Focus on temporal graph convolutional networks with unified attention for skeleton-based action recognition
Graph convolutional networks (GCN) have received more and more attention in skeleton-based action recognition. Many existing GCN models pay more attention to spatial information and ignore temporal information, but the completion of actions must be accompanied by changes in temporal information. Bes...
Saved in:
| Published in | Applied intelligence (Dordrecht, Netherlands) Vol. 52; no. 5; pp. 5608 - 5616 |
|---|---|
| Main Authors | , , , |
| Format | Journal Article |
| Language | English |
| Published |
New York
Springer US
01.03.2022
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 0924-669X 1573-7497 |
| DOI | 10.1007/s10489-021-02723-6 |
Cover
| Abstract | Graph convolutional networks (GCN) have received more and more attention in skeleton-based action recognition. Many existing GCN models pay more attention to spatial information and ignore temporal information, but the completion of actions must be accompanied by changes in temporal information. Besides, the channel, spatial, and temporal dimensions often contain redundant information. In this paper, we design a temporal graph convolutional network (FTGCN) module which can concentrate more temporal information and properly balance them for each action. In order to better integrate channel, spatial and temporal information, we propose a unified attention model of the channel, spatial and temporal (CSTA). A basic block containing these two novelties is called FTC-GCN. Extensive experiments on two large-scale datasets, compared with 17 methods on NTU-RGB+D and 8 methods on Kinetics-Skeleton, show that for skeleton-based human action recognition, our method achieves the best performance. |
|---|---|
| AbstractList | Graph convolutional networks (GCN) have received more and more attention in skeleton-based action recognition. Many existing GCN models pay more attention to spatial information and ignore temporal information, but the completion of actions must be accompanied by changes in temporal information. Besides, the channel, spatial, and temporal dimensions often contain redundant information. In this paper, we design a temporal graph convolutional network (FTGCN) module which can concentrate more temporal information and properly balance them for each action. In order to better integrate channel, spatial and temporal information, we propose a unified attention model of the channel, spatial and temporal (CSTA). A basic block containing these two novelties is called FTC-GCN. Extensive experiments on two large-scale datasets, compared with 17 methods on NTU-RGB+D and 8 methods on Kinetics-Skeleton, show that for skeleton-based human action recognition, our method achieves the best performance. |
| Author | Dong, Le Bi, Hong-Bo Gao, Bing-Kun Bi, Yun-Ze |
| Author_xml | – sequence: 1 givenname: Bing-Kun surname: Gao fullname: Gao, Bing-Kun organization: NorthEast Petroleum University – sequence: 2 givenname: Le surname: Dong fullname: Dong, Le organization: NorthEast Petroleum University – sequence: 3 givenname: Hong-Bo orcidid: 0000-0003-2442-330X surname: Bi fullname: Bi, Hong-Bo email: bhbdq@126.com organization: NorthEast Petroleum University – sequence: 4 givenname: Yun-Ze surname: Bi fullname: Bi, Yun-Ze organization: NorthEast Petroleum University |
