Prediction of Process Variation Effect for Ultrascaled GAA Vertical FET Devices Using a Machine Learning Approach

In this brief, we present an accurate and efficient machine learning (ML) approach which predicts variations in key electrical parameters using process variations (PVs) from ultrascaled gate-all-around (GAA) vertical FET (VFET) devices. The 3-D stochastic TCAD simulation is the most powerful tool fo...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on electron devices Vol. 66; no. 10; pp. 4474 - 4477
Main Authors Ko, Kyul, Lee, Jang Kyu, Kang, Myounggon, Jeon, Jongwook, Shin, Hyungcheol
Format Journal Article
LanguageEnglish
Published New York IEEE 01.10.2019
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN0018-9383
1557-9646
DOI10.1109/TED.2019.2937786

Cover

Abstract In this brief, we present an accurate and efficient machine learning (ML) approach which predicts variations in key electrical parameters using process variations (PVs) from ultrascaled gate-all-around (GAA) vertical FET (VFET) devices. The 3-D stochastic TCAD simulation is the most powerful tool for analyzing PVs, but for ultrascaled devices, the computation cost is too high because this method requires simultaneous analysis of various factors. The proposed ML approach is a new method which predicts the effects of the variability sources of ultrascaled devices. It also shows the same degree of accuracy, as well as improved efficiency compared to a 3-D stochastic TCAD simulation. An artificial neural network (ANN)-based ML algorithm can make multi-input -multi-output (MIMO) predictions very effectively and uses an internal algorithm structure that is improved relative to existing techniques to capture the effects of PVs accurately. This algorithm incurs approximately 16% of the computation cost by predicting the effects of process variability sources with less than 1% error compared to a 3-D stochastic TCAD simulation.
AbstractList In this brief, we present an accurate and efficient machine learning (ML) approach which predicts variations in key electrical parameters using process variations (PVs) from ultrascaled gate-all-around (GAA) vertical FET (VFET) devices. The 3-D stochastic TCAD simulation is the most powerful tool for analyzing PVs, but for ultrascaled devices, the computation cost is too high because this method requires simultaneous analysis of various factors. The proposed ML approach is a new method which predicts the effects of the variability sources of ultrascaled devices. It also shows the same degree of accuracy, as well as improved efficiency compared to a 3-D stochastic TCAD simulation. An artificial neural network (ANN)-based ML algorithm can make multi-input -multi-output (MIMO) predictions very effectively and uses an internal algorithm structure that is improved relative to existing techniques to capture the effects of PVs accurately. This algorithm incurs approximately 16% of the computation cost by predicting the effects of process variability sources with less than 1% error compared to a 3-D stochastic TCAD simulation.
Author Lee, Jang Kyu
Shin, Hyungcheol
Kang, Myounggon
Jeon, Jongwook
Ko, Kyul
Author_xml – sequence: 1
  givenname: Kyul
  orcidid: 0000-0001-9514-598X
  surname: Ko
  fullname: Ko, Kyul
