Prediction of Process Variation Effect for Ultrascaled GAA Vertical FET Devices Using a Machine Learning Approach
In this brief, we present an accurate and efficient machine learning (ML) approach which predicts variations in key electrical parameters using process variations (PVs) from ultrascaled gate-all-around (GAA) vertical FET (VFET) devices. The 3-D stochastic TCAD simulation is the most powerful tool fo...
Saved in:
| Published in | IEEE transactions on electron devices Vol. 66; no. 10; pp. 4474 - 4477 |
|---|---|
| Main Authors | , , , , |
| Format | Journal Article |
| Language | English |
| Published |
New York
IEEE
01.10.2019
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Subjects | |
| Online Access | Get full text |
| ISSN | 0018-9383 1557-9646 |
| DOI | 10.1109/TED.2019.2937786 |
Cover
| Abstract | In this brief, we present an accurate and efficient machine learning (ML) approach which predicts variations in key electrical parameters using process variations (PVs) from ultrascaled gate-all-around (GAA) vertical FET (VFET) devices. The 3-D stochastic TCAD simulation is the most powerful tool for analyzing PVs, but for ultrascaled devices, the computation cost is too high because this method requires simultaneous analysis of various factors. The proposed ML approach is a new method which predicts the effects of the variability sources of ultrascaled devices. It also shows the same degree of accuracy, as well as improved efficiency compared to a 3-D stochastic TCAD simulation. An artificial neural network (ANN)-based ML algorithm can make multi-input -multi-output (MIMO) predictions very effectively and uses an internal algorithm structure that is improved relative to existing techniques to capture the effects of PVs accurately. This algorithm incurs approximately 16% of the computation cost by predicting the effects of process variability sources with less than 1% error compared to a 3-D stochastic TCAD simulation. |
|---|---|
| AbstractList | In this brief, we present an accurate and efficient machine learning (ML) approach which predicts variations in key electrical parameters using process variations (PVs) from ultrascaled gate-all-around (GAA) vertical FET (VFET) devices. The 3-D stochastic TCAD simulation is the most powerful tool for analyzing PVs, but for ultrascaled devices, the computation cost is too high because this method requires simultaneous analysis of various factors. The proposed ML approach is a new method which predicts the effects of the variability sources of ultrascaled devices. It also shows the same degree of accuracy, as well as improved efficiency compared to a 3-D stochastic TCAD simulation. An artificial neural network (ANN)-based ML algorithm can make multi-input -multi-output (MIMO) predictions very effectively and uses an internal algorithm structure that is improved relative to existing techniques to capture the effects of PVs accurately. This algorithm incurs approximately 16% of the computation cost by predicting the effects of process variability sources with less than 1% error compared to a 3-D stochastic TCAD simulation. |
| Author | Lee, Jang Kyu Shin, Hyungcheol Kang, Myounggon Jeon, Jongwook Ko, Kyul |