| BookMark | eNp9kM1OAjEQgBuDiYC-gKe-wGp_drft0RBRExIvmnhrhm4LC0tL2iLx7d0FTx44NNPMzDcz-SZo5IO3CN1T8kAJEY-JklKqgjDaP8F4UV-hMa0EL0SpxAiNiWJlUdfq6wZNUtoQQjgndIy282AOCQePs93tQ4QOryLs19gE_x26Q26D73Pe5mOI24SPbV7jg29daxsMOVs_dGAXIk5b29kcfLGENBTNqRKtCSvfDv9bdO2gS_buL07R5_z5Y_ZaLN5f3mZPi8IwRXMhhOFOSAYMoHK0UdI0wFRVSVeDJRw4sSDFUjYEJCkbW3NnpXK8XBLBGPApYue5JoaUonV6H9sdxB9NiR506bMu3evSJ1267iH5DzJthuHsHKHtLqP8jKZ-j1_ZqDfhEHtt6RL1C4HEhNw |
| CitedBy_id | crossref_primary_10_1007_s13735_024_00341_9 crossref_primary_10_1109_ACCESS_2024_3405182 crossref_primary_10_1007_s10489_022_04302_9 crossref_primary_10_1007_s00138_023_01386_2 crossref_primary_10_1007_s13735_023_00301_9 |
| Cites_doi | 10.1007/s11263-012-0550-7 10.1109/LSP.2017.2678539 10.1145/3065386 10.1109/MSP.2012.2235192 10.1016/j.cviu.2016.03.014 10.14445/22315381/IJETT-V48P253 10.1016/j.patrec.2012.07.005 10.1109/TCSVT.2008.2005594 10.1145/2964284.2967191 10.1145/3292500.3330982 10.1109/CVPR.2018.00558 10.1016/j.patcog.2017.02.030 10.1109/CVPR.2019.00371 10.1109/CVPR.2016.115 10.1109/CVPR.2017.486 10.1109/ICIP.2019.8802912 10.1109/CVPR.2017.387 10.1109/ICRA.2018.8460516 10.1109/CVPR.2014.82 10.1109/CVPR.2019.00810 10.1109/CVPRW.2017.207 10.1007/978-3-319-46487-9_50 10.1109/ICIP.2019.8802917 10.1109/VR.2013.6549371 10.1109/CVPR.2015.7298878 10.1609/aaai.v32i1.11782 10.1109/CVPR.2019.01230 10.1109/ICCV.2017.115 10.1109/CVPR.2015.7299176 10.1145/3219819.3219947 |
| ContentType | Journal Article |
| Copyright | The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021 |
| Copyright_xml | – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021 |
| DBID | AAYXX CITATION |
| DOI | 10.1007/s10489-021-02723-6 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISSN | 1573-7497 |
| EndPage | 5616 |
| ExternalDocumentID | 10_1007_s10489_021_02723_6 |
| GroupedDBID | -4Z -59 -5G -BR -EM -Y2 -~C -~X .86 .DC .VR 06D 0R~ 0VY 1N0 1SB 2.D 203 23M 28- 2J2 2JN 2JY 2KG 2LR 2P1 2VQ 2~H 30V 3V. 4.4 406 408 409 40D 40E 5GY 5QI 5VS 67Z 6NX 77K 7WY 8FE 8FG 8FL 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AAOBN AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTV ABHLI ABHQN ABIVO ABJCF ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTAH ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACSNA ACZOJ ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFGCZ AFKRA AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARAPS ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN AZQEC B-. BA0 BBWZM BDATZ BENPR BEZIV BGLVJ BGNMA BPHCQ BSONS CAG CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DWQXO EBLON EBS EIOEI EJD ESBYG FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRNLG FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNUQQ GNWQR GQ6 GQ7 GQ8 GROUPED_ABI_INFORM_COMPLETE GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I09 IHE IJ- IKXTQ ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ K60 K6V K6~ K7- KDC KOV KOW L6V LAK LLZTM M0C M0N M4Y M7S MA- N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM OVD P19 P2P P62 P9O PF0 PQBIZ PQBZA PQQKQ PROAC PSYQQ PT4 PT5 PTHSS Q2X QOK QOS R4E R89 R9I RHV RNI RNS ROL RPX RSV RZC RZE RZK S16 S1Z S26 S27 S28 S3B SAP SCJ SCLPG SCO SDH SDM SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TEORI TSG TSK TSV TUC U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR Z45 Z7R Z7X Z7Z Z81 Z83 Z88 Z8M Z8N Z8R Z8T Z8U Z8W Z92 ZMTXR ZY4 ~A9 ~EX 77I AAPKM AAYXX ABBRH ABDBE ABFSG ABRTQ ACSTC ADHKG ADKFA AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT PQGLB PUEGO |
