A Splitting Method for Numerical Simulation of Free Surface Flows of Incompressible Fluids with Surface Tension

The paper studies a splitting method for the numerical time-integration of the system of partial differential equations describing the motion of viscous incompressible fluid with free boundary subject to surface tension forces. The method splits one time step into a semi-Lagrangian treatment of the...

Full description

Saved in:
Bibliographic Details
Published inJournal of computational methods in applied mathematics Vol. 15; no. 1; pp. 59 - 77
Main Authors Nikitin, Kirill D., Olshanskii, Maxim A., Terekhov, Kirill M., Vassilevski, Yuri V.
Format Journal Article
LanguageEnglish
Published De Gruyter 01.01.2015
Subjects
Online AccessGet full text
ISSN1609-4840
1609-9389
DOI10.1515/cmam-2014-0025

Cover

Abstract The paper studies a splitting method for the numerical time-integration of the system of partial differential equations describing the motion of viscous incompressible fluid with free boundary subject to surface tension forces. The method splits one time step into a semi-Lagrangian treatment of the surface advection and fluid inertia, an implicit update of viscous terms and the projection of velocity into the subspace of divergence-free functions. We derive several conservation properties of the method and a suitable energy estimate for numerical solutions. Under certain assumptions on the smoothness of the free surface and its evolution, this leads to a stability result for the numerical method. Efficient computations of free surface flows of incompressible viscous fluids need several other ingredients, such as dynamically adapted meshes, surface reconstruction and level set function re-initialization. These enabling techniques are discussed in the paper as well. The properties of the method are illustrated with a few numerical examples. These examples include analytical tests and the oscillating droplet benchmark problem.
AbstractList The paper studies a splitting method for the numerical time-integration of the system of partial differential equations describing the motion of viscous incompressible fluid with free boundary subject to surface tension forces. The method splits one time step into a semi-Lagrangian treatment of the surface advection and fluid inertia, an implicit update of viscous terms and the projection of velocity into the subspace of divergence-free functions. We derive several conservation properties of the method and a suitable energy estimate for numerical solutions. Under certain assumptions on the smoothness of the free surface and its evolution, this leads to a stability result for the numerical method. Efficient computations of free surface flows of incompressible viscous fluids need several other ingredients, such as dynamically adapted meshes, surface reconstruction and level set function re-initialization. These enabling techniques are discussed in the paper as well. The properties of the method are illustrated with a few numerical examples. These examples include analytical tests and the oscillating droplet benchmark problem.
Author Nikitin, Kirill D.
Terekhov, Kirill M.
Olshanskii, Maxim A.
Vassilevski, Yuri V.
Author_xml – sequence: 1
  givenname: Kirill D.
  surname: Nikitin
  fullname: Nikitin, Kirill D.
  email: nikitin.kira@gmail.com
  organization: Institute of Numerical Mathematics, Russian Academy of Sciences, Gubkin str. , 119333 Moscow, Russia
– sequence: 2
  givenname: Maxim A.
  surname: Olshanskii
  fullname: Olshanskii, Maxim A.
  email: molshan@math.uh.edu
  organization: Department of Mathematics, University of Houston, 41 PGH Building, Houston, TX 77204-3008, USA
– sequence: 3
  givenname: Kirill M.
  surname: Terekhov
  fullname: Terekhov, Kirill M.
  email: kirill.terehov@gmail.com
  organization: Department of Energy Resources Engineering, Stanford University, 67 Panama Street, Stanford, CA 94305-2220, USA; and Institute of Numerical Mathematics, Russian Academy of Sciences, Moscow, Russia
– sequence: 4
  givenname: Yuri V.
  surname: Vassilevski
  fullname: Vassilevski, Yuri V.
