Event-Detection Algorithms for Low Sampling Nonintrusive Load Monitoring Systems Based on Low Complexity Statistical Features

One of the key techniques toward energy efficiency and conservation is nonintrusive load monitoring (NILM) which lies in the domain of energy monitoring. Event detection is a core component of event-based NILM systems. This paper proposes two new low-complexity and computationally fast algorithms th...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on instrumentation and measurement Vol. 69; no. 3; pp. 751 - 759
Main Authors Rehman, Attique Ur, Lie, Tek Tjing, Valles, Brice, Tito, Shafiqur Rahman
Format Journal Article
LanguageEnglish
Published New York IEEE 01.03.2020
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN0018-9456
1557-9662
DOI10.1109/TIM.2019.2904351

Cover

Abstract One of the key techniques toward energy efficiency and conservation is nonintrusive load monitoring (NILM) which lies in the domain of energy monitoring. Event detection is a core component of event-based NILM systems. This paper proposes two new low-complexity and computationally fast algorithms that detect the variations of load data and return the time occurrences of the corresponding events. The proposed algorithms are based on the phenomenon of a sliding window (SW) that tracks the statistical features of the acquired aggregated load data. The performance of the proposed algorithms is evaluated using real-world data and a comparative analysis has been carried out with one of the recently proposed event detection algorithms. Based on the simulations and sensitivity analysis, it is shown that the proposed algorithm can provide the results of up to 93% and 88% in terms of recall and precision, respectively.
AbstractList One of the key techniques toward energy efficiency and conservation is nonintrusive load monitoring (NILM) which lies in the domain of energy monitoring. Event detection is a core component of event-based NILM systems. This paper proposes two new low-complexity and computationally fast algorithms that detect the variations of load data and return the time occurrences of the corresponding events. The proposed algorithms are based on the phenomenon of a sliding window (SW) that tracks the statistical features of the acquired aggregated load data. The performance of the proposed algorithms is evaluated using real-world data and a comparative analysis has been carried out with one of the recently proposed event detection algorithms. Based on the simulations and sensitivity analysis, it is shown that the proposed algorithm can provide the results of up to 93% and 88% in terms of recall and precision, respectively.
Author Valles, Brice
Lie, Tek Tjing
Rehman, Attique Ur
Tito, Shafiqur Rahman
Author_xml – sequence: 1
  givenname: Attique Ur
  orcidid: 0000-0002-7953-1482
  surname: Rehman
  fullname: Rehman, Attique Ur
  email: attique.rehman@aut.ac.nz
  organization: Department of Electrical and Electronic Engineering, Auckland University of Technology, Auckland, New Zealand
– sequence: 2
  givenname: Tek Tjing
  orcidid: 0000-0002-1091-2121
