Event-Detection Algorithms for Low Sampling Nonintrusive Load Monitoring Systems Based on Low Complexity Statistical Features
One of the key techniques toward energy efficiency and conservation is nonintrusive load monitoring (NILM) which lies in the domain of energy monitoring. Event detection is a core component of event-based NILM systems. This paper proposes two new low-complexity and computationally fast algorithms th...
Saved in:
| Published in | IEEE transactions on instrumentation and measurement Vol. 69; no. 3; pp. 751 - 759 |
|---|---|
| Main Authors | , , , |
| Format | Journal Article |
| Language | English |
| Published |
New York
IEEE
01.03.2020
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Subjects | |
| Online Access | Get full text |
| ISSN | 0018-9456 1557-9662 |
| DOI | 10.1109/TIM.2019.2904351 |
Cover
| Abstract | One of the key techniques toward energy efficiency and conservation is nonintrusive load monitoring (NILM) which lies in the domain of energy monitoring. Event detection is a core component of event-based NILM systems. This paper proposes two new low-complexity and computationally fast algorithms that detect the variations of load data and return the time occurrences of the corresponding events. The proposed algorithms are based on the phenomenon of a sliding window (SW) that tracks the statistical features of the acquired aggregated load data. The performance of the proposed algorithms is evaluated using real-world data and a comparative analysis has been carried out with one of the recently proposed event detection algorithms. Based on the simulations and sensitivity analysis, it is shown that the proposed algorithm can provide the results of up to 93% and 88% in terms of recall and precision, respectively. |
|---|---|
| AbstractList | One of the key techniques toward energy efficiency and conservation is nonintrusive load monitoring (NILM) which lies in the domain of energy monitoring. Event detection is a core component of event-based NILM systems. This paper proposes two new low-complexity and computationally fast algorithms that detect the variations of load data and return the time occurrences of the corresponding events. The proposed algorithms are based on the phenomenon of a sliding window (SW) that tracks the statistical features of the acquired aggregated load data. The performance of the proposed algorithms is evaluated using real-world data and a comparative analysis has been carried out with one of the recently proposed event detection algorithms. Based on the simulations and sensitivity analysis, it is shown that the proposed algorithm can provide the results of up to 93% and 88% in terms of recall and precision, respectively. |
| Author | Valles, Brice Lie, Tek Tjing Rehman, Attique Ur Tito, Shafiqur Rahman |