  email: yuri.vassilevski@gmail.com
  organization: Institute of Numerical Mathematics, Russian Academy of Sciences, Gubkin str. 8, 19333 Moscow; and Moscow Institute of Physics and Technology, Institutskii Lane 9, 141700, Dolgoprudny, Russia
BookMark eNp1kEFrAjEQhUOxUGu99pw_sDaT3bgJPYnUVrDtQXteYjarKbsbSbKI_76bKj0UhIEZHvO9Yd49GrS21Qg9ApkAA_akGtkklECWEELZDRrClIhEpFwMLnPGM3KHxt6bLSGcAs1yGCI7w-tDbUIw7Q6_67C3Ja6swx9do51RssZr03S1DMa22FZ44bTG685VUmm8qO3RR3XZKtscnI7mddQ7U3p8NGH_t7vRre89HtBtJWuvx5c-Ql-Ll838LVl9vi7ns1WiqICQ5EIyBX3xNM-3ULEpSJ1zvp0ykMB5DsBlKYCynJUlhRIyzvszQrBsSylLR2hy9lXOeu90VRycaaQ7FUCKmFgREytiYkVMrAeyf4Ay4fft4KSpr2PPZ-wo66BdqXeuO_VD8W071_YfXgGjJNIfwYqGHA
CitedBy_id crossref_primary_10_1016_j_jcp_2019_07_028
crossref_primary_10_1016_j_aml_2018_07_005
crossref_primary_10_1134_S0965542522060148
crossref_primary_10_1134_S0001433820030056
crossref_primary_10_1016_j_compfluid_2017_02_007
crossref_primary_10_1515_rnam_2021_0014
crossref_primary_10_1016_j_jnnfm_2016_12_001
ContentType Journal Article
DBID AAYXX
CITATION
DOI 10.1515/cmam-2014-0025
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList CrossRef

DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 1609-9389
EndPage 77
ExternalDocumentID 10_1515_cmam_2014_0025
10_1515_cmam_2014_002515159
GrantInformation_xml – fundername: RFBR
  grantid: 12-01-00283, 12-01-33084, 14-01-00830
– fundername: Russian President grant
  grantid: MK 7159.2013.1
– fundername: Russian Science Foundation
  grantid: 14-11-00434
GroupedDBID 0R~
2WC
4.4
AAAEU
AAAVF
AACIX
AADQG
AAFPC
AAGVJ
AAILP
AAJBH
AAKDD
AALGR
AAONY
AAOUV
AAPJK
AAQCX
AARVR
AASOL
AASQH
AAWFC
AAXCG
ABAOT
ABAQN
ABFKT
ABIQR
ABJNI
ABMBZ
ABPLS
ABRQL
ABSOE
ABUVI
ABWLS
ABXMZ
ABYKJ
ACDEB
ACEFL
ACGFS
ACHNZ
ACIPV
ACIWK
ACMKP
ACONX
ACPMA
ACUND
ACXLN
ACZBO
ADALX
ADEQT
ADGQD
ADGYE
ADJVZ
ADNPR
ADOZN
AECWL
AEDGQ
AEGVQ
AEICA
AEJQW
AEKEB
AEMOE
AENEX
AEQDQ
AEQLX
AERZL
AEXIE
AFBAA
AFBDD
AFBQV
AFCXV
AFGNR
AFQUK
AFYRI
AGBEV
AGQYU
AHCWZ
AHVWV
AHXUK
AIERV
AIKXB
AIWOI
AJATJ
AKXKS
ALMA_UNASSIGNED_HOLDINGS
ALUKF
ALWYM
AMAVY
AMVHM
ASYPN
AZMOX
BAKPI
BBCWN
BCIFA
BLHJL
CFGNV
DASCH
DSRVY
EBS
EJD
FSTRU
HZ~
IY9
J9A
K.~
KDIRW
O9-
P2P
QD8
SA.
