A Splitting Method for Numerical Simulation of Free Surface Flows of Incompressible Fluids with Surface Tension
The paper studies a splitting method for the numerical time-integration of the system of partial differential equations describing the motion of viscous incompressible fluid with free boundary subject to surface tension forces. The method splits one time step into a semi-Lagrangian treatment of the...
Saved in:
Published in | Journal of computational methods in applied mathematics Vol. 15; no. 1; pp. 59 - 77 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
De Gruyter
01.01.2015
|
Subjects | |
Online Access | Get full text |
ISSN | 1609-4840 1609-9389 |
DOI | 10.1515/cmam-2014-0025 |
Cover
Abstract | The paper studies a splitting method for the numerical time-integration of the system of partial differential equations describing the motion of viscous incompressible fluid with free boundary subject to surface tension forces.
The method splits one time step into a semi-Lagrangian treatment of the surface advection and fluid inertia, an implicit update of viscous terms and the projection of velocity into the subspace of divergence-free functions. We derive several conservation properties of the method and a suitable energy estimate for numerical solutions.
Under certain assumptions on the smoothness of the free surface and its evolution, this leads to a stability result for the numerical method. Efficient computations of free surface flows of incompressible viscous fluids need several other ingredients, such as dynamically adapted meshes, surface reconstruction and level set function re-initialization.
These enabling techniques are discussed in the paper as well. The properties of the method are illustrated with a few numerical examples. These examples include analytical tests and the oscillating droplet benchmark problem. |
---|---|
AbstractList | The paper studies a splitting method for the numerical time-integration of the system of partial differential equations describing the motion of viscous incompressible fluid with free boundary subject to surface tension forces.
The method splits one time step into a semi-Lagrangian treatment of the surface advection and fluid inertia, an implicit update of viscous terms and the projection of velocity into the subspace of divergence-free functions. We derive several conservation properties of the method and a suitable energy estimate for numerical solutions.
Under certain assumptions on the smoothness of the free surface and its evolution, this leads to a stability result for the numerical method. Efficient computations of free surface flows of incompressible viscous fluids need several other ingredients, such as dynamically adapted meshes, surface reconstruction and level set function re-initialization.
These enabling techniques are discussed in the paper as well. The properties of the method are illustrated with a few numerical examples. These examples include analytical tests and the oscillating droplet benchmark problem. |
Author | Nikitin, Kirill D. Terekhov, Kirill M. Olshanskii, Maxim A. Vassilevski, Yuri V. |
Author_xml | – sequence: 1 givenname: Kirill D. surname: Nikitin fullname: Nikitin, Kirill D. email: nikitin.kira@gmail.com organization: Institute of Numerical Mathematics, Russian Academy of Sciences, Gubkin str. , 119333 Moscow, Russia – sequence: 2 givenname: Maxim A. surname: Olshanskii fullname: Olshanskii, Maxim A. email: molshan@math.uh.edu organization: Department of Mathematics, University of Houston, 41 PGH Building, Houston, TX 77204-3008, USA – sequence: 3 givenname: Kirill M. surname: Terekhov fullname: Terekhov, Kirill M. email: kirill.terehov@gmail.com organization: Department of Energy Resources Engineering, Stanford University, 67 Panama Street, Stanford, CA 94305-2220, USA; and Institute of Numerical Mathematics, Russian Academy of Sciences, Moscow, Russia – sequence: 4 givenname: Yuri V. surname: Vassilevski fullname: Vassilevski, Yuri V. email: yuri.vassilevski@gmail.com organization: Institute of Numerical Mathematics, Russian Academy of Sciences, Gubkin str. 8, 19333 Moscow; and Moscow Institute of Physics and Technology, Institutskii Lane 9, 141700, Dolgoprudny, Russia |
