223 start-page: 118973 year: 2022 ident: ref_15 article-title: The role of deep learning in urban water management: A critical review publication-title: Water Res. doi: 10.1016/j.watres.2022.118973 – volume: 147 start-page: 04021045 year: 2021 ident: ref_24 article-title: Deep Reinforcement Learning for Optimal Hydropower Reservoir Operation publication-title: J. Water Resour. Plan. Manag. doi: 10.1061/(ASCE)WR.1943-5452.0001409 – volume: 23 start-page: 529 year: 2021 ident: ref_22 article-title: Flood mitigation in coastal urban catchments using real-time stormwater infrastructure control and reinforcement learning publication-title: J. Hydroinform. doi: 10.2166/hydro.2020.080 – ident: ref_14 doi: 10.3390/en15145005 – volume: 5 start-page: 1 year: 2020 ident: ref_32 article-title: PySWMM: The Python Interface to Stormwater Management Model (SWMM) publication-title: J. Open Source Softw. doi: 10.21105/joss.02292 – volume: 34 start-page: 26 year: 2017 ident: ref_36 article-title: Deep Reinforcement Learning: A Brief Survey publication-title: IEEE Signal Process. Mag. doi: 10.1109/MSP.2017.2743240 – ident: ref_38 – ident: ref_30 doi: 10.3390/w15081528 – ident: ref_29 doi: 10.3390/w15061131 – volume: 54 start-page: 5633 year: 2021 ident: ref_13 article-title: Application of deep learning algorithms in geotechnical engineering: A short critical review publication-title: Artif. Intell. Rev. doi: 10.1007/s10462-021-09967-1 – volume: 620 start-page: 129435 year: 2023 ident: ref_18 article-title: Flooding mitigation through safe & trustworthy reinforcement learning publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2023.129435 – volume: 9 start-page: 860 year: 2023 ident: ref_5 article-title: Optimization of Integrated Reservoir for Supporting the Raw Water Supply publication-title: Civ. Eng. J. doi: 10.28991/CEJ-2023-09-04-07 – ident: ref_2 doi: 10.1038/s41598-020-70816-2 – volume: 8 start-page: 151938 year: 2020 ident: ref_16 article-title: Real-Time Prediction of the Water Accumulation Process of Urban Stormy Accumulation Points Based on Deep Learning publication-title: IEEE Access doi: 10.1109/ACCESS.2020.3017277 – volume: 144 start-page: 110543 year: 2023 ident: ref_19 article-title: Deep reinforcement learning for optimal rescue path planning in uncertain and complex urban pluvial flood scenarios publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2023.110543 – ident: ref_41 doi: 10.1109/ALLERTON.2018.8636075 |
SSID | ssj0000498850 |
Score | 2.3521578 |
Snippet | Rainwater pumping stations located near urban centers or agricultural areas help prevent flooding by activating an appropriate number of pumps with varying... |
SourceID | proquest gale crossref |
SourceType | Aggregation Database Index Database |
StartPage | 3398 |
SubjectTerms | Algorithms Artificial intelligence Climate change Deep learning Drainage Dynamic programming Energy consumption Flood control Floods Heuristic Linear programming Machine learning Maintenance costs Optimization Pumping stations Rain Retention Storm damage Stormwater management Technology application |