  email: gogyul@snu.ac.kr
  organization: Inter-University Semiconductor Research Center, School of Electrical Engineering and Computer Science, Seoul National University, Seoul, South Korea
– sequence: 2
  givenname: Jang Kyu
  surname: Lee
  fullname: Lee, Jang Kyu
  organization: Inter-University Semiconductor Research Center, School of Electrical Engineering and Computer Science, Seoul National University, Seoul, South Korea
– sequence: 3
  givenname: Myounggon
  orcidid: 0000-0003-4132-0038
  surname: Kang
  fullname: Kang, Myounggon
  organization: Department of Electronics Engineering, Korea National University of Transportation, Chungju-si, South Korea
– sequence: 4
  givenname: Jongwook
  orcidid: 0000-0002-5232-650X
  surname: Jeon
  fullname: Jeon, Jongwook
  organization: Department of Electronics Engineering, Konkuk University, Seoul, South Korea
– sequence: 5
  givenname: Hyungcheol
  surname: Shin
  fullname: Shin, Hyungcheol
  organization: Inter-University Semiconductor Research Center, School of Electrical Engineering and Computer Science, Seoul National University, Seoul, South Korea
BookMark eNp9kL1PwzAQxS0EEm1hR2KxxJzij8Sxx6gtBamIDm3XyHUu4CrErZ0i8d_jfoiBgel0T-93p_f66LJ1LSB0R8mQUqIeF5PxkBGqhkzxPJfiAvVoluWJEqm4RD1CqEwUl_wa9UPYxFWkKeuh3dxDZU1nXYtdjefeGQgBr7S3-ihO6hpMh2vn8bLpvA5GN1DhaVHgFfjOxhU_TRZ4DF82ongZbPuONX7V5sO2gGegfXuQiu3WuyjeoKtaNwFuz3OAlpEfPSezt-nLqJglhinaJblcc5JzUKCFTEFmFYOMEJJLLtk642kldB6j1pRIatY6VcAp18AYSJIpwQfo4XQ3vt3tIXTlxu19G1-WjKlMZCplPLrEyWW8C8FDXRrbHZPHrLYpKSkP9Zax3vJQb3muN4LkD7j19lP77_-Q-xNiAeDXLiUTnAr-Aw_7hck
CODEN IETDAI
CitedBy_id crossref_primary_10_1016_j_mejo_2023_106083
crossref_primary_10_1016_j_fmre_2024_01_010
crossref_primary_10_3390_nano14100837
crossref_primary_10_1007_s10825_024_02139_8
crossref_primary_10_1109_ACCESS_2021_3079981
crossref_primary_10_1109_JEDS_2024_3447032
crossref_primary_10_1007_s13369_021_06002_x
crossref_primary_10_1016_j_sse_2024_108988
crossref_primary_10_1002_aisy_202200302
crossref_primary_10_1109_ACCESS_2021_3137851
crossref_primary_10_3390_electronics11172761
crossref_primary_10_1016_j_adhoc_2024_103703
crossref_primary_10_1016_j_heliyon_2024_e26496
crossref_primary_10_1016_j_engappai_2025_110322
crossref_primary_10_1007_s12633_021_01562_x
crossref_primary_10_1108_IJQRM_08_2021_0281
crossref_primary_10_1109_TED_2021_3130858
crossref_primary_10_1109_TED_2022_3175708
crossref_primary_10_35848_1347_4065_aba5e0
crossref_primary_10_1109_JEDS_2024_3471999
crossref_primary_10_1109_TED_2024_3476231
crossref_primary_10_3390_electronics13234840
crossref_primary_10_3390_mi14020334
crossref_primary_10_1016_j_compeleceng_2022_108554
crossref_primary_10_1002_mmce_23191
crossref_primary_10_1109_JIOT_2020_3023694
crossref_primary_10_1109_JEDS_2023_3277548
crossref_primary_10_1109_TNS_2023_3298707
crossref_primary_10_1109_ACCESS_2022_3188690
crossref_primary_10_1016_j_compeleceng_2022_108392
crossref_primary_10_1109_OJCOMS_2024_3395702
crossref_primary_10_1109_TED_2020_2971784
crossref_primary_10_3390_electronics10212570
crossref_primary_10_1039_D4TC01224K
crossref_primary_10_1109_TNANO_2024_3390793
crossref_primary_10_3390_mi15020218
Cites_doi 10.1109/TED.2019.2891677
10.23919/VLSIT.2017.7998183
10.1109/TCAD.2012.2207955
10.1109/TED.2017.2712763