| Author_xml | – sequence: 1 givenname: Kyul orcidid: 0000-0001-9514-598X surname: Ko fullname: Ko, Kyul email: gogyul@snu.ac.kr organization: Inter-University Semiconductor Research Center, School of Electrical Engineering and Computer Science, Seoul National University, Seoul, South Korea – sequence: 2 givenname: Jang Kyu surname: Lee fullname: Lee, Jang Kyu organization: Inter-University Semiconductor Research Center, School of Electrical Engineering and Computer Science, Seoul National University, Seoul, South Korea – sequence: 3 givenname: Myounggon orcidid: 0000-0003-4132-0038 surname: Kang fullname: Kang, Myounggon organization: Department of Electronics Engineering, Korea National University of Transportation, Chungju-si, South Korea – sequence: 4 givenname: Jongwook orcidid: 0000-0002-5232-650X surname: Jeon fullname: Jeon, Jongwook organization: Department of Electronics Engineering, Konkuk University, Seoul, South Korea – sequence: 5 givenname: Hyungcheol surname: Shin fullname: Shin, Hyungcheol organization: Inter-University Semiconductor Research Center, School of Electrical Engineering and Computer Science, Seoul National University, Seoul, South Korea |
| BookMark | eNp9kL1PwzAQxS0EEm1hR2KxxJzij8Sxx6gtBamIDm3XyHUu4CrErZ0i8d_jfoiBgel0T-93p_f66LJ1LSB0R8mQUqIeF5PxkBGqhkzxPJfiAvVoluWJEqm4RD1CqEwUl_wa9UPYxFWkKeuh3dxDZU1nXYtdjefeGQgBr7S3-ihO6hpMh2vn8bLpvA5GN1DhaVHgFfjOxhU_TRZ4DF82ongZbPuONX7V5sO2gGegfXuQiu3WuyjeoKtaNwFuz3OAlpEfPSezt-nLqJglhinaJblcc5JzUKCFTEFmFYOMEJJLLtk642kldB6j1pRIatY6VcAp18AYSJIpwQfo4XQ3vt3tIXTlxu19G1-WjKlMZCplPLrEyWW8C8FDXRrbHZPHrLYpKSkP9Zax3vJQb3muN4LkD7j19lP77_-Q-xNiAeDXLiUTnAr-Aw_7hck |
| CODEN | IETDAI |
| CitedBy_id | crossref_primary_10_1016_j_mejo_2023_106083 crossref_primary_10_1016_j_fmre_2024_01_010 crossref_primary_10_3390_nano14100837 crossref_primary_10_1007_s10825_024_02139_8 crossref_primary_10_1109_ACCESS_2021_3079981 crossref_primary_10_1109_JEDS_2024_3447032 crossref_primary_10_1007_s13369_021_06002_x crossref_primary_10_1016_j_sse_2024_108988 crossref_primary_10_1002_aisy_202200302 crossref_primary_10_1109_ACCESS_2021_3137851 crossref_primary_10_3390_electronics11172761 crossref_primary_10_1016_j_adhoc_2024_103703 crossref_primary_10_1016_j_heliyon_2024_e26496 crossref_primary_10_1016_j_engappai_2025_110322 crossref_primary_10_1007_s12633_021_01562_x crossref_primary_10_1108_IJQRM_08_2021_0281 crossref_primary_10_1109_TED_2021_3130858 crossref_primary_10_1109_TED_2022_3175708 crossref_primary_10_35848_1347_4065_aba5e0 crossref_primary_10_1109_JEDS_2024_3471999 crossref_primary_10_1109_TED_2024_3476231 crossref_primary_10_3390_electronics13234840 crossref_primary_10_3390_mi14020334 crossref_primary_10_1016_j_compeleceng_2022_108554 crossref_primary_10_1002_mmce_23191 crossref_primary_10_1109_JIOT_2020_3023694 crossref_primary_10_1109_JEDS_2023_3277548 crossref_primary_10_1109_TNS_2023_3298707 crossref_primary_10_1109_ACCESS_2022_3188690 crossref_primary_10_1016_j_compeleceng_2022_108392 crossref_primary_10_1109_OJCOMS_2024_3395702 crossref_primary_10_1109_TED_2020_2971784 crossref_primary_10_3390_electronics10212570 crossref_primary_10_1039_D4TC01224K crossref_primary_10_1109_TNANO_2024_3390793 crossref_primary_10_3390_mi15020218 |
| Cites_doi | 10.1109/TED.2019.2891677 10.23919/VLSIT.2017.7998183 10.1109/TCAD.2012.2207955 10.1109/TED.2017.2712763 10.1109/IRPS.2013.6531972 10.1109/TED.2013.2267745 10.1109/SISPAD.2000.871197 10.1109/TED.2010.2063191 10.1109/TED.2015.2463073 10.1109/VLSIT.2016.7573382 10.1109/TED.2015.2504729 10.1109/IEDM.2011.6131494 10.1109/SISPAD.2015.7292283 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019 |