Title | Deep Reinforcement Learning for Multi-Objective Real-Time Pump Operation in Rainwater Pumping Stations |
URI | https://www.proquest.com/docview/3144154250 |
Volume | 16 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1bS8MwFD7M-aIP4hWncwQRfCqmTdulDyLzOnzYxlTYW0nSRBTp6qz49z1JWy8gvpUmtPAlOedLcs53AI7QyQXKUKv8GAZeKJPYSxgVnjHMN5GIKTdO7XMUDx_C21k0a8GoyYWxYZWNTXSGOpsre0Z-whzzxxlGz4pXz1aNsrerTQkNUZdWyE6dxNgSLKNJjmgbls-vRpPp16kL8mHOI1pJDDHc7598-EgA8In_ckx_m2fnc67XYa0mi2RQje4GtHS-Cas_JAS3wFxqXZCpdgKoyp31kVoz9ZHgK-IybL2xfK4sG3YVL55N_CATHEkyLnQ1B8hTTuxlzweSz4Vrs1-4q27q37bh4frq_mLo1bUTPBUkfmmzw5VBcqaSzO8rxmIRxLjaZJj4WvelFKzPMh7LCPkXl9xq-OiIZYJSnVGDnGEH2vk817tAJI0UpyaSOjYh04prJkIhcC8klR8o3YHDBri0qCQyUtxaWHTTL3Q7cGwhTS0a5UIoUUf_4y-sAFU64IGrF5rEHeg2qKf1enpLv0d_7__mfVgJkHZUASddaJeLd32AtKGUvXou9GDpZuZ_ArH_w8w |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3LSsQwFL3IuFAX4hPHZxDFVTFN2k66EPHJ-BrFB7irSZqIIuM4MzL4c36bN2nrA8Sdu9KWFk5Pc09ucs8FWMMgx7SlzvkxYkGk0iRIOZWBtTy0sUyosN7ts5U0b6Lj2_h2CN6rWhi3rbIaE_1AnT9rlyPf5F75I8PoduclcF2j3Opq1UJDlq0V8i1vMVYWdpyYtwFO4XpbR_v4vdcZOzy43msGZZeBQLM07Ls6am1Rxug0Dxua80SyBHmpojQ0pqGU5A2ei0TFqFSEEs7txsQ8l5SanFrmjA8wBAxHLoFSg-Hdg9bF5WeWB_W3EDEtLI04T-nmIETBgUfiRyD8PRz4GHc4AeOlOCU7BZsmYci0p2Dsm2XhNNh9Yzrk0njDVe1zi6T0aL0neIr4it7gXD0WIyneKp8CV2hCLpA55LxjCs6RhzZxi0sDFLtdf8094arYGdCbgZt_QXEWau3ntpkDomisBbWxMomNuNHCcBlJiXMvpUOmTR1WK-CyTmHJkeFUxqGbfaJbhw0HaebQ6HellmW1Ab7CGV5lO4L5_qRpUofFCvWs_H972Rfb5v--vAIjzeuz0-z0qHWyAKMMJU-x2WURav3uq1lCydJXyyUvCNz9NxU_AG4m_mg |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Ra9swED5KCmV7GFu3snTtJsbGnkxkyXbkh1LapSFdRhK6FfLmSrJUWkaaJR5hf3G_qidZ7loofcubsYwNp8-676S77wA-oZNj2lKn_JiwKFF5FuWcyshaHttUZlRYr_Y5ygbnybdpOt2Af00tjEurbNZEv1CXN9rtkXe4Z_6IMNqxIS1i0usfzn9HroOUO2lt2mnI0GahPPByY6HIY2j-rjCcWx6c9nDuPzPWP_n5dRCFjgORZnlcuZpqbZHS6LyMu5rzTLIMMaqSPDamq5TkXV6KTKXIWoQSTvnGpLyUlJqSWuZEENAdbHbR62MguHl8Mpqc3e34IBcXIqW1vBHnOe2sYiQfeCUeOMXHXYP3d_2X8CIQVXJUI-sVbJjZNjy_J1_4GmzPmDk5M158Vft9RhL0Wi8J3iK-ujcaq-t6VcVH5a_IFZ2QCaKIjOemxh-5mhF30LRC4rvwY-4NP-osgeUbOF-LFXegNbuZmbdAFE21oDZVJrMJN1oYLhMpMQ5TOmbatOFjY7hiXstzFBjWOOsWd9Ztwxdn0sJZo1pILUPlAX7CiV8VR4L5XqV51oa9xupF-JeXxX_k7T49_AG2EJLF99PR8B08Y8h-6ryXPWhViz9mH9lLpd4HWBC4WDcSbwEjegK7 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Deep+Reinforcement+Learning+for+Multi-Objective+Real-Time+Pump+Operation+in+Rainwater+Pumping+Stations&rft.jtitle=Water+%28Basel%29&rft.au=Jin-Gul%2C+Joo&rft.au=Jeong%2C+In-Seon&rft.au=Seung-Ho%2C+Kang&rft.date=2024-12-01&rft.pub=MDPI+AG&rft.eissn=2073-4441&rft.volume=16&rft.issue=23&rft.spage=3398&rft_id=info:doi/10.3390%2Fw16233398&rft.externalDBID=HAS_PDF_LINK |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2073-4441&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2073-4441&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2073-4441&client=summon |