  surname: Lie
  fullname: Lie, Tek Tjing
  email: tek.lie@aut.ac.nz
  organization: School of Engineering, Computer and Mathematical Sciences, Auckland University of Technology, Auckland, New Zealand
– sequence: 3
  givenname: Brice
  orcidid: 0000-0003-1715-5925
  surname: Valles
  fullname: Valles, Brice
  email: brice.valles@genesisenergy.co.nz
  organization: Genesis Energy Ltd., Auckland, New Zealand
– sequence: 4
  givenname: Shafiqur Rahman
  orcidid: 0000-0002-2173-579X
  surname: Tito
  fullname: Tito, Shafiqur Rahman
  email: shafiqur.tito@manukau.ac.nz
  organization: Manukau Institute of Technology, Auckland, New Zealand
BookMark eNp9kM1vGjEQxa0olQo090q5WOp5iT_WX8eUJm0kaA-Q88rsjqmjZU1tk5RD_vcagXLoIaeRZt7vzcwbo8shDIDQZ0qmlBJzs3pYTBmhZsoMqbmgF2hEhVCVkZJdohEhVFemFvIjGqf0RAhRslYj9Hr3DEOuvkGGNvsw4Nt-E6LPv7cJuxDxPLzgpd3uej9s8M8w-CHHffLPUCa2w4vSyUVfhstDylCorzZBh4vTEZ2FgsJfnw94mW32KfvW9vgebN5HSJ_QB2f7BFfnOkGP93er2Y9q_uv7w-x2XrXM0Fwp7pgwmmlnDFdAHQeuOiO54mujmBE176hea2LdWikhNXWsU8LWTjNJKPAJ-nLy3cXwZw8pN09hH4eysmFc1JJKSVlRyZOqjSGlCK5p_fHoUH62vm8oaY5RNyXq5hh1c466gOQ_cBf91sbDe8j1CfEA8CbXUktSK_4PLj2MMg
CODEN IEIMAO
CitedBy_id crossref_primary_10_1016_j_epsr_2021_107372
crossref_primary_10_3390_electronics9071128
crossref_primary_10_12677_MOS_2024_131019
crossref_primary_10_3390_jsan14020025
crossref_primary_10_1109_TIM_2023_3271009
crossref_primary_10_32604_cmc_2024_051289
crossref_primary_10_3390_s22176639
crossref_primary_10_1109_TIM_2024_3413152
crossref_primary_10_1016_j_jmsy_2021_11_010
crossref_primary_10_1109_TCE_2023_3236452
crossref_primary_10_1016_j_enbuild_2024_113890
crossref_primary_10_1109_TIA_2023_3307347
crossref_primary_10_1109_TIE_2022_3224164
crossref_primary_10_1109_TIM_2022_3181897
crossref_primary_10_1109_TSTE_2021_3106329
crossref_primary_10_1016_j_enbuild_2023_113553
crossref_primary_10_1080_15567036_2022_2046663
crossref_primary_10_3390_inventions5040057
crossref_primary_10_3390_s23187936
crossref_primary_10_1016_j_measurement_2025_116850
crossref_primary_10_1109_TIM_2021_3132370
crossref_primary_10_1016_j_ijepes_2022_107981
crossref_primary_10_1016_j_ijepes_2023_109443
crossref_primary_10_3390_electronics12040814
crossref_primary_10_1007_s13369_024_09347_1
crossref_primary_10_1049_stg2_12056
crossref_primary_10_1109_TIM_2020_3044757
crossref_primary_10_1109_TSG_2021_3113716
crossref_primary_10_1016_j_enbuild_2021_111025
crossref_primary_10_1109_ACCESS_2021_3116148
crossref_primary_10_3390_su14084639
crossref_primary_10_1016_j_phycom_2021_101584
crossref_primary_10_1109_ACCESS_2021_3067029
crossref_primary_10_1109_TIM_2023_3341128
crossref_primary_10_1016_j_renene_2021_07_056
crossref_primary_10_1109_TIM_2023_3306823
crossref_primary_10_1109_ACCESS_2019_2960465
crossref_primary_10_1155_2021_8839595
crossref_primary_10_3934_mbe_2022540
crossref_primary_10_1109_TCC_2021_3132929
crossref_primary_10_1109_TII_2024_3383521
crossref_primary_10_1016_j_egyai_2021_100055
crossref_primary_10_1109_TIM_2021_3095093
crossref_primary_10_3390_en16207207
crossref_primary_10_3390_s24020515
Cites_doi 10.1109/TPWRS.2009.2036481
10.1016/j.segan.2016.12.006
