Multi-Dimensional Attention With Similarity Constraint for Weakly-Supervised Temporal Action Localization

Weakly-supervised temporal action localization (WTAL) is a challenging task in understanding untrimmed videos, in which no frame-wise annotation is provided during training, only the video-level category label is available. Current methods mainly adopt temporal attention branches to conduct foregrou...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on multimedia Vol. 25; pp. 4349 - 4360
Main Authors Chen, Zhengyan, Liu, Hong, Zhang, Linlin, Liao, Xin
Format Journal Article
LanguageEnglish
Published Piscataway IEEE 2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN1520-9210
1941-0077
DOI10.1109/TMM.2022.3174344

Cover

Abstract Weakly-supervised temporal action localization (WTAL) is a challenging task in understanding untrimmed videos, in which no frame-wise annotation is provided during training, only the video-level category label is available. Current methods mainly adopt temporal attention branches to conduct foreground-background separation with RGB and optical flow features simply concatenated, regardless of the discriminative spacial features and the complementarity between different modalities. In this work, we propose a Multi-Dimensional Attention (MDA) method to explore attention mechanism across three dimensions in weakly supervised action localization, i . e ., 1) temporal attention that focuses on segments containing action instances, 2) channel attention that discovers the most relevant cues for action description, and 3) modal attention that fuses RGB and flow information adaptively based on feature magnitudes during background modeling. In addition, we introduce a similarity constraint loss to refine the action segment representation in feature space, which helps the network to detect less discriminative frames of an action to capture the full action boundaries. The proposed MDA with similarity constraints can be easily applied to existing action detection frameworks with few parameters. Extensive experiments on THUMOS'14 and ActivityNet v1.2 datasets show that the proposed method outperforms the current state-of-the-art WTAL approaches, and achieves comparable results with some advanced fully-supervised methods.
AbstractList Weakly-supervised temporal action localization (WTAL) is a challenging task in understanding untrimmed videos, in which no frame-wise annotation is provided during training, only the video-level category label is available. Current methods mainly adopt temporal attention branches to conduct foreground-background separation with RGB and optical flow features simply concatenated, regardless of the discriminative spacial features and the complementarity between different modalities. In this work, we propose a Multi-Dimensional Attention (MDA) method to explore attention mechanism across three dimensions in weakly supervised action localization, i . e ., 1) temporal attention that focuses on segments containing action instances, 2) channel attention that discovers the most relevant cues for action description, and 3) modal attention that fuses RGB and flow information adaptively based on feature magnitudes during background modeling. In addition, we introduce a similarity constraint loss to refine the action segment representation in feature space, which helps the network to detect less discriminative frames of an action to capture the full action boundaries. The proposed MDA with similarity constraints can be easily applied to existing action detection frameworks with few parameters. Extensive experiments on THUMOS’14 and ActivityNet v1.2 datasets show that the proposed method outperforms the current state-of-the-art WTAL approaches, and achieves comparable results with some advanced fully-supervised methods.
