Multi-Dimensional Attention With Similarity Constraint for Weakly-Supervised Temporal Action Localization
Weakly-supervised temporal action localization (WTAL) is a challenging task in understanding untrimmed videos, in which no frame-wise annotation is provided during training, only the video-level category label is available. Current methods mainly adopt temporal attention branches to conduct foregrou...
Saved in:
| Published in | IEEE transactions on multimedia Vol. 25; pp. 4349 - 4360 |
|---|---|
| Main Authors | , , , |
| Format | Journal Article |
| Language | English |
| Published |
Piscataway
IEEE
2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Subjects | |
| Online Access | Get full text |
| ISSN | 1520-9210 1941-0077 |
| DOI | 10.1109/TMM.2022.3174344 |
Cover
| Abstract | Weakly-supervised temporal action localization (WTAL) is a challenging task in understanding untrimmed videos, in which no frame-wise annotation is provided during training, only the video-level category label is available. Current methods mainly adopt temporal attention branches to conduct foreground-background separation with RGB and optical flow features simply concatenated, regardless of the discriminative spacial features and the complementarity between different modalities. In this work, we propose a Multi-Dimensional Attention (MDA) method to explore attention mechanism across three dimensions in weakly supervised action localization, i . e ., 1) temporal attention that focuses on segments containing action instances, 2) channel attention that discovers the most relevant cues for action description, and 3) modal attention that fuses RGB and flow information adaptively based on feature magnitudes during background modeling. In addition, we introduce a similarity constraint loss to refine the action segment representation in feature space, which helps the network to detect less discriminative frames of an action to capture the full action boundaries. The proposed MDA with similarity constraints can be easily applied to existing action detection frameworks with few parameters. Extensive experiments on THUMOS'14 and ActivityNet v1.2 datasets show that the proposed method outperforms the current state-of-the-art WTAL approaches, and achieves comparable results with some advanced fully-supervised methods. |
|---|---|
| AbstractList | Weakly-supervised temporal action localization (WTAL) is a challenging task in understanding untrimmed videos, in which no frame-wise annotation is provided during training, only the video-level category label is available. Current methods mainly adopt temporal attention branches to conduct foreground-background separation with RGB and optical flow features simply concatenated, regardless of the discriminative spacial features and the complementarity between different modalities. In this work, we propose a Multi-Dimensional Attention (MDA) method to explore attention mechanism across three dimensions in weakly supervised action localization, i . e ., 1) temporal attention that focuses on segments containing action instances, 2) channel attention that discovers the most relevant cues for action description, and 3) modal attention that fuses RGB and flow information adaptively based on feature magnitudes during background modeling. In addition, we introduce a similarity constraint loss to refine the action segment representation in feature space, which helps the network to detect less discriminative frames of an action to capture the full action boundaries. The proposed MDA with similarity constraints can be easily applied to existing action detection frameworks with few parameters. Extensive experiments on THUMOS’14 and ActivityNet v1.2 datasets show that the proposed method outperforms the current state-of-the-art WTAL approaches, and achieves comparable results with some advanced fully-supervised methods. |