BookMark | eNp1kEFrAjEQhUOxUGu99pw_sDaT3bgJPYnUVrDtQXteYjarKbsbSbKI_76bKj0UhIEZHvO9Yd49GrS21Qg9ApkAA_akGtkklECWEELZDRrClIhEpFwMLnPGM3KHxt6bLSGcAs1yGCI7w-tDbUIw7Q6_67C3Ja6swx9do51RssZr03S1DMa22FZ44bTG685VUmm8qO3RR3XZKtscnI7mddQ7U3p8NGH_t7vRre89HtBtJWuvx5c-Ql-Ll838LVl9vi7ns1WiqICQ5EIyBX3xNM-3ULEpSJ1zvp0ykMB5DsBlKYCynJUlhRIyzvszQrBsSylLR2hy9lXOeu90VRycaaQ7FUCKmFgREytiYkVMrAeyf4Ay4fft4KSpr2PPZ-wo66BdqXeuO_VD8W071_YfXgGjJNIfwYqGHA |
CitedBy_id | crossref_primary_10_1016_j_jcp_2019_07_028 crossref_primary_10_1016_j_aml_2018_07_005 crossref_primary_10_1134_S0965542522060148 crossref_primary_10_1134_S0001433820030056 crossref_primary_10_1016_j_compfluid_2017_02_007 crossref_primary_10_1515_rnam_2021_0014 crossref_primary_10_1016_j_jnnfm_2016_12_001 |
ContentType | Journal Article |
DBID | AAYXX CITATION |
DOI | 10.1515/cmam-2014-0025 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Mathematics |
EISSN | 1609-9389 |
EndPage | 77 |
ExternalDocumentID | 10_1515_cmam_2014_0025 10_1515_cmam_2014_002515159 |
GrantInformation_xml | – fundername: RFBR grantid: 12-01-00283, 12-01-33084, 14-01-00830 – fundername: Russian President grant grantid: MK 7159.2013.1 – fundername: Russian Science Foundation grantid: 14-11-00434 |
GroupedDBID | 0R~ 2WC 4.4 AAAEU AAAVF AACIX AADQG AAFPC AAGVJ AAILP AAJBH AAKDD AALGR AAONY AAOUV AAPJK AAQCX AARVR AASOL AASQH AAWFC AAXCG ABAOT ABAQN ABFKT ABIQR ABJNI ABMBZ ABPLS ABRQL ABSOE ABUVI ABWLS ABXMZ ABYKJ ACDEB ACEFL ACGFS ACHNZ ACIPV ACIWK ACMKP ACONX ACPMA ACUND ACXLN ACZBO ADALX ADEQT ADGQD ADGYE ADJVZ ADNPR ADOZN AECWL AEDGQ AEGVQ AEICA AEJQW AEKEB AEMOE AENEX AEQDQ AEQLX AERZL AEXIE AFBAA AFBDD AFBQV AFCXV AFGNR AFQUK AFYRI AGBEV AGQYU AHCWZ AHVWV AHXUK AIERV AIKXB AIWOI AJATJ AKXKS ALMA_UNASSIGNED_HOLDINGS ALUKF ALWYM AMAVY AMVHM ASYPN AZMOX BAKPI BBCWN BCIFA BLHJL CFGNV DASCH DSRVY EBS EJD FSTRU HZ~ IY9 J9A K.~ KDIRW O9- P2P QD8 SA. SLJYH TR2 UK5 WTRAM AAYXX CITATION |
ID | FETCH-LOGICAL-c291t-79a5c15c18377b1f561ae788b651a1887118ad912575dd21d1488ace9954b2253 |
ISSN | 1609-4840 |
IngestDate | Thu Apr 24 23:11:43 EDT 2025 Wed Oct 01 03:48:24 EDT 2025 Sat Sep 06 17:04:55 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c291t-79a5c15c18377b1f561ae788b651a1887118ad912575dd21d1488ace9954b2253 |
PageCount | 19 |
ParticipantIDs | crossref_primary_10_1515_cmam_2014_0025 crossref_citationtrail_10_1515_cmam_2014_0025 walterdegruyter_journals_10_1515_cmam_2014_002515159 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2015-1-1 |
PublicationDateYYYYMMDD | 2015-01-01 |
PublicationDate_xml | – month: 01 year: 2015 text: 2015-1-1 day: 01 |
PublicationDecade | 2010 |
PublicationTitle | Journal of computational methods in applied mathematics |
PublicationYear | 2015 |
Publisher | De Gruyter |
Publisher_xml | – name: De Gruyter |
SSID | ssib008212471 ssj0033936 ssib006285865 |
Score | 2.0005622 |
Snippet | The paper studies a splitting method for the numerical time-integration of the system of partial differential equations describing the motion of viscous... |
SourceID | crossref walterdegruyter |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 59 |
SubjectTerms | 65M06 65M12 76D45 76M20 conservation properties Free surface flow projection method stability estimate surface tension |