10.1109/IRPS.2013.6531972
10.1109/TED.2013.2267745
10.1109/SISPAD.2000.871197
10.1109/TED.2010.2063191
10.1109/TED.2015.2463073
10.1109/VLSIT.2016.7573382
10.1109/TED.2015.2504729
10.1109/IEDM.2011.6131494
10.1109/SISPAD.2015.7292283
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019
DBID 97E
RIA
RIE
AAYXX
CITATION
7SP
8FD
L7M
DOI 10.1109/TED.2019.2937786
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Electronics & Communications Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Technology Research Database
Advanced Technologies Database with Aerospace
Electronics & Communications Abstracts
DatabaseTitleList Technology Research Database

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1557-9646
EndPage 4477
ExternalDocumentID 10_1109_TED_2019_2937786
8826316
Genre orig-research
GroupedDBID -~X
.DC
0R~
29I
3EH
4.4
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ACKIV
ACNCT
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
F5P
HZ~
H~9
IAAWW
IBMZZ
ICLAB
IDIHD
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
MS~
O9-
OCL
P2P
RIA
RIE
RNS
TAE
TN5
VH1
VJK
VOH
AAYXX
CITATION
7SP
8FD
L7M
RIG
ID FETCH-LOGICAL-c291t-78b3073e9ea684e85d2e500078382b534d6a7937f1081cba49e313ae22e805963
IEDL.DBID RIE
ISSN 0018-9383
IngestDate Mon Jun 30 10:19:25 EDT 2025
Wed Oct 01 02:28:41 EDT 2025
Thu Apr 24 23:07:12 EDT 2025
Wed Aug 27 02:41:43 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 10
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c291t-78b3073e9ea684e85d2e500078382b534d6a7937f1081cba49e313ae22e805963
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-5232-650X
0000-0003-4132-0038
0000-0001-9514-598X
PQID 2295659423
PQPubID 85466
PageCount 4
ParticipantIDs crossref_primary_10_1109_TED_2019_2937786
proquest_journals_2295659423
crossref_citationtrail_10_1109_TED_2019_2937786
ieee_primary_8826316
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-10-01
PublicationDateYYYYMMDD 2019-10-01
PublicationDate_xml – month: 10
  year: 2019
  text: 2019-10-01
  day: 01
PublicationDecade 2010
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on electron devices
PublicationTitleAbbrev TED
PublicationYear 2019
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref12
ref15
ref14
ref10
subramanian (ref16) 2018
moroz (ref7) 2016
ref2
ref1
ref8
(ref17) 2015
ref9
ref4
ref3
ref6
ref5
jiang (ref11) 2016
References_xml – ident: ref10
  doi: 10.1109/TED.2019.2891677
– ident: ref12
  doi: 10.23919/VLSIT.2017.7998183
– ident: ref15
  doi: 10.1109/TCAD.2012.2207955
– ident: ref9
  doi: 10.1109/TED.2017.2712763
– ident: ref4
  doi: 10.1109/IRPS.2013.6531972
– ident: ref3
  doi: 10.1109/TED.2013.2267745
– ident: ref13
  doi: 10.1109/SISPAD.2000.871197
– year: 2015
  ident: ref17
  publication-title: International Technology Roadmap for Semiconductors(ITRS)
– ident: ref8
  doi: 10.1109/TED.2010.2063191
– ident: ref1
  doi: 10.1109/TED.2015.2463073
– year: 2016
  ident: ref7
  article-title: Transistor and logic design for 5 nm technology node
– year: 2018
  ident: ref16
  publication-title: Deep Learning With Pytorch
– ident: ref14
  doi: 10.1109/VLSIT.2016.7573382
– ident: ref6
  doi: 10.1109/TED.2015.2504729
– start-page: 28.3.1
  year: 2016
  ident: ref11
  article-title: Predictive compact modeling of random variations in FinFET technology for 16/14 nm node and beyond