Author Chen, Zhengyan
Liao, Xin
Zhang, Linlin
Liu, Hong
Author_xml – sequence: 1
  givenname: Zhengyan
  orcidid: 0000-0002-5044-2400
  surname: Chen
  fullname: Chen, Zhengyan
  email: chenzhengyan@pku.edu.cn
  organization: Key Laboratory of Machine Perception and Shenzhen Graduate School, Peking University, Beijing, China
– sequence: 2
  givenname: Hong
  orcidid: 0000-0002-7498-6541
  surname: Liu
  fullname: Liu, Hong
  email: hongliu@pku.edu.cn
  organization: Key Laboratory of Machine Perception and Shenzhen Graduate School, Peking University, Beijing, China
– sequence: 3
  givenname: Linlin
  surname: Zhang
  fullname: Zhang, Linlin
  email: catherinezll@pku.edu.cn
  organization: Key Laboratory of Machine Perception and Shenzhen Graduate School, Peking University, Beijing, China
– sequence: 4
  givenname: Xin
  orcidid: 0000-0002-9131-0578
  surname: Liao
  fullname: Liao, Xin
  email: xinliao@hnu.edu.cn
  organization: College of Computer Science and Electronic Engineering, Hunan University, Changsha, China
BookMark eNp9kL1PwzAQxS1UJNrCjsQSiTnlbCdxPFblU2rF0KKOkZNehEsSB9tFKn89SVsxMDDdnfTeO73fiAwa0yAh1xQmlIK8Wy0WEwaMTTgVEY-iMzKkMqIhgBCDbo8ZhJJRuCAj57YANIpBDIle7Cqvw3tdY-O0aVQVTL3Hxnd7sNb-PVjqWlfKar8PZqZx3ird-KA0Nlij-qj24XLXov3SDjfBCuvW2D6jOATMTaEq_a3645Kcl6pyeHWaY_L2-LCaPYfz16eX2XQeFkxSH4o0SYtU8bzgkCtBaVSyNJE0B6ZizoAzLjkohopL2VXNQWxQqTKOkwhjjPiY3B5zW2s-d-h8tjU72xVzGUuF5ELEjHYqOKoKa5yzWGat1bWy-4xC1gPNOqBZDzQ7Ae0syR9Lof2hWs-k-s94czRqRPz9I4VgMk75DxKshXI
CODEN ITMUF8
CitedBy_id crossref_primary_10_1109_TCSVT_2024_3374870
crossref_primary_10_1109_TPAMI_2023_3330794
crossref_primary_10_1109_TMM_2024_3355628
crossref_primary_10_1109_TCSVT_2024_3358547
crossref_primary_10_1631_FITEE_2300024
Cites_doi 10.1109/ICCV.2019.00719
10.1007/978-3-030-01225-0_35
10.1109/TMM.2019.2929923
10.1109/CVPR.2019.00043
10.1609/aaai.v34i07.6815
10.1109/ICCV.2019.00877
10.1109/TPAMI.2021.3050918
10.1109/TMM.2018.2839534
10.1109/TPAMI.2016.2577031
10.1109/ICCV.2017.317
10.1007/978-3-642-15549-9_39
10.1109/CVPR46437.2021.00333
10.1609/aaai.v35i3.16322
10.1145/3394171.3413687
10.1109/CVPR.2015.7298878
10.1109/CVPR.2017.502
10.1109/CVPR.2019.00372
10.1609/aaai.v32i1.12333
10.1109/ICCV.2019.00400
10.1007/978-3-030-01225-0_1
10.1109/ICCV.2017.381
10.1007/978-3-030-58526-6_43
10.1109/ICCV.2015.510
10.1109/CVPR.2017.155
10.1109/TPAMI.2019.2942030
10.1007/978-3-030-01216-8_5
10.1109/TMM.2020.2999184
10.1109/CVPR.2016.119
10.1609/aaai.v35i2.16256
10.1109/CVPR.2018.00706
10.1109/CVPR46437.2021.00611
10.1109/CVPR.2016.213
10.1109/CVPR46437.2021.00984
10.1109/CVPR.2015.7298698
10.1109/ICCV.2013.441
10.1007/978-3-030-01270-0_10
10.1609/aaai.v34i07.6760
10.1109/TNNLS.2020.2978942
10.1609/aaai.v35i3.16363
10.1109/TMM.2019.2959977
10.1109/CVPR.2018.00675
10.1109/ICCV.2017.392
10.1109/TIP.2019.2922108
10.1609/aaai.v34i07.6793
10.1109/TPAMI.2019.2928540
10.1109/ICCV.2019.00562
10.1109/TMM.2019.2943204
10.1007/978-3-030-58548-8_25
10.1109/ICCV.2019.00560
10.1007/978-3-030-01267-0_19
10.1109/ICCV.2019.00399
10.1609/aaai.v35i3.16280
10.1109/CVPR.2017.678
10.1016/j.cviu.2016.10.018
10.1609/aaai.v33i01.33019070