| Author | Chen, Zhengyan Liao, Xin Zhang, Linlin Liu, Hong |
| Author_xml | – sequence: 1 givenname: Zhengyan orcidid: 0000-0002-5044-2400 surname: Chen fullname: Chen, Zhengyan email: chenzhengyan@pku.edu.cn organization: Key Laboratory of Machine Perception and Shenzhen Graduate School, Peking University, Beijing, China – sequence: 2 givenname: Hong orcidid: 0000-0002-7498-6541 surname: Liu fullname: Liu, Hong email: hongliu@pku.edu.cn organization: Key Laboratory of Machine Perception and Shenzhen Graduate School, Peking University, Beijing, China – sequence: 3 givenname: Linlin surname: Zhang fullname: Zhang, Linlin email: catherinezll@pku.edu.cn organization: Key Laboratory of Machine Perception and Shenzhen Graduate School, Peking University, Beijing, China – sequence: 4 givenname: Xin orcidid: 0000-0002-9131-0578 surname: Liao fullname: Liao, Xin email: xinliao@hnu.edu.cn organization: College of Computer Science and Electronic Engineering, Hunan University, Changsha, China |
| BookMark | eNp9kL1PwzAQxS1UJNrCjsQSiTnlbCdxPFblU2rF0KKOkZNehEsSB9tFKn89SVsxMDDdnfTeO73fiAwa0yAh1xQmlIK8Wy0WEwaMTTgVEY-iMzKkMqIhgBCDbo8ZhJJRuCAj57YANIpBDIle7Cqvw3tdY-O0aVQVTL3Hxnd7sNb-PVjqWlfKar8PZqZx3ird-KA0Nlij-qj24XLXov3SDjfBCuvW2D6jOATMTaEq_a3645Kcl6pyeHWaY_L2-LCaPYfz16eX2XQeFkxSH4o0SYtU8bzgkCtBaVSyNJE0B6ZizoAzLjkohopL2VXNQWxQqTKOkwhjjPiY3B5zW2s-d-h8tjU72xVzGUuF5ELEjHYqOKoKa5yzWGat1bWy-4xC1gPNOqBZDzQ7Ae0syR9Lof2hWs-k-s94czRqRPz9I4VgMk75DxKshXI |
| CODEN | ITMUF8 |
| CitedBy_id | crossref_primary_10_1109_TCSVT_2024_3374870 crossref_primary_10_1109_TPAMI_2023_3330794 crossref_primary_10_1109_TMM_2024_3355628 crossref_primary_10_1109_TCSVT_2024_3358547 crossref_primary_10_1631_FITEE_2300024 |
| Cites_doi | 10.1109/ICCV.2019.00719 10.1007/978-3-030-01225-0_35 10.1109/TMM.2019.2929923 10.1109/CVPR.2019.00043 10.1609/aaai.v34i07.6815 10.1109/ICCV.2019.00877 10.1109/TPAMI.2021.3050918 10.1109/TMM.2018.2839534 10.1109/TPAMI.2016.2577031 10.1109/ICCV.2017.317 10.1007/978-3-642-15549-9_39 10.1109/CVPR46437.2021.00333 10.1609/aaai.v35i3.16322 10.1145/3394171.3413687 10.1109/CVPR.2015.7298878 10.1109/CVPR.2017.502 10.1109/CVPR.2019.00372 10.1609/aaai.v32i1.12333 10.1109/ICCV.2019.00400 10.1007/978-3-030-01225-0_1 10.1109/ICCV.2017.381 10.1007/978-3-030-58526-6_43 10.1109/ICCV.2015.510 10.1109/CVPR.2017.155 10.1109/TPAMI.2019.2942030 10.1007/978-3-030-01216-8_5 10.1109/TMM.2020.2999184 10.1109/CVPR.2016.119 10.1609/aaai.v35i2.16256 10.1109/CVPR.2018.00706 10.1109/CVPR46437.2021.00611 10.1109/CVPR.2016.213 10.1109/CVPR46437.2021.00984 10.1109/CVPR.2015.7298698 10.1109/ICCV.2013.441 10.1007/978-3-030-01270-0_10 10.1609/aaai.v34i07.6760 10.1109/TNNLS.2020.2978942 10.1609/aaai.v35i3.16363 10.1109/TMM.2019.2959977 10.1109/CVPR.2018.00675 10.1109/ICCV.2017.392 10.1109/TIP.2019.2922108 10.1609/aaai.v34i07.6793 10.1109/TPAMI.2019.2928540 10.1109/ICCV.2019.00562 10.1109/TMM.2019.2943204 10.1007/978-3-030-58548-8_25 10.1109/ICCV.2019.00560 10.1007/978-3-030-01267-0_19 10.1109/ICCV.2019.00399 10.1609/aaai.v35i3.16280 10.1109/CVPR.2017.678 10.1016/j.cviu.2016.10.018 10.1609/aaai.v33i01.33019070 10.1109/CVPR.2019.00139 10.1007/978-3-540-74936-3_22 10.1109/ICCV.2015.460 10.1109/CVPR.2018.00685 10.1007/978-3-030-58539-6_3 10.1109/CVPR42600.2020.01017 10.1109/CVPR.2018.00124 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023 |