SLJYH
TR2
UK5
WTRAM
AAYXX
CITATION
ID FETCH-LOGICAL-c291t-79a5c15c18377b1f561ae788b651a1887118ad912575dd21d1488ace9954b2253
ISSN 1609-4840
IngestDate Thu Apr 24 23:11:43 EDT 2025
Wed Oct 01 03:48:24 EDT 2025
Sat Sep 06 17:04:55 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c291t-79a5c15c18377b1f561ae788b651a1887118ad912575dd21d1488ace9954b2253
PageCount 19
ParticipantIDs crossref_primary_10_1515_cmam_2014_0025
crossref_citationtrail_10_1515_cmam_2014_0025
walterdegruyter_journals_10_1515_cmam_2014_002515159
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2015-1-1
PublicationDateYYYYMMDD 2015-01-01
PublicationDate_xml – month: 01
  year: 2015
  text: 2015-1-1
  day: 01
PublicationDecade 2010
PublicationTitle Journal of computational methods in applied mathematics
PublicationYear 2015
Publisher De Gruyter
Publisher_xml – name: De Gruyter
SSID ssib008212471
ssj0033936
ssib006285865
Score 2.0005622
Snippet The paper studies a splitting method for the numerical time-integration of the system of partial differential equations describing the motion of viscous...
SourceID crossref
walterdegruyter
SourceType Enrichment Source
Index Database
Publisher
StartPage 59
SubjectTerms 65M06
65M12
76D45
76M20
conservation properties
Free surface flow
projection method
stability estimate
surface tension
Title A Splitting Method for Numerical Simulation of Free Surface Flows of Incompressible Fluids with Surface Tension
URI https://www.degruyter.com/doi/10.1515/cmam-2014-0025
Volume 15
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAZK
  databaseName: De Gruyter Complete Journal Package 2023
  customDbUrl:
  eissn: 1609-9389
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0033936
  issn: 1609-4840
  databaseCode: AGBEV
  dateStart: 20010120
  isFulltext: true
  titleUrlDefault: https://www.degruyterbrill.com
  providerName: Walter de Gruyter
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEF6F9AKHiqcoFLQHJA6RQ_3c9dFAQwVKLk2jcrL8WFOrdoycuC38YH4Hsw-vnaSVoFJkRevdVeL5PPPN7uwMQu8IcPiE0MjwmRkbwG-PjBgcOL5TaAPdJRbN-DrkdOadnDlfz93zweBPL2qpWcfj5Pet50ruI1VoA7nyU7L_IVk9KTTAd5AvXEHCcP0nGQejU-CQMnJ5KkpBi6jBWSO3YYrRaV6q8lycFE5qxkBT1FkEL_OkqK5X8iAJDysX4bD8FNWkaPJUnXlr-855lLuS3y6RTURhiHZRUZakFlG2kWK4pU4Nqwn8LL_MVfqCb3mdF6B7x9167-oi4vW0c3mY6CYvR4G-O2c1u7yornpDp_rmAlwBUHNXqhj396bOR4txf2XDdLdWNj7Da1I3v9ooZamfPV4Uj8oMT2PWtfm2rESklbq7A16poVX-cWnrZQWZHSviioQbSRmVADfTMTgx7OxlGyOwZUZ1cCN3q2CGkI8P-fhQOHKcOD5AexbxPGuI9oIvH48XneazqEt7-80UGIVDdLCSbfui2KX--yr9KMz5YfNnbtCr_WsRcpGyH_I59pjT_DHaV0jBgcTvEzRgy6fo0bQDxTNUBVgjGUskY0Ay1kjGHZJxlWGOZKzQiQWSeesmkrFEMuZI1n0Vkp-js8nx_NOJoUqBGInlm2uD-JGbmPChNiGxmQHrjxihNPZcMzLBUIKfHKU-sHXipqllpuDlU5iWZzuMwWTZL9BwWS3ZS4Rdj4KhShOWZolDLDPyUuKx7CizPbBNjnWAjPYJhonKk8_LtRTh7YI9QO91_58yQ8ydPZ0tgYRKmazuGCFA8-p-w16jh91LdYiG67phb4BAr-O3Cn1_AeRpxgM