10.1109/CVPR.2019.00139
10.1007/978-3-540-74936-3_22
10.1109/ICCV.2015.460
10.1109/CVPR.2018.00685
10.1007/978-3-030-58539-6_3
10.1109/CVPR42600.2020.01017
10.1109/CVPR.2018.00124
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
DOI 10.1109/TMM.2022.3174344
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList Technology Research Database

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE/IET Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
EISSN 1941-0077
EndPage 4360
ExternalDocumentID 10_1109_TMM_2022_3174344
9772958
Genre orig-research
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 62073004; 61972142
  funderid: 10.13039/501100001809
– fundername: Shenzhen Fundamental Research Program
  grantid: JCYJ20200109140410340; GXWD20201231165807007-20200807164903001
  funderid: 10.13039/501100017607
GroupedDBID -~X
0R~
29I
4.4
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
HZ~
H~9
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
PQQKQ
RIA
RIE
RNS
TN5
VH1
ZY4
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c291t-7868c8a3bc30ba7114f28691b02a5320323930a2ea399174b07deaaf5564e5e43
IEDL.DBID RIE
ISSN 1520-9210
IngestDate Mon Jun 30 02:35:29 EDT 2025
Thu Apr 24 23:09:53 EDT 2025
Wed Oct 01 02:36:20 EDT 2025
Wed Aug 27 02:37:44 EDT 2025
IsPeerReviewed true
IsScholarly true
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c291t-7868c8a3bc30ba7114f28691b02a5320323930a2ea399174b07deaaf5564e5e43
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-9131-0578
0000-0002-5044-2400
0000-0002-7498-6541
PQID 2879377521
PQPubID 75737
PageCount 12
ParticipantIDs ieee_primary_9772958
proquest_journals_2879377521
crossref_primary_10_1109_TMM_2022_3174344
crossref_citationtrail_10_1109_TMM_2022_3174344
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20230000
2023-00-00
20230101
PublicationDateYYYYMMDD 2023-01-01
PublicationDate_xml – year: 2023
  text: 20230000
PublicationDecade 2020
PublicationPlace Piscataway
PublicationPlace_xml – name: Piscataway
PublicationTitle IEEE transactions on multimedia
PublicationTitleAbbrev TMM
PublicationYear 2023
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref57
ref12
ref15
ref59
ref14
ref58
ref53
Kingma (ref60) 2015
ref52
ref11
ref10
ref54
ref17
ref16
ref19
ref18
Paszke (ref61) 2019
ref51
ref50
ref46
ref45
ref48
ref47
ref42
ref41
ref44
ref43
ref49
ref8
ref7
ref9
ref4
ref3
ref6
ref5
ref40
ref35
Yuan (ref56) 2019
ref37
ref36
ref31
ref30
ref33
ref32
ref2
ref1
ref38
Simonyan (ref25) 2014; 1
ref24
ref68
ref23
ref67
ref26
ref69
ref20
ref64
ref63
ref22
ref66
ref21
ref65
Chen (ref39) 2020
ref28
ref27
ref29
Tran (ref34) 2019
ref62
Vaswani (ref55) 2017
References_xml – ident: ref66
  doi: 10.1109/ICCV.2019.00719
– ident: ref8
  doi: 10.1007/978-3-030-01225-0_35
– ident: ref38
  doi: 10.1109/TMM.2019.2929923
– ident: ref3
  doi: 10.1109/CVPR.2019.00043
– ident: ref37
  doi: 10.1609/aaai.v34i07.6815
– ident: ref52
  doi: 10.1109/ICCV.2019.00877
– ident: ref12
  doi: 10.1109/TPAMI.2021.3050918
– start-page: 5552
  volume-title: Proc. IEEE Int. Conf. Comput. Vis.
  year: 2019
  ident: ref34
  article-title: carreira2017quo,xie2018rethinking
– volume-title: Proc. Brit. Mach. Vis. Conf.
  year: 2020
  ident: ref39
  article-title: Refinement of boundary regression using uncertainty in temporal action localization
– ident: ref35
  doi: 10.1109/TMM.2018.2839534
– ident: ref40
  doi: 10.1109/TPAMI.2016.2577031
– start-page: 8026
  volume-title: Proc. Adv. Neural Inf. Process. Syst.