| Author_xml | – sequence: 1 givenname: Attique Ur orcidid: 0000-0002-7953-1482 surname: Rehman fullname: Rehman, Attique Ur email: attique.rehman@aut.ac.nz organization: Department of Electrical and Electronic Engineering, Auckland University of Technology, Auckland, New Zealand – sequence: 2 givenname: Tek Tjing orcidid: 0000-0002-1091-2121 surname: Lie fullname: Lie, Tek Tjing email: tek.lie@aut.ac.nz organization: School of Engineering, Computer and Mathematical Sciences, Auckland University of Technology, Auckland, New Zealand – sequence: 3 givenname: Brice orcidid: 0000-0003-1715-5925 surname: Valles fullname: Valles, Brice email: brice.valles@genesisenergy.co.nz organization: Genesis Energy Ltd., Auckland, New Zealand – sequence: 4 givenname: Shafiqur Rahman orcidid: 0000-0002-2173-579X surname: Tito fullname: Tito, Shafiqur Rahman email: shafiqur.tito@manukau.ac.nz organization: Manukau Institute of Technology, Auckland, New Zealand |
| BookMark | eNp9kM1vGjEQxa0olQo090q5WOp5iT_WX8eUJm0kaA-Q88rsjqmjZU1tk5RD_vcagXLoIaeRZt7vzcwbo8shDIDQZ0qmlBJzs3pYTBmhZsoMqbmgF2hEhVCVkZJdohEhVFemFvIjGqf0RAhRslYj9Hr3DEOuvkGGNvsw4Nt-E6LPv7cJuxDxPLzgpd3uej9s8M8w-CHHffLPUCa2w4vSyUVfhstDylCorzZBh4vTEZ2FgsJfnw94mW32KfvW9vgebN5HSJ_QB2f7BFfnOkGP93er2Y9q_uv7w-x2XrXM0Fwp7pgwmmlnDFdAHQeuOiO54mujmBE176hea2LdWikhNXWsU8LWTjNJKPAJ-nLy3cXwZw8pN09hH4eysmFc1JJKSVlRyZOqjSGlCK5p_fHoUH62vm8oaY5RNyXq5hh1c466gOQ_cBf91sbDe8j1CfEA8CbXUktSK_4PLj2MMg |
| CODEN | IEIMAO |
| CitedBy_id | crossref_primary_10_1016_j_epsr_2021_107372 crossref_primary_10_3390_electronics9071128 crossref_primary_10_12677_MOS_2024_131019 crossref_primary_10_3390_jsan14020025 crossref_primary_10_1109_TIM_2023_3271009 crossref_primary_10_32604_cmc_2024_051289 crossref_primary_10_3390_s22176639 crossref_primary_10_1109_TIM_2024_3413152 crossref_primary_10_1016_j_jmsy_2021_11_010 crossref_primary_10_1109_TCE_2023_3236452 crossref_primary_10_1016_j_enbuild_2024_113890 crossref_primary_10_1109_TIA_2023_3307347 crossref_primary_10_1109_TIE_2022_3224164 crossref_primary_10_1109_TIM_2022_3181897 crossref_primary_10_1109_TSTE_2021_3106329 crossref_primary_10_1016_j_enbuild_2023_113553 crossref_primary_10_1080_15567036_2022_2046663 crossref_primary_10_3390_inventions5040057 crossref_primary_10_3390_s23187936 crossref_primary_10_1016_j_measurement_2025_116850 crossref_primary_10_1109_TIM_2021_3132370 crossref_primary_10_1016_j_ijepes_2022_107981 crossref_primary_10_1016_j_ijepes_2023_109443 crossref_primary_10_3390_electronics12040814 crossref_primary_10_1007_s13369_024_09347_1 crossref_primary_10_1049_stg2_12056 crossref_primary_10_1109_TIM_2020_3044757 crossref_primary_10_1109_TSG_2021_3113716 crossref_primary_10_1016_j_enbuild_2021_111025 crossref_primary_10_1109_ACCESS_2021_3116148 crossref_primary_10_3390_su14084639 crossref_primary_10_1016_j_phycom_2021_101584 crossref_primary_10_1109_ACCESS_2021_3067029 crossref_primary_10_1109_TIM_2023_3341128 crossref_primary_10_1016_j_renene_2021_07_056 crossref_primary_10_1109_TIM_2023_3306823 crossref_primary_10_1109_ACCESS_2019_2960465 crossref_primary_10_1155_2021_8839595 crossref_primary_10_3934_mbe_2022540 crossref_primary_10_1109_TCC_2021_3132929 crossref_primary_10_1109_TII_2024_3383521 crossref_primary_10_1016_j_egyai_2021_100055 crossref_primary_10_1109_TIM_2021_3095093 crossref_primary_10_3390_en16207207 crossref_primary_10_3390_s24020515 |