  publication-title: IEDM Tech Dig
– ident: ref5
  doi: 10.1109/IEDM.2011.6131494
– ident: ref2
  doi: 10.1109/SISPAD.2015.7292283
SSID ssj0016442
Score 2.504333
Snippet In this brief, we present an accurate and efficient machine learning (ML) approach which predicts variations in key electrical parameters using process...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 4474
SubjectTerms Algorithms
Analytical models
Artificial intelligence
Artificial neural network (ANN)
Artificial neural networks
Computation
Computational modeling
Computer simulation
Cost analysis
Data models
Field effect transistors
Gallium arsenide
gate-all-around (GAA)
Learning theory
Logic gates
Machine learning
machine learning (ML)
Predictions
Process parameters
process variation (PV)
Semiconductor devices
Solid modeling
vertical device
Title Prediction of Process Variation Effect for Ultrascaled GAA Vertical FET Devices Using a Machine Learning Approach
URI https://ieeexplore.ieee.org/document/8826316
https://www.proquest.com/docview/2295659423
Volume 66
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1557-9646
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0016442
  issn: 0018-9383
  databaseCode: RIE
  dateStart: 19630101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwED5BJxh4I8pLHliQSEpiJ03GiqeQihho1S2ykwsDqIU2Xfj13DlOxUuILcM5sfTZd5_ju-8ATkxpFGojPQwj6alcoWciFXgll3zpQhFF5f8d_fv4dqDuRtFoCc4WtTCIaJPP0OdHe5dfTPI5_yrrEBuMZRAvw3I3ietarcWNAcX1Whk8oA1Mx67mSvI87ZAL4Byu1KfQxnJpX0KQ7anywxHb6HK9Dv1mXnVSybM_r4yfv3-TbPzvxDdgzdFM0avXxSYs4XgLVj-JD27D28OUL2kYGDEphasYEEM6PFu0RC1sLIjVisFLNdUzghMLcdPriaHNxqYPXF89iku03kbY7AOhRd_mZ6Jw0q1Poud0y3dgQPYXt55rwODlYRpUXjcx7AIwRR0nCpOoCDGyrEImoYmkKmLN-nplQMQiN1qlKAOpMQwx4bY-chda48kY90CUXUkrQusCOTPQ0Kgi0ZJtVICyKNvQaTDJcqdOzk0yXjJ7SjlPM0IxYxQzh2IbThcjXmtljj9stxmUhZ3Dow2HDeyZ27qzjPubx1FKNHP_91EHsMLvrjP6DqFVTed4RMykMsd2SX4AUbffEw
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT-MwEB4VOAAHHsuuKE8fuCBtWhLbaXKseJVHEQeKuEV2MtkDqIWSXvj1zDhuBctqxS2HsWzps2c-xzPfABzY0io0VgYYaRmoXGFgtQqDkku-TKGIovL_jv5N3Buoywf90IDfs1oYRHTJZ9jiT_eWX4zyCf8qaxMbjGUYz8GCVkrpulpr9mZAkb3WBg_pCNPFa_ooeZS2yQlwFlfaouDGgmmfgpDrqvLFFbv4crYK_enK6rSSx9aksq387S_Rxu8ufQ1WPNEU3XpnrEMDhz9g-YP84Aa83I75mYahEaNS-JoBcU_XZ4eXqKWNBfFaMXiqxuaVAMVCnHe74t7lY9MEZ6d34gSdvxEu_0AY0XcZmii8eOsf0fXK5T9hQPbHvcC3YAjyKA2roJNYdgKYookThYkuItSOV8gkslqqIjassFeGRC1ya1SKMpQGowgTbuwjf8H8cDTETRBlR9KeMKZAzg20NKpIjGQbFaIsyia0p5hkudcn5zYZT5m7pxylGaGYMYqZR7EJh7MRz7U2x39sNxiUmZ3Howk7U9gzf3hfM-5wHuuUiObWv0ftw2Lvrn-dXV_cXG3DEs9T5_ftwHw1nuAu8ZTK7rnt-Q4pTeJg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Prediction+of+Process+Variation+Effect+for+Ultrascaled+GAA+Vertical+FET+Devices+Using+a+Machine+Learning+Approach&rft.jtitle=IEEE+transactions+on+electron+devices&rft.au=Ko%2C+Kyul&rft.au=Lee%2C+Jang+Kyu&rft.au=Kang%2C+Myounggon&rft.au=Jeon%2C+Jongwook&rft.date=2019-10-01&rft.pub=IEEE&rft.issn=0018-9383&rft.volume=66&rft.issue=10&rft.spage=4474&rft.epage=4477&rft_id=info:doi/10.1109%2FTED.2019.2937786&rft.externalDocID=8826316
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0018-9383&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0018-9383&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0018-9383&client=summon