| DBID | 97E RIA RIE AAYXX CITATION 7SP 8FD L7M |
| DOI | 10.1109/TED.2019.2937786 |
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Electronics & Communications Abstracts Technology Research Database Advanced Technologies Database with Aerospace |
| DatabaseTitle | CrossRef Technology Research Database Advanced Technologies Database with Aerospace Electronics & Communications Abstracts |
| DatabaseTitleList | Technology Research Database |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1557-9646 |
| EndPage | 4477 |
| ExternalDocumentID | 10_1109_TED_2019_2937786 8826316 |
| Genre | orig-research |
| GroupedDBID | -~X .DC 0R~ 29I 3EH 4.4 5GY 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACGFS ACIWK ACKIV ACNCT AENEX AETIX AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD F5P HZ~ H~9 IAAWW IBMZZ ICLAB IDIHD IFIPE IFJZH IPLJI JAVBF LAI M43 MS~ O9- OCL P2P RIA RIE RNS TAE TN5 VH1 VJK VOH AAYXX CITATION 7SP 8FD L7M RIG |
| ID | FETCH-LOGICAL-c291t-78b3073e9ea684e85d2e500078382b534d6a7937f1081cba49e313ae22e805963 |
| IEDL.DBID | RIE |
| ISSN | 0018-9383 |
| IngestDate | Mon Jun 30 10:19:25 EDT 2025 Wed Oct 01 02:28:41 EDT 2025 Thu Apr 24 23:07:12 EDT 2025 Wed Aug 27 02:41:43 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 10 |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c291t-78b3073e9ea684e85d2e500078382b534d6a7937f1081cba49e313ae22e805963 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-5232-650X 0000-0003-4132-0038 0000-0001-9514-598X |
| PQID | 2295659423 |
| PQPubID | 85466 |
| PageCount | 4 |
| ParticipantIDs | crossref_primary_10_1109_TED_2019_2937786 proquest_journals_2295659423 crossref_citationtrail_10_1109_TED_2019_2937786 ieee_primary_8826316 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2019-10-01 |
| PublicationDateYYYYMMDD | 2019-10-01 |
| PublicationDate_xml | – month: 10 year: 2019 text: 2019-10-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York |
| PublicationTitle | IEEE transactions on electron devices |
| PublicationTitleAbbrev | TED |
| PublicationYear | 2019 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref13 ref12 ref15 ref14 ref10 subramanian (ref16) 2018 moroz (ref7) 2016 ref2 ref1 ref8 (ref17) 2015 ref9 ref4 ref3 ref6 ref5 jiang (ref11) 2016 |
| References_xml | – ident: ref10 doi: 10.1109/TED.2019.2891677 – ident: ref12 doi: 10.23919/VLSIT.2017.7998183 – ident: ref15 doi: 10.1109/TCAD.2012.2207955 – ident: ref9 doi: 10.1109/TED.2017.2712763 – ident: ref4 doi: 10.1109/IRPS.2013.6531972 – ident: ref3 doi: 10.1109/TED.2013.2267745 – ident: ref13 doi: 10.1109/SISPAD.2000.871197 – year: 2015 ident: ref17 publication-title: International Technology Roadmap for Semiconductors(ITRS) – ident: ref8 doi: 10.1109/TED.2010.2063191 – ident: ref1 doi: 10.1109/TED.2015.2463073 – year: 2016 ident: ref7 article-title: Transistor and logic design for 5 nm technology node – year: 2018 ident: ref16 publication-title: Deep Learning With Pytorch – ident: ref14 doi: 10.1109/VLSIT.2016.7573382 – ident: ref6 doi: 10.1109/TED.2015.2504729 – start-page: 28.3.1 year: 2016 ident: ref11 article-title: Predictive compact modeling of random variations in FinFET technology for 16/14 nm node and beyond publication-title: IEDM Tech Dig – ident: ref5 doi: 10.1109/IEDM.2011.6131494 – ident: ref2 doi: 10.1109/SISPAD.2015.7292283 |