| DBID | 97E RIA RIE AAYXX CITATION 7SC 7SP 8FD JQ2 L7M L~C L~D |
| DOI | 10.1109/TMM.2022.3174344 |
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
| DatabaseTitle | CrossRef Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Technology Research Database |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE/IET Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Computer Science |
| EISSN | 1941-0077 |
| EndPage | 4360 |
| ExternalDocumentID | 10_1109_TMM_2022_3174344 9772958 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: National Natural Science Foundation of China grantid: 62073004; 61972142 funderid: 10.13039/501100001809 – fundername: Shenzhen Fundamental Research Program grantid: JCYJ20200109140410340; GXWD20201231165807007-20200807164903001 funderid: 10.13039/501100017607 |
| GroupedDBID | -~X 0R~ 29I 4.4 5GY 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACGFS ACIWK AENEX AETIX AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD HZ~ H~9 IFIPE IFJZH IPLJI JAVBF LAI M43 O9- OCL P2P PQQKQ RIA RIE RNS TN5 VH1 ZY4 AAYXX CITATION 7SC 7SP 8FD JQ2 L7M L~C L~D |
| ID | FETCH-LOGICAL-c291t-7868c8a3bc30ba7114f28691b02a5320323930a2ea399174b07deaaf5564e5e43 |
| IEDL.DBID | RIE |
| ISSN | 1520-9210 |
| IngestDate | Mon Jun 30 02:35:29 EDT 2025 Thu Apr 24 23:09:53 EDT 2025 Wed Oct 01 02:36:20 EDT 2025 Wed Aug 27 02:37:44 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c291t-7868c8a3bc30ba7114f28691b02a5320323930a2ea399174b07deaaf5564e5e43 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-9131-0578 0000-0002-5044-2400 0000-0002-7498-6541 |
| PQID | 2879377521 |
| PQPubID | 75737 |
| PageCount | 12 |
| ParticipantIDs | ieee_primary_9772958 proquest_journals_2879377521 crossref_primary_10_1109_TMM_2022_3174344 crossref_citationtrail_10_1109_TMM_2022_3174344 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 20230000 2023-00-00 20230101 |
| PublicationDateYYYYMMDD | 2023-01-01 |
| PublicationDate_xml | – year: 2023 text: 20230000 |
| PublicationDecade | 2020 |
| PublicationPlace | Piscataway |
| PublicationPlace_xml | – name: Piscataway |
| PublicationTitle | IEEE transactions on multimedia |
| PublicationTitleAbbrev | TMM |
| PublicationYear | 2023 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref13 ref57 ref12 ref15 ref59 ref14 ref58 ref53 Kingma (ref60) 2015 ref52 ref11 ref10 ref54 ref17 ref16 ref19 ref18 Paszke (ref61) 2019 ref51 ref50 ref46 ref45 ref48 ref47 ref42 ref41 ref44 ref43 ref49 ref8 ref7 ref9 ref4 ref3 ref6 ref5 ref40 ref35 Yuan (ref56) 2019 ref37 ref36 ref31 ref30 ref33 ref32 ref2 ref1 ref38 Simonyan (ref25) 2014; 1 ref24 ref68 ref23 ref67 ref26 ref69 ref20 ref64 ref63 ref22 ref66 ref21 ref65 Chen (ref39) 2020 ref28 ref27 ref29 Tran (ref34) 2019 ref62 Vaswani (ref55) 2017 |