| Cites_doi | 10.1109/TPWRS.2009.2036481 10.1016/j.segan.2016.12.006 10.1109/TIM.2017.2700987 10.1016/S0196-8904(99)00173-9 10.1109/TPWRS.2017.2660246 10.3934/energy.2016.1.1 10.1016/j.egypro.2015.12.213 10.1007/978-3-642-20267-4_4 10.1016/S0378-7788(99)00007-9 10.1109/TSG.2015.2388492 10.1109/TPWRD.2009.2033799 10.1109/MPAE.2003.1192027 10.1109/IECON.2012.6389367 10.3390/s121216838 10.1109/ISCCSP.2014.6877810 10.1109/TCE.2011.5735484 10.1016/j.enbuild.2015.12.043 10.1109/TIA.2013.2258875 10.1109/TIM.2008.917179 10.1109/CIASG.2013.6611501 10.1109/TIM.2014.2344373 10.1016/j.enpol.2012.08.062 10.1109/CIASG.2014.7011569 10.1109/5.192069 10.1137/1.9781611972818.64 10.1109/GlobalSIP.2015.7418159 10.1109/GlobalSIP.2015.7418187 10.1109/TSG.2018.2818167 10.1016/j.egypro.2017.12.626 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020 |
| DBID | 97E RIA RIE AAYXX CITATION 7SP 7U5 8FD L7M |
| DOI | 10.1109/TIM.2019.2904351 |
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Electronics & Communications Abstracts Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace |
| DatabaseTitle | CrossRef Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace Electronics & Communications Abstracts |
| DatabaseTitleList | Solid State and Superconductivity Abstracts |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Physics |
| EISSN | 1557-9662 |
| EndPage | 759 |
| ExternalDocumentID | 10_1109_TIM_2019_2904351 8686047 |
| Genre | orig-research |
| GroupedDBID | -~X 0R~ 29I 4.4 5GY 5VS 6IK 85S 8WZ 97E A6W AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACIWK ACNCT AENEX AETIX AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD F5P HZ~ H~9 IAAWW IBMZZ ICLAB IDIHD IFIPE IFJZH IPLJI JAVBF LAI M43 O9- OCL P2P RIA RIE RNS TN5 TWZ VH1 VJK AAYXX CITATION 7SP 7U5 8FD L7M |
| ID | FETCH-LOGICAL-c291t-73f259828f9937e1f3e37d96373b9729543d18b80afb775681f2d75a4f82601e3 |
| IEDL.DBID | RIE |
| ISSN | 0018-9456 |
| IngestDate | Mon Jun 30 10:14:44 EDT 2025 Thu Apr 24 23:04:29 EDT 2025 Wed Oct 01 02:46:09 EDT 2025 Wed Aug 27 06:24:38 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 3 |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c291t-73f259828f9937e1f3e37d96373b9729543d18b80afb775681f2d75a4f82601e3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-1091-2121 0000-0002-2173-579X 0000-0002-7953-1482 0000-0003-1715-5925 |
| PQID | 2354616612 |
| PQPubID | 85462 |
| PageCount | 9 |
| ParticipantIDs | ieee_primary_8686047 crossref_citationtrail_10_1109_TIM_2019_2904351 crossref_primary_10_1109_TIM_2019_2904351 proquest_journals_2354616612 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2020-03-01 |
| PublicationDateYYYYMMDD | 2020-03-01 |
| PublicationDate_xml | – month: 03 year: 2020 text: 2020-03-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York |
| PublicationTitle | IEEE transactions on instrumentation and measurement |
| PublicationTitleAbbrev | TIM |
| PublicationYear | 2020 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref13 ref12 ref37 ref36 ref14 ref31 ref30 meziane (ref41) 2017 ref33 ref11 ref32 hart (ref15) 1984 (ref19) 1997; 1 ref2 ref1 ref39 ref38 ref16 bernard (ref23) 2016 klemenjak (ref18) 2016 de baets (ref29) 2016 faustine (ref17) 2017 ref24 ref25 (ref35) 2019 ref20 ref22 ref21 ref28 ref27 kolter (ref26) 2012 ref8 liao (ref6) 2014 ref7 ref9 ref4 girmay (ref34) 2016 ref3 ref5 egarter (ref10) 2015 ref40 |