  year: 2019
  ident: ref61
  article-title: PyTorch: An imperative style, high-performance deep learning library
– ident: ref42
  doi: 10.1109/ICCV.2017.317
– ident: ref5
  doi: 10.1007/978-3-642-15549-9_39
– ident: ref41
  doi: 10.1109/CVPR46437.2021.00333
– volume-title: Proc. Int. Conf. Learn. Representations
  year: 2019
  ident: ref56
  article-title: Marginalized average attentional network for weakly-supervised learning
– ident: ref64
  doi: 10.1609/aaai.v35i3.16322
– ident: ref58
  doi: 10.1145/3394171.3413687
– ident: ref26
  doi: 10.1109/CVPR.2015.7298878
– ident: ref29
  doi: 10.1109/CVPR.2017.502
– ident: ref49
  doi: 10.1109/CVPR.2019.00372
– ident: ref13
  doi: 10.1609/aaai.v32i1.12333
– ident: ref51
  doi: 10.1109/ICCV.2019.00400
– ident: ref4
  doi: 10.1007/978-3-030-01225-0_1
– ident: ref7
  doi: 10.1109/ICCV.2017.381
– ident: ref57
  doi: 10.1007/978-3-030-58526-6_43
– ident: ref31
  doi: 10.1109/ICCV.2015.510
– ident: ref43
  doi: 10.1109/CVPR.2017.155
– ident: ref27
  doi: 10.1109/TPAMI.2019.2942030
– ident: ref48
  doi: 10.1007/978-3-030-01216-8_5
– ident: ref17
  doi: 10.1109/TMM.2020.2999184
– ident: ref1
  doi: 10.1109/CVPR.2016.119
– ident: ref16
  doi: 10.1609/aaai.v35i2.16256
– ident: ref18
  doi: 10.1109/CVPR.2018.00706
– ident: ref69
  doi: 10.1109/CVPR46437.2021.00611
– ident: ref24
  doi: 10.1109/CVPR.2016.213
– ident: ref65
  doi: 10.1109/CVPR46437.2021.00984
– ident: ref21
  doi: 10.1109/CVPR.2015.7298698
– volume: 1
  start-page: 568
  volume-title: Proc. 27th Int. Conf. Neural Informat. Process. Syst. (NeurIPS)
  year: 2014
  ident: ref25
  article-title: Two-stream convolutional networks for action recognition in videos
– ident: ref22
  doi: 10.1109/ICCV.2013.441
– ident: ref50
  doi: 10.1007/978-3-030-01270-0_10
– ident: ref54
  doi: 10.1609/aaai.v34i07.6760
– ident: ref14
  doi: 10.1109/TNNLS.2020.2978942
– ident: ref45
  doi: 10.1609/aaai.v35i3.16363
– ident: ref15
  doi: 10.1109/TMM.2019.2959977
– ident: ref32
  doi: 10.1109/CVPR.2018.00675
– volume-title: Proc. Int. Conf. Learn. Representations
  year: 2015
  ident: ref60
  article-title: Adam: A method for stochastic optimization
– ident: ref36
  doi: 10.1109/ICCV.2017.392
– ident: ref53
  doi: 10.1109/TIP.2019.2922108
– ident: ref10
  doi: 10.1609/aaai.v34i07.6793
– ident: ref28
  doi: 10.1109/TPAMI.2019.2928540
– ident: ref63
  doi: 10.1109/ICCV.2019.00562
– ident: ref47
  doi: 10.1109/TMM.2019.2943204
– ident: ref68
  doi: 10.1007/978-3-030-58548-8_25
– ident: ref9
  doi: 10.1109/ICCV.2019.00560
– ident: ref30
  doi: 10.1007/978-3-030-01267-0_19
– ident: ref44
  doi: 10.1109/ICCV.2019.00399
– ident: ref11
  doi: 10.1609/aaai.v35i3.16280
– ident: ref6
  doi: 10.1109/CVPR.2017.678
– ident: ref20
  doi: 10.1016/j.cviu.2016.10.018
– ident: ref67
  doi: 10.1609/aaai.v33i01.33019070
– start-page: 5998
  volume-title: Proc. Adv. Neural Inf. Process. Syst.