Title | A Splitting Method for Numerical Simulation of Free Surface Flows of Incompressible Fluids with Surface Tension |
URI | https://www.degruyter.com/doi/10.1515/cmam-2014-0025 |
Volume | 15 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
journalDatabaseRights | – providerCode: PRVAZK databaseName: De Gruyter Complete Journal Package 2023 customDbUrl: eissn: 1609-9389 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0033936 issn: 1609-4840 databaseCode: AGBEV dateStart: 20010120 isFulltext: true titleUrlDefault: https://www.degruyterbrill.com providerName: Walter de Gruyter |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEF6F9AKHiqcoFLQHJA6RQ_3c9dFAQwVKLk2jcrL8WFOrdoycuC38YH4Hsw-vnaSVoFJkRevdVeL5PPPN7uwMQu8IcPiE0MjwmRkbwG-PjBgcOL5TaAPdJRbN-DrkdOadnDlfz93zweBPL2qpWcfj5Pet50ruI1VoA7nyU7L_IVk9KTTAd5AvXEHCcP0nGQejU-CQMnJ5KkpBi6jBWSO3YYrRaV6q8lycFE5qxkBT1FkEL_OkqK5X8iAJDysX4bD8FNWkaPJUnXlr-855lLuS3y6RTURhiHZRUZakFlG2kWK4pU4Nqwn8LL_MVfqCb3mdF6B7x9167-oi4vW0c3mY6CYvR4G-O2c1u7yornpDp_rmAlwBUHNXqhj396bOR4txf2XDdLdWNj7Da1I3v9ooZamfPV4Uj8oMT2PWtfm2rESklbq7A16poVX-cWnrZQWZHSviioQbSRmVADfTMTgx7OxlGyOwZUZ1cCN3q2CGkI8P-fhQOHKcOD5AexbxPGuI9oIvH48XneazqEt7-80UGIVDdLCSbfui2KX--yr9KMz5YfNnbtCr_WsRcpGyH_I59pjT_DHaV0jBgcTvEzRgy6fo0bQDxTNUBVgjGUskY0Ay1kjGHZJxlWGOZKzQiQWSeesmkrFEMuZI1n0Vkp-js8nx_NOJoUqBGInlm2uD-JGbmPChNiGxmQHrjxihNPZcMzLBUIKfHKU-sHXipqllpuDlU5iWZzuMwWTZL9BwWS3ZS4Rdj4KhShOWZolDLDPyUuKx7CizPbBNjnWAjPYJhonKk8_LtRTh7YI9QO91_58yQ8ydPZ0tgYRKmazuGCFA8-p-w16jh91LdYiG67phb4BAr-O3Cn1_AeRpxgM |
linkProvider | Walter de Gruyter |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT4NAEJ5oPaiH-o5v92DiCdvlzbEasT7aS1vjjcDuokZaTIE0-uudBcRa04smnJbdhZ1dZr55MANwaiGGZ5btK46ggYL4tqkEqMBJT6GGcNdS7VDaITtdsz3Qbx-Nx6l_YWRYJRdP4-w9LTKkNnjMMmkoq3INoARusKE_xA2muiKFduM5HUaLsITKiqnXYKl1fXH18H2qVNuwp3x5NnJr3aoCQTTNyQsJUlPWW8MpytSOvx_zQ3TVJ7k7u3rXKankrgH7Wk8RjPJ6nqXBOfuYSfX4vwWvQ70EraRVnLINWBCjTVjtVBlfky2IW6SHeDaPoiadvCw1QTxMulnhEopI72VYlgojcUjcsRCkl41DnwniRvEkka3IrZA_5aG5QSTbsxeeEGkrrvr2ZcR9PNqGgXvVv2wrZTEHhakOTRXL8Q1G8UKN2ApoiLjNF6h_B6ZBfYqsDjUdnzuItyyDc5Vy1NNsnFbmqwuQ6Wg7UBvFI7ELxDBtZDWcCR4yHTVY3-SWKcJmqJnIXXR1D5SvffJYmelcFtyIPKnxIDU9SU1PUtOT1NyDs6r_W5HjY25PfWbbvfKTT-aMyPHi_t-GncByu9-59-5vuncHsII3jcL4cwi1dJyJI4RDaXBcnvdPIkgCkA |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT8JAEN4oJEYP-I743IOJpwrbd4-o1CfEBDDemu6jhgiU0DZEf72zbamI4aJJT9vdtju7nfm-nckMQucWYHhm2b7iCEIVwLd1hQKBk55CDeCupdqBPIdstc27nv7wasyiCaM8rJKLt0nyEWcZUms8ZIk8KCtyDYAFrrGhP4QFJroijXZtzINVVAZbbwP_Kjdur5ov35tKtQ17zpVng7LWrSIORNOctI4gMWW5NaA7eWbH32_5Ybkq09SbXXzqnFFyNxGdTSeLRXm_TGJ6yT4XMj3-a75bqJJDVtzI9tg2WhGjHbTRKvK9RrsobOAOoNk0hhq30qLUGNAwbieZQ2iAO_1hXigMhwF2J0LgTjIJfCawOwinkWwFXQXaKQ3MpQPZnvR5hOVJcdG3K-Ptw9Ee6rnN7vWdkpdyUJjqkFixHN9gBC7gwxYlAaA2XwD7pqZBfAKKDniOzx1AW5bBuUo4sDQbHiuz1VFQOdo-Ko3CkThA2DBtUDScCR4wHfirb3LLFEE90EzQLbpaRcpsmTyW5zmX5TYGnuQ7IExPCtOTwvSkMKvooug_zjJ8LO2pL6y6l__w0ZIRKVo8_NuwM7T2fON6T_ftxyO0DveM7OTnGJXiSSJOAAvF9DTf7V9JgwFJ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Splitting+Method+for+Numerical+Simulation+of+Free+Surface+Flows+of+Incompressible+Fluids+with+Surface+Tension&rft.jtitle=Journal+of+computational+methods+in+applied+mathematics&rft.au=Nikitin%2C+Kirill+D.&rft.au=Olshanskii%2C+Maxim+A.&rft.au=Terekhov%2C+Kirill+M.&rft.au=Vassilevski%2C+Yuri+V.&rft.date=2015-01-01&rft.pub=De+Gruyter&rft.issn=1609-4840&rft.eissn=1609-9389&rft.volume=15&rft.issue=1&rft.spage=59&rft.epage=77&rft_id=info:doi/10.1515%2Fcmam-2014-0025&rft.externalDBID=n%2Fa&rft.externalDocID=10_1515_cmam_2014_002515159 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1609-4840&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1609-4840&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1609-4840&client=summon |