| References_xml | – ident: ref38 doi: 10.1109/TPWRS.2009.2036481 – ident: ref37 doi: 10.1016/j.segan.2016.12.006 – ident: ref30 doi: 10.1109/TIM.2017.2700987 – ident: ref21 doi: 10.1016/S0196-8904(99)00173-9 – ident: ref22 doi: 10.1109/TPWRS.2017.2660246 – start-page: 1 year: 2016 ident: ref29 article-title: Event detection in NILM using cepstrum smoothing publication-title: Proc 3rd Int Workshop Non-Intrusive – start-page: 1 year: 2016 ident: ref34 article-title: Simple event detection and disaggregation approach for residential energy estimation publication-title: Proc 3rd Int Workshop Non-Intrusive – volume: 1 year: 1997 ident: ref19 article-title: Low cost NIALMS technology – year: 2015 ident: ref10 article-title: Load disaggregation with metaheuristic optimization publication-title: Proc Energieinformatik Conf – ident: ref13 doi: 10.3934/energy.2016.1.1 – ident: ref1 doi: 10.1016/j.egypro.2015.12.213 – ident: ref25 doi: 10.1007/978-3-642-20267-4_4 – ident: ref20 doi: 10.1016/S0378-7788(99)00007-9 – ident: ref11 doi: 10.1109/TSG.2015.2388492 – ident: ref8 doi: 10.1109/TPWRD.2009.2033799 – ident: ref33 doi: 10.1109/MPAE.2003.1192027 – year: 1984 ident: ref15 article-title: Nonintrusive appliance load data acquisition method: Progress report – ident: ref24 doi: 10.1109/IECON.2012.6389367 – start-page: 1 year: 2014 ident: ref6 article-title: Power disaggregation for low-sampling rate data publication-title: Proc 2nd Int Non-Intrusive – ident: ref3 doi: 10.3390/s121216838 – year: 2017 ident: ref17 publication-title: A Survey on Non-Intrusive Load Monitoring Methodies and Techniques for Energy Disaggregation Problem [J] – ident: ref39 doi: 10.1109/ISCCSP.2014.6877810 – ident: ref16 doi: 10.1109/TCE.2011.5735484 – ident: ref40 doi: 10.1016/j.enbuild.2015.12.043 – ident: ref5 doi: 10.1109/TIA.2013.2258875 – ident: ref9 doi: 10.1109/TIM.2008.917179 – start-page: 2452 year: 2017 ident: ref41 article-title: High accuracy event detection for non-intrusive load monitoring publication-title: Proc IEEE Int Conf Acoust Speech Signal Process (ICASSP) – ident: ref7 doi: 10.1109/CIASG.2013.6611501 – year: 2019 ident: ref35 publication-title: Pecan Street Inc Dataport – ident: ref28 doi: 10.1109/TIM.2014.2344373 – ident: ref2 doi: 10.1016/j.enpol.2012.08.062 – ident: ref14 doi: 10.1109/CIASG.2014.7011569 – ident: ref12 doi: 10.1109/5.192069 – year: 2016 ident: ref18 publication-title: Non-intrusive load monitoring A review and outlook – ident: ref27 doi: 10.1137/1.9781611972818.64 – start-page: 14 year: 2016 ident: ref23 article-title: Unsupervised learning algorithm using multiple electrical low and high frequency features for the task of load disaggregation publication-title: Proc 3rd Int Workshop (NILM) – start-page: 1472 year: 2012 ident: ref26 article-title: Approximate inference in additive factorial HMMs with application to energy disaggregation publication-title: Proc 15th Int Conf Artif Intell Statist – ident: ref32 doi: 10.1109/GlobalSIP.2015.7418159 – ident: ref36 doi: 10.1109/GlobalSIP.2015.7418187 – ident: ref4 doi: 10.1109/TSG.2018.2818167 – ident: ref31 doi: 10.1016/j.egypro.2017.12.626 |
| SSID | ssj0007647 |