  year: 2017
  ident: ref55
  article-title: Attention is all you need
– ident: ref62
  doi: 10.1109/CVPR.2019.00139
– ident: ref59
  doi: 10.1007/978-3-540-74936-3_22
– ident: ref23
  doi: 10.1109/ICCV.2015.460
– ident: ref33
  doi: 10.1109/CVPR.2018.00685
– ident: ref19
  doi: 10.1007/978-3-030-58539-6_3
– ident: ref46
  doi: 10.1109/CVPR42600.2020.01017
– ident: ref2
  doi: 10.1109/CVPR.2018.00124
SSID ssj0014507
Score 2.4292831
Snippet Weakly-supervised temporal action localization (WTAL) is a challenging task in understanding untrimmed videos, in which no frame-wise annotation is provided...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 4349
SubjectTerms Annotations
Feature extraction
Localization
Location awareness
Multi-dimensional attention
Optical flow
Optical flow (image analysis)
Proposals
Segments
Similarity
Task analysis
temporal action localization
video analysis
Videos
weakly supervised learning
Title Multi-Dimensional Attention With Similarity Constraint for Weakly-Supervised Temporal Action Localization
URI https://ieeexplore.ieee.org/document/9772958
https://www.proquest.com/docview/2879377521
Volume 25
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE/IET Electronic Library (IEL)
  customDbUrl:
  eissn: 1941-0077
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014507
  issn: 1520-9210
  databaseCode: RIE
  dateStart: 19990101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NTxsxEB1BTu2h4aNVAxT50AsSTpxd74ePERShqumFILitZr2zIiJNomZzgF_P2LsbFYoQtz3Yltdje96zPW8Avg8xRmOHpQwwjSXvkqVkN2IllVgqSshYL-I6_h1fXuuft9HtFpxuYmGIyD8-o7779Hf5xcKu3VHZwDgoGKXbsJ2kcR2rtbkx0JEPjWZ3pKRhHtNeSSozmIzHTASDgPkp-0utn7kgn1Plv43Ye5eLLozbftWPSu776yrv28cXko3v7fgOfGpgphjV82IXtmi-B902hYNoVvQefPxHj3Afpj4cV547xf9arUOMqqp-ECluptWduJr-mTIXZuguXKpPn2CiEgx8xQ3h_exBXq2XbvdZUSEmteoVt-FjJ8Qv5zabsM_PcH3xY3J2KZtcDNIGZlhJHvDUphjmNlQ5JsyiyiCNzTBXAbrcEqGTUlMYEDLi4WHOVVIQYhlFsaaIdPgFOvPFnL6CSImQcVeIZWw0KpMqg4UqMAxLZXOtezBozZPZRqjc_c4s84RFmYwNmjmDZo1Be3CyqbGsRTreKLvv7LMp15imB0ftDMiaVbzKmE0yeksY4Ry8XusQPrj08_WRzBF0qr9r-sYgpcqP_ex8AlJ_5Dw
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9wwEB7R7aHlAC0UsTxaH3qpVO96E-fhI2pB23bDhUVwiybORKyABbHZA_x6xk6y6ktVbznYkZOxPd9nz3wD8HGEMRo7qmSAaSx5l6wkuxErqcJKUULGehHX7DQen-vvl9HlGnxe5cIQkQ8-o4F79Hf55Z1duqOyoXFQMEpfwMtIax012VqrOwMd-eRodkhKGmYy3aWkMsNpljEVDAJmqOwxtf7FCfmqKn9sxd6_nGxC1o2sCSu5HizrYmCffhNt_N-hv4GNFmiKo2ZmvIU1mm_BZlfEQbRregvWf1Ik3IaZT8iVX53mf6PXIY7qugmJFBez-kqczW5nzIYZvAtX7NOXmKgFQ19xQXh98yjPlvdu_1lQKaaN7hW_w2dPiIlznG3i5zs4PzmefhnLthqDtIEZ1TJJ49SmGBY2VAUmzKOqII3NqFABuuoSoRNTUxgQMubh31yopCTEKopiTRHpcAd687s57YJIiZCRV4hVbDQqkyqDpSoxDCtlC637MOzMk9tWqtx9zk3uKYsyORs0dwbNW4P24dOqx30j0_GPttvOPqt2rWn6cNDNgLxdx4uc-STjt4Qxzt7fe32AV-NpNskn305_7MNrV4y-OaA5gF79sKRDhix18d7P1Gdr2OeJ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multi-Dimensional+Attention+With+Similarity+Constraint+for+Weakly-Supervised+Temporal+Action+Localization&rft.jtitle=IEEE+transactions+on+multimedia&rft.au=Chen%2C+Zhengyan&rft.au=Liu%2C+Hong&rft.au=Zhang%2C+Linlin&rft.au=Liao%2C+Xin&rft.date=2023&rft.issn=1520-9210&rft.eissn=1941-0077&rft.volume=25&rft.spage=4349&rft.epage=4360&rft_id=info:doi/10.1109%2FTMM.2022.3174344&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TMM_2022_3174344
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1520-9210&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1520-9210&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1520-9210&client=summon