10.1109/TIM.2017.2700987
10.1016/S0196-8904(99)00173-9
10.1109/TPWRS.2017.2660246
10.3934/energy.2016.1.1
10.1016/j.egypro.2015.12.213
10.1007/978-3-642-20267-4_4
10.1016/S0378-7788(99)00007-9
10.1109/TSG.2015.2388492
10.1109/TPWRD.2009.2033799
10.1109/MPAE.2003.1192027
10.1109/IECON.2012.6389367
10.3390/s121216838
10.1109/ISCCSP.2014.6877810
10.1109/TCE.2011.5735484
10.1016/j.enbuild.2015.12.043
10.1109/TIA.2013.2258875
10.1109/TIM.2008.917179
10.1109/CIASG.2013.6611501
10.1109/TIM.2014.2344373
10.1016/j.enpol.2012.08.062
10.1109/CIASG.2014.7011569
10.1109/5.192069
10.1137/1.9781611972818.64
10.1109/GlobalSIP.2015.7418159
10.1109/GlobalSIP.2015.7418187
10.1109/TSG.2018.2818167
10.1016/j.egypro.2017.12.626
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020
DBID 97E
RIA
RIE
AAYXX
CITATION
7SP
7U5
8FD
L7M
DOI 10.1109/TIM.2019.2904351
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Electronics & Communications Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
Electronics & Communications Abstracts
DatabaseTitleList Solid State and Superconductivity Abstracts

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Physics
EISSN 1557-9662
EndPage 759
ExternalDocumentID 10_1109_TIM_2019_2904351
8686047
Genre orig-research
GroupedDBID -~X
0R~
29I
4.4
5GY
5VS
6IK
85S
8WZ
97E
A6W
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACIWK
ACNCT
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
F5P
HZ~
H~9
IAAWW
IBMZZ
ICLAB
IDIHD
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
RIA
RIE
RNS
TN5
TWZ
VH1
VJK
AAYXX
CITATION
7SP
7U5
8FD
L7M
ID FETCH-LOGICAL-c291t-73f259828f9937e1f3e37d96373b9729543d18b80afb775681f2d75a4f82601e3
IEDL.DBID RIE
ISSN 0018-9456
IngestDate Mon Jun 30 10:14:44 EDT 2025
Thu Apr 24 23:04:29 EDT 2025
Wed Oct 01 02:46:09 EDT 2025
Wed Aug 27 06:24:38 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c291t-73f259828f9937e1f3e37d96373b9729543d18b80afb775681f2d75a4f82601e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-1091-2121
0000-0002-2173-579X
0000-0002-7953-1482
0000-0003-1715-5925
PQID 2354616612
PQPubID 85462
PageCount 9
ParticipantIDs ieee_primary_8686047
crossref_citationtrail_10_1109_TIM_2019_2904351
crossref_primary_10_1109_TIM_2019_2904351
proquest_journals_2354616612
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-03-01
PublicationDateYYYYMMDD 2020-03-01
PublicationDate_xml – month: 03
  year: 2020
  text: 2020-03-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on instrumentation and measurement
PublicationTitleAbbrev TIM
PublicationYear 2020
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref12
ref37
ref36
ref14
ref31
ref30
meziane (ref41) 2017
ref33
ref11
ref32
hart (ref15) 1984
(ref19) 1997; 1
ref2
ref1
ref39
ref38
ref16
bernard (ref23) 2016
klemenjak (ref18) 2016
de baets (ref29) 2016
faustine (ref17) 2017
ref24
ref25
(ref35) 2019
ref20
ref22
ref21
ref28
ref27
kolter (ref26) 2012
ref8
liao (ref6) 2014
ref7
ref9
ref4
girmay (ref34) 2016
ref3
ref5
egarter (ref10) 2015
ref40
References_xml – ident: ref38
  doi: 10.1109/TPWRS.2009.2036481
– ident: ref37
  doi: 10.1016/j.segan.2016.12.006