| Score | 2.5304 |
| Snippet | One of the key techniques toward energy efficiency and conservation is nonintrusive load monitoring (NILM) which lies in the domain of energy monitoring. Event... |
| SourceID | proquest crossref ieee |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 751 |
| SubjectTerms | Algorithms Complexity Computer simulation Data acquisition Energy conservation Energy monitoring Event detection Feature extraction Home appliances Load modeling Microsoft Windows Monitoring nonintrusive load monitoring (NILM) Sensitivity analysis smart grids (SGs) Steady-state |
| Title | Event-Detection Algorithms for Low Sampling Nonintrusive Load Monitoring Systems Based on Low Complexity Statistical Features |
| URI | https://ieeexplore.ieee.org/document/8686047 https://www.proquest.com/docview/2354616612 |
| Volume | 69 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 1557-9662 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0007647 issn: 0018-9456 databaseCode: RIE dateStart: 19630101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NT9wwEB0tSJXKgbZQxLYL8oELUpONnQ_bx21hRasuF0DiFiW2AwiaVGxWFUj9751xsqsWqqo5RYodWXr2-I39_AxwIHRibSJFwE2hAvLCDAp8gtJFFckZI1nQ0sDsNDu5SL5cppcD-LA6C-Oc8-IzF9Kr38u3jVnQUtlYZSqLErkGa1Jl3VmtVdSVWdL5Y3IcwMgKlluSkR6ff56RhkuHQkfIDvgfU5C_U-VZIPazy_QVzJbt6kQlt-GiLUPz-MSy8X8b_ho2e5rJJl2_eAMDV2_Bxm_mg1vwwos_zXwbfh6T6DE4cq3XZdVscnfV3N-019_mDDkt-9r8YGcFSc_rK3ZK67d0UgPDJH4pLOvCAv2U9f7n7CPOjZbhn6gqhRyy3WwfGFFb7wyNbSPyucBk_y1cTI_PP50E_bUMgRGat4GMK0G2f6oibuN4FbtYWhzIMi61pH3D2HJVqqioSinJ4KwSVqZFUinyL3PxDqzXTe12gWG4UQ5TvjJVUWIFcjWrjbG8yjRPpdFDGC-Ryk3vWU5XZ9zlPneJdI7Y5oRt3mM7hMNVje-dX8c_ym4TVKtyPUpDGC07Q94P6Hku4jTJOJIZ8e7vtd7DS0GpuJenjWAdgXB7yFfact931F_TkOZ7 |
| linkProvider | IEEE |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Bb9MwFH4amxDssME2RNkGPnBBIm3sOLF9HLCpg7YXOmm3KLGdgRgpWlMhJu2_856TVsDQtJwixY4sffbz9-zPnwFeCyOdk0pE3BY6Ii_MqMAnKn1ckZwxVgUtDYwn2fBMfjxPz9fg7eosjPc-iM98n17DXr6b2QUtlQ10prNYqgewkUop0_a01iruqky2DpkchzDyguWmZGwG09MxqbhMX5gY-QH_axIKt6rcCsVhfjnZhvGyZa2s5Ft_0ZR9e_2PaeN9m_4EtjqiyY7anvEU1ny9A5t_2A_uwMMg_7TzXbg5Jtlj9ME3QZlVs6PLi9nV1-bL9zlDVstGs5_sc0Hi8_qCTWgFl85qYKDEL4VjbWCgn7LOAZ29w9nRMfwTVaWgQ8abzS9G5DZ4Q2PbiH4uMN3fg7OT4-n7YdRdzBBZYXgTqaQSZPynK2I3nleJT5TDoayS0ijaOUwc16WOi6pUiizOKuFUWshKk4OZT57Bej2r_XNgGHC0x6SvTHUsnUC25oy1jleZ4amypgeDJVK57VzL6fKMyzxkL7HJEducsM07bHvwZlXjR-vYcUfZXYJqVa5DqQcHy86Qd0N6nosklRlHOiNe_L_WK3g0nI5H-eh08mkfHgtKzINY7QDWERR_iOylKV-GTvsbC1HpyA |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Event-Detection+Algorithms+for+Low+Sampling+Nonintrusive+Load+Monitoring+Systems+Based+on+Low+Complexity+Statistical+Features&rft.jtitle=IEEE+transactions+on+instrumentation+and+measurement&rft.au=Rehman%2C+Attique+Ur&rft.au=Lie%2C+Tek+Tjing&rft.au=Valles%2C+Brice&rft.au=Tito%2C+Shafiqur+Rahman&rft.date=2020-03-01&rft.pub=IEEE&rft.issn=0018-9456&rft.volume=69&rft.issue=3&rft.spage=751&rft.epage=759&rft_id=info:doi/10.1109%2FTIM.2019.2904351&rft.externalDocID=8686047 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0018-9456&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0018-9456&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0018-9456&client=summon |