| SSID | ssj0016442 |
| Score | 2.504333 |
| Snippet | In this brief, we present an accurate and efficient machine learning (ML) approach which predicts variations in key electrical parameters using process... |
| SourceID | proquest crossref ieee |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 4474 |
| SubjectTerms | Algorithms Analytical models Artificial intelligence Artificial neural network (ANN) Artificial neural networks Computation Computational modeling Computer simulation Cost analysis Data models Field effect transistors Gallium arsenide gate-all-around (GAA) Learning theory Logic gates Machine learning machine learning (ML) Predictions Process parameters process variation (PV) Semiconductor devices Solid modeling vertical device |
| Title | Prediction of Process Variation Effect for Ultrascaled GAA Vertical FET Devices Using a Machine Learning Approach |
| URI | https://ieeexplore.ieee.org/document/8826316 https://www.proquest.com/docview/2295659423 |
| Volume | 66 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 1557-9646 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0016442 issn: 0018-9383 databaseCode: RIE dateStart: 19630101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwED5BJxh4I8pLHliQSEpiJ03GiqeQihho1S2ykwsDqIU2Xfj13DlOxUuILcM5sfTZd5_ju-8ATkxpFGojPQwj6alcoWciFXgll3zpQhFF5f8d_fv4dqDuRtFoCc4WtTCIaJPP0OdHe5dfTPI5_yrrEBuMZRAvw3I3ietarcWNAcX1Whk8oA1Mx67mSvI87ZAL4Byu1KfQxnJpX0KQ7anywxHb6HK9Dv1mXnVSybM_r4yfv3-TbPzvxDdgzdFM0avXxSYs4XgLVj-JD27D28OUL2kYGDEphasYEEM6PFu0RC1sLIjVisFLNdUzghMLcdPriaHNxqYPXF89iku03kbY7AOhRd_mZ6Jw0q1Poud0y3dgQPYXt55rwODlYRpUXjcx7AIwRR0nCpOoCDGyrEImoYmkKmLN-nplQMQiN1qlKAOpMQwx4bY-chda48kY90CUXUkrQusCOTPQ0Kgi0ZJtVICyKNvQaTDJcqdOzk0yXjJ7SjlPM0IxYxQzh2IbThcjXmtljj9stxmUhZ3Dow2HDeyZ27qzjPubx1FKNHP_91EHsMLvrjP6DqFVTed4RMykMsd2SX4AUbffEw |
| linkProvider | IEEE |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT-MwEB4VOAAHHsuuKE8fuCBtWhLbaXKseJVHEQeKuEV2MtkDqIWSXvj1zDhuBctqxS2HsWzps2c-xzPfABzY0io0VgYYaRmoXGFgtQqDkku-TKGIovL_jv5N3Buoywf90IDfs1oYRHTJZ9jiT_eWX4zyCf8qaxMbjGUYz8GCVkrpulpr9mZAkb3WBg_pCNPFa_ooeZS2yQlwFlfaouDGgmmfgpDrqvLFFbv4crYK_enK6rSSx9aksq387S_Rxu8ufQ1WPNEU3XpnrEMDhz9g-YP84Aa83I75mYahEaNS-JoBcU_XZ4eXqKWNBfFaMXiqxuaVAMVCnHe74t7lY9MEZ6d34gSdvxEu_0AY0XcZmii8eOsf0fXK5T9hQPbHvcC3YAjyKA2roJNYdgKYookThYkuItSOV8gkslqqIjassFeGRC1ya1SKMpQGowgTbuwjf8H8cDTETRBlR9KeMKZAzg20NKpIjGQbFaIsyia0p5hkudcn5zYZT5m7pxylGaGYMYqZR7EJh7MRz7U2x39sNxiUmZ3Howk7U9gzf3hfM-5wHuuUiObWv0ftw2Lvrn-dXV_cXG3DEs9T5_ftwHw1nuAu8ZTK7rnt-Q4pTeJg |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Prediction+of+Process+Variation+Effect+for+Ultrascaled+GAA+Vertical+FET+Devices+Using+a+Machine+Learning+Approach&rft.jtitle=IEEE+transactions+on+electron+devices&rft.au=Ko%2C+Kyul&rft.au=Lee%2C+Jang+Kyu&rft.au=Kang%2C+Myounggon&rft.au=Jeon%2C+Jongwook&rft.date=2019-10-01&rft.pub=IEEE&rft.issn=0018-9383&rft.volume=66&rft.issue=10&rft.spage=4474&rft.epage=4477&rft_id=info:doi/10.1109%2FTED.2019.2937786&rft.externalDocID=8826316 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0018-9383&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0018-9383&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0018-9383&client=summon |