| References_xml | – ident: ref66 doi: 10.1109/ICCV.2019.00719 – ident: ref8 doi: 10.1007/978-3-030-01225-0_35 – ident: ref38 doi: 10.1109/TMM.2019.2929923 – ident: ref3 doi: 10.1109/CVPR.2019.00043 – ident: ref37 doi: 10.1609/aaai.v34i07.6815 – ident: ref52 doi: 10.1109/ICCV.2019.00877 – ident: ref12 doi: 10.1109/TPAMI.2021.3050918 – start-page: 5552 volume-title: Proc. IEEE Int. Conf. Comput. Vis. year: 2019 ident: ref34 article-title: carreira2017quo,xie2018rethinking – volume-title: Proc. Brit. Mach. Vis. Conf. year: 2020 ident: ref39 article-title: Refinement of boundary regression using uncertainty in temporal action localization – ident: ref35 doi: 10.1109/TMM.2018.2839534 – ident: ref40 doi: 10.1109/TPAMI.2016.2577031 – start-page: 8026 volume-title: Proc. Adv. Neural Inf. Process. Syst. year: 2019 ident: ref61 article-title: PyTorch: An imperative style, high-performance deep learning library – ident: ref42 doi: 10.1109/ICCV.2017.317 – ident: ref5 doi: 10.1007/978-3-642-15549-9_39 – ident: ref41 doi: 10.1109/CVPR46437.2021.00333 – volume-title: Proc. Int. Conf. Learn. Representations year: 2019 ident: ref56 article-title: Marginalized average attentional network for weakly-supervised learning – ident: ref64 doi: 10.1609/aaai.v35i3.16322 – ident: ref58 doi: 10.1145/3394171.3413687 – ident: ref26 doi: 10.1109/CVPR.2015.7298878 – ident: ref29 doi: 10.1109/CVPR.2017.502 – ident: ref49 doi: 10.1109/CVPR.2019.00372 – ident: ref13 doi: 10.1609/aaai.v32i1.12333 – ident: ref51 doi: 10.1109/ICCV.2019.00400 – ident: ref4 doi: 10.1007/978-3-030-01225-0_1 – ident: ref7 doi: 10.1109/ICCV.2017.381 – ident: ref57 doi: 10.1007/978-3-030-58526-6_43 – ident: ref31 doi: 10.1109/ICCV.2015.510 – ident: ref43 doi: 10.1109/CVPR.2017.155 – ident: ref27 doi: 10.1109/TPAMI.2019.2942030 – ident: ref48 doi: 10.1007/978-3-030-01216-8_5 – ident: ref17 doi: 10.1109/TMM.2020.2999184 – ident: ref1 doi: 10.1109/CVPR.2016.119 – ident: ref16 doi: 10.1609/aaai.v35i2.16256 – ident: ref18 doi: 10.1109/CVPR.2018.00706 – ident: ref69 doi: 10.1109/CVPR46437.2021.00611 – ident: ref24 doi: 10.1109/CVPR.2016.213 – ident: ref65 doi: 10.1109/CVPR46437.2021.00984 – ident: ref21 doi: 10.1109/CVPR.2015.7298698 – volume: 1 start-page: 568 volume-title: Proc. 27th Int. Conf. Neural Informat. Process. Syst. (NeurIPS) year: 2014 ident: ref25 article-title: Two-stream convolutional networks for action recognition in videos – ident: ref22 doi: 10.1109/ICCV.2013.441 – ident: ref50 doi: 10.1007/978-3-030-01270-0_10 – ident: ref54 doi: 10.1609/aaai.v34i07.6760 – ident: ref14 doi: 10.1109/TNNLS.2020.2978942 – ident: ref45 doi: 10.1609/aaai.v35i3.16363 – ident: ref15 doi: 10.1109/TMM.2019.2959977 – ident: ref32 doi: 10.1109/CVPR.2018.00675 – volume-title: Proc. Int. Conf. Learn. Representations year: 2015 ident: ref60 article-title: Adam: A method for stochastic optimization – ident: ref36 doi: 10.1109/ICCV.2017.392 – ident: ref53 doi: 10.1109/TIP.2019.2922108 – ident: ref10 doi: 10.1609/aaai.v34i07.6793 – ident: ref28 doi: 10.1109/TPAMI.2019.2928540 – ident: ref63 doi: 10.1109/ICCV.2019.00562 – ident: ref47 doi: 10.1109/TMM.2019.2943204 – ident: ref68 doi: 10.1007/978-3-030-58548-8_25 – ident: ref9 doi: 10.1109/ICCV.2019.00560 – ident: ref30 doi: 10.1007/978-3-030-01267-0_19 – ident: ref44 doi: 10.1109/ICCV.2019.00399 – ident: ref11 doi: 10.1609/aaai.v35i3.16280 – ident: ref6 doi: 10.1109/CVPR.2017.678 – ident: ref20 doi: 10.1016/j.cviu.2016.10.018 – ident: ref67 doi: 10.1609/aaai.v33i01.33019070 – start-page: 5998 volume-title: Proc. Adv. Neural Inf. Process. Syst. year: 2017 ident: ref55 article-title: Attention is all you need – ident: ref62 doi: 10.1109/CVPR.2019.00139 – ident: ref59 doi: 10.1007/978-3-540-74936-3_22 – ident: ref23 doi: 10.1109/ICCV.2015.460 – ident: ref33 doi: 10.1109/CVPR.2018.00685 – ident: ref19 doi: 10.1007/978-3-030-58539-6_3 – ident: ref46 doi: 10.1109/CVPR42600.2020.01017 – ident: ref2 doi: 10.1109/CVPR.2018.00124 |