| ID | FETCH-LOGICAL-c291t-77c3f782a2aa5f1d98cda29558f6ae03a30ea87b8d0a804de63fe89f34b0722a3 |
| IEDL.DBID | AGYKE |
| ISSN | 0924-669X |
| IngestDate | Wed Oct 01 04:09:51 EDT 2025 Thu Apr 24 23:04:55 EDT 2025 Fri Feb 21 02:47:20 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 5 |
| Keywords | Unified attention model Skeleton-based action recognition Graph convolutional networks Temporal information |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c291t-77c3f782a2aa5f1d98cda29558f6ae03a30ea87b8d0a804de63fe89f34b0722a3 |
| ORCID | 0000-0003-2442-330X |
| PageCount | 9 |
| ParticipantIDs | crossref_primary_10_1007_s10489_021_02723_6 crossref_citationtrail_10_1007_s10489_021_02723_6 springer_journals_10_1007_s10489_021_02723_6 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 20220300 2022-03-00 |
| PublicationDateYYYYMMDD | 2022-03-01 |
| PublicationDate_xml | – month: 3 year: 2022 text: 20220300 |
| PublicationDecade | 2020 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York |
| PublicationSubtitle | The International Journal of Research on Intelligent Systems for Real Life Complex Problems |
| PublicationTitle | Applied intelligence (Dordrecht, Netherlands) |
| PublicationTitleAbbrev | Appl Intell |
| PublicationYear | 2022 |
| Publisher | Springer US |
| Publisher_xml | – name: Springer US |
| References | Zhang, Smith, Smith, Farooq (CR4) 2016; 149 Krizhevsky, Ilya, Geoffrey (CR8) 2017 CR19 Tarwani, Edem (CR11) 2017; 48 CR18 CR17 CR39 CR16 CR38 CR15 CR37 Ellis, Masood, Tappen, LaViola, Sukthankar (CR3) 2013; 101 CR14 CR36 CR12 CR34 Collobert, Weston, Bottou, Karlen, Kavukcuoglu, Kuksa (CR10) 2011; 12 CR33 CR32 Wang (CR1) 2013; 34 CR31 CR30 CR6 CR5 CR7 CR29 CR28 CR9 CR27 CR48 CR25 CR47 CR24 CR46 CR23 CR45 CR22 CR44 CR21 CR43 CR20 CR42 Li, Hou, Wang, Li (CR13) 2017; 24 CR41 CR40 Huang, Zhang, Rong, Huang (CR26) 2018; 31 Shuman, Narang, Frossard, Ortega, Vandergheynst (CR35) 2013; 30 Turaga, Chellappa, Subrahmanian, Udrea (CR2) 2008; 18 KM Tarwani (2723_CR11) 2017; 48 2723_CR9 C Ellis (2723_CR3) 2013; 101 2723_CR6 2723_CR21 2723_CR43 2723_CR7 2723_CR20 2723_CR42 2723_CR41 2723_CR5 2723_CR40 2723_CR29 X Wang (2723_CR1) 2013; 34 2723_CR28 2723_CR27 W Zhang (2723_CR4) 2016; 149 2723_CR48 2723_CR25 2723_CR47 2723_CR24 2723_CR46 2723_CR23 2723_CR45 2723_CR22 2723_CR44 A Krizhevsky (2723_CR8) 2017 DI Shuman (2723_CR35) 2013; 30 R Collobert (2723_CR10) 2011; 12 W Huang (2723_CR26) 2018; 31 2723_CR19 C Li (2723_CR13) 2017; 24 P Turaga (2723_CR2) 2008; 18 2723_CR32 2723_CR31 2723_CR30 2723_CR18 2723_CR17 2723_CR39 2723_CR16 2723_CR38 2723_CR15 2723_CR37 2723_CR14 2723_CR36 2723_CR12 2723_CR34 2723_CR33 |