– ident: ref30
  doi: 10.1109/TIM.2017.2700987
– ident: ref21
  doi: 10.1016/S0196-8904(99)00173-9
– ident: ref22
  doi: 10.1109/TPWRS.2017.2660246
– start-page: 1
  year: 2016
  ident: ref29
  article-title: Event detection in NILM using cepstrum smoothing
  publication-title: Proc 3rd Int Workshop Non-Intrusive
– start-page: 1
  year: 2016
  ident: ref34
  article-title: Simple event detection and disaggregation approach for residential energy estimation
  publication-title: Proc 3rd Int Workshop Non-Intrusive
– volume: 1
  year: 1997
  ident: ref19
  article-title: Low cost NIALMS technology
– year: 2015
  ident: ref10
  article-title: Load disaggregation with metaheuristic optimization
  publication-title: Proc Energieinformatik Conf
– ident: ref13
  doi: 10.3934/energy.2016.1.1
– ident: ref1
  doi: 10.1016/j.egypro.2015.12.213
– ident: ref25
  doi: 10.1007/978-3-642-20267-4_4
– ident: ref20
  doi: 10.1016/S0378-7788(99)00007-9
– ident: ref11
  doi: 10.1109/TSG.2015.2388492
– ident: ref8
  doi: 10.1109/TPWRD.2009.2033799
– ident: ref33
  doi: 10.1109/MPAE.2003.1192027
– year: 1984
  ident: ref15
  article-title: Nonintrusive appliance load data acquisition method: Progress report
– ident: ref24
  doi: 10.1109/IECON.2012.6389367
– start-page: 1
  year: 2014
  ident: ref6
  article-title: Power disaggregation for low-sampling rate data
  publication-title: Proc 2nd Int Non-Intrusive
– ident: ref3
  doi: 10.3390/s121216838
– year: 2017
  ident: ref17
  publication-title: A Survey on Non-Intrusive Load Monitoring Methodies and Techniques for Energy Disaggregation Problem [J]
– ident: ref39
  doi: 10.1109/ISCCSP.2014.6877810
– ident: ref16
  doi: 10.1109/TCE.2011.5735484
– ident: ref40
  doi: 10.1016/j.enbuild.2015.12.043
– ident: ref5
  doi: 10.1109/TIA.2013.2258875
– ident: ref9
  doi: 10.1109/TIM.2008.917179
– start-page: 2452
  year: 2017
  ident: ref41
  article-title: High accuracy event detection for non-intrusive load monitoring
  publication-title: Proc IEEE Int Conf Acoust Speech Signal Process (ICASSP)
– ident: ref7
  doi: 10.1109/CIASG.2013.6611501
– year: 2019
  ident: ref35
  publication-title: Pecan Street Inc Dataport
– ident: ref28
  doi: 10.1109/TIM.2014.2344373
– ident: ref2
  doi: 10.1016/j.enpol.2012.08.062
– ident: ref14
  doi: 10.1109/CIASG.2014.7011569
– ident: ref12
  doi: 10.1109/5.192069
– year: 2016
  ident: ref18
  publication-title: Non-intrusive load monitoring A review and outlook
– ident: ref27
  doi: 10.1137/1.9781611972818.64
– start-page: 14
  year: 2016
  ident: ref23
  article-title: Unsupervised learning algorithm using multiple electrical low and high frequency features for the task of load disaggregation
  publication-title: Proc 3rd Int Workshop (NILM)
– start-page: 1472
  year: 2012
  ident: ref26
  article-title: Approximate inference in additive factorial HMMs with application to energy disaggregation
  publication-title: Proc 15th Int Conf Artif Intell Statist
– ident: ref32
  doi: 10.1109/GlobalSIP.2015.7418159
– ident: ref36
  doi: 10.1109/GlobalSIP.2015.7418187
– ident: ref4
  doi: 10.1109/TSG.2018.2818167
– ident: ref31