| SSID | ssj0014507 |
| Score | 2.4292831 |
| Snippet | Weakly-supervised temporal action localization (WTAL) is a challenging task in understanding untrimmed videos, in which no frame-wise annotation is provided... |
| SourceID | proquest crossref ieee |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 4349 |
| SubjectTerms | Annotations Feature extraction Localization Location awareness Multi-dimensional attention Optical flow Optical flow (image analysis) Proposals Segments Similarity Task analysis temporal action localization video analysis Videos weakly supervised learning |
| Title | Multi-Dimensional Attention With Similarity Constraint for Weakly-Supervised Temporal Action Localization |
| URI | https://ieeexplore.ieee.org/document/9772958 https://www.proquest.com/docview/2879377521 |
| Volume | 25 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE/IET Electronic Library (IEL) customDbUrl: eissn: 1941-0077 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0014507 issn: 1520-9210 databaseCode: RIE dateStart: 19990101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NTxsxEB1BTu2h4aNVAxT50AsSTpxd74ePERShqumFILitZr2zIiJNomZzgF_P2LsbFYoQtz3Yltdje96zPW8Avg8xRmOHpQwwjSXvkqVkN2IllVgqSshYL-I6_h1fXuuft9HtFpxuYmGIyD8-o7779Hf5xcKu3VHZwDgoGKXbsJ2kcR2rtbkx0JEPjWZ3pKRhHtNeSSozmIzHTASDgPkp-0utn7kgn1Plv43Ye5eLLozbftWPSu776yrv28cXko3v7fgOfGpgphjV82IXtmi-B902hYNoVvQefPxHj3Afpj4cV547xf9arUOMqqp-ECluptWduJr-mTIXZuguXKpPn2CiEgx8xQ3h_exBXq2XbvdZUSEmteoVt-FjJ8Qv5zabsM_PcH3xY3J2KZtcDNIGZlhJHvDUphjmNlQ5JsyiyiCNzTBXAbrcEqGTUlMYEDLi4WHOVVIQYhlFsaaIdPgFOvPFnL6CSImQcVeIZWw0KpMqg4UqMAxLZXOtezBozZPZRqjc_c4s84RFmYwNmjmDZo1Be3CyqbGsRTreKLvv7LMp15imB0ftDMiaVbzKmE0yeksY4Ry8XusQPrj08_WRzBF0qr9r-sYgpcqP_ex8AlJ_5Dw |
| linkProvider | IEEE |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9wwEB7R7aHlAC0UsTxaH3qpVO96E-fhI2pB23bDhUVwiybORKyABbHZA_x6xk6y6ktVbznYkZOxPd9nz3wD8HGEMRo7qmSAaSx5l6wkuxErqcJKUULGehHX7DQen-vvl9HlGnxe5cIQkQ8-o4F79Hf55Z1duqOyoXFQMEpfwMtIax012VqrOwMd-eRodkhKGmYy3aWkMsNpljEVDAJmqOwxtf7FCfmqKn9sxd6_nGxC1o2sCSu5HizrYmCffhNt_N-hv4GNFmiKo2ZmvIU1mm_BZlfEQbRregvWf1Ik3IaZT8iVX53mf6PXIY7qugmJFBez-kqczW5nzIYZvAtX7NOXmKgFQ19xQXh98yjPlvdu_1lQKaaN7hW_w2dPiIlznG3i5zs4PzmefhnLthqDtIEZ1TJJ49SmGBY2VAUmzKOqII3NqFABuuoSoRNTUxgQMubh31yopCTEKopiTRHpcAd687s57YJIiZCRV4hVbDQqkyqDpSoxDCtlC637MOzMk9tWqtx9zk3uKYsyORs0dwbNW4P24dOqx30j0_GPttvOPqt2rWn6cNDNgLxdx4uc-STjt4Qxzt7fe32AV-NpNskn305_7MNrV4y-OaA5gF79sKRDhix18d7P1Gdr2OeJ |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multi-Dimensional+Attention+With+Similarity+Constraint+for+Weakly-Supervised+Temporal+Action+Localization&rft.jtitle=IEEE+transactions+on+multimedia&rft.au=Chen%2C+Zhengyan&rft.au=Liu%2C+Hong&rft.au=Zhang%2C+Linlin&rft.au=Liao%2C+Xin&rft.date=2023&rft.issn=1520-9210&rft.eissn=1941-0077&rft.volume=25&rft.spage=4349&rft.epage=4360&rft_id=info:doi/10.1109%2FTMM.2022.3174344&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TMM_2022_3174344 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1520-9210&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1520-9210&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1520-9210&client=summon |