| References_xml | – ident: CR45 – ident: CR22 – volume: 101 start-page: 420 issue: 3 year: 2013 end-page: 436 ident: CR3 article-title: Exploring the trade-off between accuracy and observational latency in action recognition publication-title: Int J Comput Vis doi: 10.1007/s11263-012-0550-7 – volume: 24 start-page: 624 issue: 5 year: 2017 end-page: 628 ident: CR13 article-title: Joint distance maps based action recognition with convolutional neural networks publication-title: IEEE Signal Process Lett doi: 10.1109/LSP.2017.2678539 – ident: CR18 – ident: CR43 – ident: CR47 – ident: CR14 – ident: CR39 – year: 2017 ident: CR8 publication-title: Imagenet classification with deep convolutional neural networks doi: 10.1145/3065386 – ident: CR16 – ident: CR37 – ident: CR12 – ident: CR30 – ident: CR33 – ident: CR6 – ident: CR29 – ident: CR40 – ident: CR25 – ident: CR27 – ident: CR42 – ident: CR23 – ident: CR21 – ident: CR46 – ident: CR19 – volume: 30 start-page: 83 issue: 3 year: 2013 end-page: 98 ident: CR35 article-title: The emerging field of signal processing on graphs: Extending high-dimensional data analysis to networks and other irregular domains publication-title: IEEE Signal Process Magaz doi: 10.1109/MSP.2012.2235192 – ident: CR44 – ident: CR48 – volume: 149 start-page: 32 year: 2016 end-page: 50 ident: CR4 article-title: Gender and gaze gesture recognition for human-computer interaction publication-title: Comput Vis Image Underst doi: 10.1016/j.cviu.2016.03.014 – volume: 48 start-page: 301 year: 2017 end-page: 304 ident: CR11 article-title: Survey on recurrent neural network in natural language processing publication-title: Int J Eng Trends Technol doi: 10.14445/22315381/IJETT-V48P253 – ident: CR15 – ident: CR38 – ident: CR17 – ident: CR31 – ident: CR9 – ident: CR32 – ident: CR34 – ident: CR36 – volume: 34 start-page: 3 issue: 1 year: 2013 end-page: 19 ident: CR1 article-title: surveillance, Intelligent multi-camera video publication-title: A Rev Pattern Recognit Lett doi: 10.1016/j.patrec.2012.07.005 – ident: CR5 – ident: CR7 – volume: 31 start-page: 4558 year: 2018 end-page: 4567 ident: CR26 article-title: Adaptive sampling towards fast graph representation learning publication-title: Adv Neural Inform Process Syst – volume: 18 start-page: 1473 issue: 11 year: 2008 end-page: 1488 ident: CR2 article-title: Machine recognition of human activities: a survey publication-title: IEEE Trans Circ Syst Video Technol doi: 10.1109/TCSVT.2008.2005594 – ident: CR28 – ident: CR41 – ident: CR24 – ident: CR20 – volume: 12 start-page: 2493 issue: 1 year: 2011 end-page: 2537 ident: CR10 article-title: Natural language processing (almost) from scratch publication-title: J Mach Learn Res – volume: 101 start-page: 420 issue: 3 year: 2013 ident: 2723_CR3 publication-title: Int J Comput Vis doi: 10.1007/s11263-012-0550-7 – ident: 2723_CR24 – volume: 12 start-page: 2493 issue: 1 year: 2011 ident: 2723_CR10 publication-title: J Mach Learn Res – ident: 2723_CR9 – ident: 2723_CR12 doi: 10.1145/2964284.2967191 – ident: 2723_CR22 doi: 10.1145/3292500.3330982 – ident: 2723_CR20 – ident: 2723_CR30 – ident: 2723_CR29 doi: 10.1109/CVPR.2018.00558 – ident: 2723_CR28 – ident: 2723_CR42 doi: 10.1016/j.patcog.2017.02.030 – volume: 48 start-page: 301 year: 2017 ident: 2723_CR11 publication-title: Int J Eng Trends Technol doi: 10.14445/22315381/IJETT-V48P253 – volume: 18 start-page: 1473 issue: 11 year: 2008 ident: 