linkProvider Walter de Gruyter
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT4NAEJ5oPaiH-o5v92DiCdvlzbEasT7aS1vjjcDuokZaTIE0-uudBcRa04smnJbdhZ1dZr55MANwaiGGZ5btK46ggYL4tqkEqMBJT6GGcNdS7VDaITtdsz3Qbx-Nx6l_YWRYJRdP4-w9LTKkNnjMMmkoq3INoARusKE_xA2muiKFduM5HUaLsITKiqnXYKl1fXH18H2qVNuwp3x5NnJr3aoCQTTNyQsJUlPWW8MpytSOvx_zQ3TVJ7k7u3rXKankrgH7Wk8RjPJ6nqXBOfuYSfX4vwWvQ70EraRVnLINWBCjTVjtVBlfky2IW6SHeDaPoiadvCw1QTxMulnhEopI72VYlgojcUjcsRCkl41DnwniRvEkka3IrZA_5aG5QSTbsxeeEGkrrvr2ZcR9PNqGgXvVv2wrZTEHhakOTRXL8Q1G8UKN2ApoiLjNF6h_B6ZBfYqsDjUdnzuItyyDc5Vy1NNsnFbmqwuQ6Wg7UBvFI7ELxDBtZDWcCR4yHTVY3-SWKcJmqJnIXXR1D5SvffJYmelcFtyIPKnxIDU9SU1PUtOT1NyDs6r_W5HjY25PfWbbvfKTT-aMyPHi_t-GncByu9-59-5vuncHsII3jcL4cwi1dJyJI4RDaXBcnvdPIkgCkA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT8JAEN4oJEYP-I743IOJpwrbd4-o1CfEBDDemu6jhgiU0DZEf72zbamI4aJJT9vdtju7nfm-nckMQucWYHhm2b7iCEIVwLd1hQKBk55CDeCupdqBPIdstc27nv7wasyiCaM8rJKLt0nyEWcZUms8ZIk8KCtyDYAFrrGhP4QFJroijXZtzINVVAZbbwP_Kjdur5ov35tKtQ17zpVng7LWrSIORNOctI4gMWW5NaA7eWbH32_5Ybkq09SbXXzqnFFyNxGdTSeLRXm_TGJ6yT4XMj3-a75bqJJDVtzI9tg2WhGjHbTRKvK9RrsobOAOoNk0hhq30qLUGNAwbieZQ2iAO_1hXigMhwF2J0LgTjIJfCawOwinkWwFXQXaKQ3MpQPZnvR5hOVJcdG3K-Ptw9Ee6rnN7vWdkpdyUJjqkFixHN9gBC7gwxYlAaA2XwD7pqZBfAKKDniOzx1AW5bBuUo4sDQbHiuz1VFQOdo-Ko3CkThA2DBtUDScCR4wHfirb3LLFEE90EzQLbpaRcpsmTyW5zmX5TYGnuQ7IExPCtOTwvSkMKvooug_zjJ8LO2pL6y6l__w0ZIRKVo8_NuwM7T2fON6T_ftxyO0DveM7OTnGJXiSSJOAAvF9DTf7V9JgwFJ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Splitting+Method+for+Numerical+Simulation+of+Free+Surface+Flows+of+Incompressible+Fluids+with+Surface+Tension&rft.jtitle=Journal+of+computational+methods+in+applied+mathematics&rft.au=Nikitin%2C+Kirill+D.&rft.au=Olshanskii%2C+Maxim+A.&rft.au=Terekhov%2C+Kirill+M.&rft.au=Vassilevski%2C+Yuri+V.&rft.date=2015-01-01&rft.pub=De+Gruyter&rft.issn=1609-4840&rft.eissn=1609-9389&rft.volume=15&rft.issue=1&rft.spage=59&rft.epage=77&rft_id=info:doi/10.1515%2Fcmam-2014-0025&rft.externalDBID=n%2Fa&rft.externalDocID=10_1515_cmam_2014_002515159
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1609-4840&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1609-4840&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1609-4840&client=summon