2723_CR2 publication-title: IEEE Trans Circ Syst Video Technol doi: 10.1109/TCSVT.2008.2005594 – ident: 2723_CR38 – ident: 2723_CR46 doi: 10.1109/CVPR.2019.00371 – ident: 2723_CR32 – ident: 2723_CR17 – ident: 2723_CR19 – volume: 31 start-page: 4558 year: 2018 ident: 2723_CR26 publication-title: Adv Neural Inform Process Syst – ident: 2723_CR36 doi: 10.1109/CVPR.2016.115 – ident: 2723_CR48 – volume: 34 start-page: 3 issue: 1 year: 2013 ident: 2723_CR1 publication-title: A Rev Pattern Recognit Lett doi: 10.1016/j.patrec.2012.07.005 – ident: 2723_CR25 – ident: 2723_CR15 doi: 10.1109/CVPR.2017.486 – ident: 2723_CR31 doi: 10.1109/ICIP.2019.8802912 – volume: 149 start-page: 32 year: 2016 ident: 2723_CR4 publication-title: Comput Vis Image Underst doi: 10.1016/j.cviu.2016.03.014 – ident: 2723_CR27 – ident: 2723_CR40 doi: 10.1109/CVPR.2017.387 – ident: 2723_CR21 – ident: 2723_CR16 doi: 10.1109/ICRA.2018.8460516 – ident: 2723_CR6 doi: 10.1109/CVPR.2014.82 – ident: 2723_CR44 – volume: 24 start-page: 624 issue: 5 year: 2017 ident: 2723_CR13 publication-title: IEEE Signal Process Lett doi: 10.1109/LSP.2017.2678539 – ident: 2723_CR47 doi: 10.1109/CVPR.2019.00810 – ident: 2723_CR43 doi: 10.1109/CVPRW.2017.207 – ident: 2723_CR39 doi: 10.1007/978-3-319-46487-9_50 – ident: 2723_CR45 doi: 10.1109/ICIP.2019.8802917 – ident: 2723_CR5 doi: 10.1109/VR.2013.6549371 – ident: 2723_CR37 – ident: 2723_CR14 doi: 10.1109/CVPR.2015.7298878 – ident: 2723_CR23 doi: 10.1609/aaai.v32i1.11782 – ident: 2723_CR34 doi: 10.1109/CVPR.2019.01230 – ident: 2723_CR33 – ident: 2723_CR41 doi: 10.1109/ICCV.2017.115 – volume: 30 start-page: 83 issue: 3 year: 2013 ident: 2723_CR35 publication-title: IEEE Signal Process Magaz doi: 10.1109/MSP.2012.2235192 – volume-title: Imagenet classification with deep convolutional neural networks year: 2017 ident: 2723_CR8 doi: 10.1145/3065386 – ident: 2723_CR7 doi: 10.1109/CVPR.2015.7299176 – ident: 2723_CR18 doi: 10.1145/3219819.3219947 |
| SSID | ssj0003301 |
| Score | 2.3584502 |
| Snippet | Graph convolutional networks (GCN) have received more and more attention in skeleton-based action recognition. Many existing GCN models pay more attention to... |
| SourceID | crossref springer |
| SourceType | Enrichment Source Index Database Publisher |
| StartPage | 5608 |
| SubjectTerms | Artificial Intelligence Computer Science Machines Manufacturing Mechanical Engineering Processes |
| Title | Focus on temporal graph convolutional networks with unified attention for skeleton-based action recognition |
| URI | https://link.springer.com/article/10.1007/s10489-021-02723-6 |
| Volume | 52 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVLSH databaseName: SpringerLink Journals customDbUrl: mediaType: online eissn: 1573-7497 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0003301 issn: 0924-669X databaseCode: AFBBN dateStart: 19970101 isFulltext: true providerName: Library Specific Holdings – providerCode: PRVPQU databaseName: ProQuest Technology Collection customDbUrl: eissn: 1573-7497 dateEnd: 20241105 omitProxy: true ssIdentifier: ssj0003301 issn: 0924-669X databaseCode: 8FG dateStart: 19970101 isFulltext: true titleUrlDefault: https://search.proquest.com/technologycollection1 providerName: ProQuest – providerCode: PRVAVX databaseName: SpringerLINK - Czech Republic Consortium customDbUrl: eissn: 1573-7497 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0003301 issn: 0924-669X databaseCode: AGYKE dateStart: 19970101 isFulltext: true titleUrlDefault: http://link.springer.com providerName: Springer Nature – providerCode: PRVAVX databaseName: SpringerLink Journals (ICM) customDbUrl: eissn: 1573-7497 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0003301 issn: 0924-669X databaseCode: U2A dateStart: 19970101 isFulltext: true titleUrlDefault: http://www.springerlink.com/journals/ providerName: Springer Nature |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PT4MwGP3itosX5884fyw9eFMWKFDguJnhoslOkswTKbRNzBZmBC7-9balTGfMkl2hENJ-7fdK3_cewF0QYUIFE3JbEtqWxz2i5lxkiZzmmHKhFF4U22JOZon3vPAXpiisbNnu7ZGkXql_Fbt5it6DHXXuiF2LdKCn9ba60Bs_vb1MNyuw3KNrpzy5t7AIiRamWOb_t2wnpO3TUJ1k4j4k7ec13JLlqK6yUf71R7lx3-8_hiODOtG4CZMTOODFKfRbRwdkJvgZLON1XpdoXSAjWbVCWtEaKXK6CVJ5rWi44yVSf3FRXbwLCWSRUurU3EkkgTAqlzKhKX9ilSflTV0_gTZ8pXVxDkk8fX2cWcaOwcpx5FQSh-eukICCYkp94bAozBnFke-HglBuu9S1OQ2DLGQ2DW2PceIKHkbC9TI7wJi6F9At1gW_BMS8LBORcuakSmKNZQ4XgTJf9zCTgNQegNOOSZobrXJlmbFKf1SWVW-msjdT3ZspGcD95pmPRqljZ-uHdpRSM2vLHc2v9mt-DYdYlUlortoNdKvPmt9K8FJlQxmr8WQyH5qYHUInweNvlgroZg |
| linkProvider | Springer Nature |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV09T8MwED1BGWDhG1E-PbBBpMRxnHisEFWB0qmVukVObEuoKEGk_f_4XKdQCVViTewMZ5_vLn73HsBdKiiXRhlblmRhwDTj6HMiMKUsqdQGGV4QbTHigwl7mSZT3xTWtGj39krSndS_mt0YwntohPeONA74NuwggRUy5k9ob3X-2grd6eTZyiLgXEx9q8zf31gPR-t3oS7E9A9h3-eGpLdczCPY0tUxHLS6C8S74QnM-nW5aEhdEU8s9UEc7zRBCLnfSvZZtUR4NwT_tZJF9W5sukmQT9MhHIlNV0kzs2EHVYQxmtmXrsuBrFBFdXUKk_7T-HEQeNGEoKQimttsuYyNDfuSSpmYSImsVJKKJMkMlzqMZRxqmaVFpkKZhUxpHhudCROzIkwplfEZdKq60udAFCsKI1A_UyIRmioibVKUSGdU2bQx7ELU2i4vPaM4Clt85D9cyGjv3No7d_bOeRfuV3M-l3waG0c_tEuSe99qNgy_-N_wW9gdjN-G-fB59HoJexQbGxy67Ao686-Fvrbpxry4cbvrG2n6y-s |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1dS8MwFA06QXzxW5yfefBNy9o0TZvHoZb5wfDBwd5K2iQgG92w3f83N03nBjLwtU37cHPTe9Kcew5CdzEnTGipzbYk8T2qKIM1xz1diIIIpUHhBdgWQzYY0ddxNF7p4rds9_ZIsulpAJWmsu7Npe6tNL5RoPqQAM4gSeixbbRDQSjBZPSI9JffYrNbt555ZpfhMcbHrm3m73esl6b1c1FbbtJDtO9wIu43E3uEtlR5jA5aDwbsluQJmqSzYlHhWYmdyNQUWw1qDHRyl1bmWtmwvSsM_13xovzSBnpi0Na0bEdsoCuuJqYEgaMwVDZz03Y84CXDaFaeolH6_Pk48JyBglcQHtQGORehNhBAECEiHUieFFIQHkWJZkL5oQh9JZI4T6QvEp9KxUKtEq5DmvsxISI8Q51yVqpzhCXNc83BS1OAKJrMA6VjsEunRBoI6XdR0MYuK5y6OJhcTLNfXWSId2bindl4Z6yL7pfPzBttjY2jH9opydw6qzYMv_jf8Fu0-_GUZu8vw7dLtEegx8ESza5Qp_5eqGuDPOr8xibXD1rs0Cc |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Focus+on+temporal+graph+convolutional+networks+with+unified+attention+for+skeleton-based+action+recognition&rft.jtitle=Applied+intelligence+%28Dordrecht%2C+Netherlands%29&rft.au=Gao%2C+Bing-Kun&rft.au=Dong%2C+Le&rft.au=Bi%2C+Hong-Bo&rft.au=Bi%2C+Yun-Ze&rft.date=2022-03-01&rft.pub=Springer+US&rft.issn=0924-669X&rft.eissn=1573-7497&rft.volume=52&rft.issue=5&rft.spage=5608&rft.epage=5616&rft_id=info:doi/10.1007%2Fs10489-021-02723-6&rft.externalDocID=10_1007_s10489_021_02723_6 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0924-669X&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0924-669X&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0924-669X&client=summon |