  doi: 10.1016/j.egypro.2017.12.626
SSID ssj0007647
Score 2.5304
Snippet One of the key techniques toward energy efficiency and conservation is nonintrusive load monitoring (NILM) which lies in the domain of energy monitoring. Event...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 751
SubjectTerms Algorithms
Complexity
Computer simulation
Data acquisition
Energy conservation
Energy monitoring
Event detection
Feature extraction
Home appliances
Load modeling
Microsoft Windows
Monitoring
nonintrusive load monitoring (NILM)
Sensitivity analysis
smart grids (SGs)
Steady-state
Title Event-Detection Algorithms for Low Sampling Nonintrusive Load Monitoring Systems Based on Low Complexity Statistical Features
URI https://ieeexplore.ieee.org/document/8686047
https://www.proquest.com/docview/2354616612
Volume 69
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1557-9662
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0007647
  issn: 0018-9456
  databaseCode: RIE
  dateStart: 19630101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NT9wwEB0tSJXKgbZQxLYL8oELUpONnQ_bx21hRasuF0DiFiW2AwiaVGxWFUj9751xsqsWqqo5RYodWXr2-I39_AxwIHRibSJFwE2hAvLCDAp8gtJFFckZI1nQ0sDsNDu5SL5cppcD-LA6C-Oc8-IzF9Kr38u3jVnQUtlYZSqLErkGa1Jl3VmtVdSVWdL5Y3IcwMgKlluSkR6ff56RhkuHQkfIDvgfU5C_U-VZIPazy_QVzJbt6kQlt-GiLUPz-MSy8X8b_ho2e5rJJl2_eAMDV2_Bxm_mg1vwwos_zXwbfh6T6DE4cq3XZdVscnfV3N-019_mDDkt-9r8YGcFSc_rK3ZK67d0UgPDJH4pLOvCAv2U9f7n7CPOjZbhn6gqhRyy3WwfGFFb7wyNbSPyucBk_y1cTI_PP50E_bUMgRGat4GMK0G2f6oibuN4FbtYWhzIMi61pH3D2HJVqqioSinJ4KwSVqZFUinyL3PxDqzXTe12gWG4UQ5TvjJVUWIFcjWrjbG8yjRPpdFDGC-Ryk3vWU5XZ9zlPneJdI7Y5oRt3mM7hMNVje-dX8c_ym4TVKtyPUpDGC07Q94P6Hku4jTJOJIZ8e7vtd7DS0GpuJenjWAdgXB7yFfact931F_TkOZ7
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Bb9MwFH4amxDssME2RNkGPnBBIm3sOLF9HLCpg7YXOmm3KLGdgRgpWlMhJu2_856TVsDQtJwixY4sffbz9-zPnwFeCyOdk0pE3BY6Ii_MqMAnKn1ckZwxVgUtDYwn2fBMfjxPz9fg7eosjPc-iM98n17DXr6b2QUtlQ10prNYqgewkUop0_a01iruqky2DpkchzDyguWmZGwG09MxqbhMX5gY-QH_axIKt6rcCsVhfjnZhvGyZa2s5Ft_0ZR9e_2PaeN9m_4EtjqiyY7anvEU1ny9A5t_2A_uwMMg_7TzXbg5Jtlj9ME3QZlVs6PLi9nV1-bL9zlDVstGs5_sc0Hi8_qCTWgFl85qYKDEL4VjbWCgn7LOAZ29w9nRMfwTVaWgQ8abzS9G5DZ4Q2PbiH4uMN3fg7OT4-n7YdRdzBBZYXgTqaQSZPynK2I3nleJT5TDoayS0ijaOUwc16WOi6pUiizOKuFUWshKk4OZT57Bej2r_XNgGHC0x6SvTHUsnUC25oy1jleZ4amypgeDJVK57VzL6fKMyzxkL7HJEducsM07bHvwZlXjR-vYcUfZXYJqVa5DqQcHy86Qd0N6nosklRlHOiNe_L_WK3g0nI5H-eh08mkfHgtKzINY7QDWERR_iOylKV-GTvsbC1HpyA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Event-Detection+Algorithms+for+Low+Sampling+Nonintrusive+Load+Monitoring+Systems+Based+on+Low+Complexity+Statistical+Features&rft.jtitle=IEEE+transactions+on+instrumentation+and+measurement&rft.au=Rehman%2C+Attique+Ur&rft.au=Lie%2C+Tek+Tjing&rft.au=Valles%2C+Brice&rft.au=Tito%2C+Shafiqur+Rahman&rft.date=2020-03-01&rft.pub=IEEE&rft.issn=0018-9456&rft.volume=69&rft.issue=3&rft.spage=751&rft.epage=759&rft_id=info:doi/10.1109%2FTIM.2019.2904351&rft.externalDocID=8686047
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0018-9456&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0018-9456&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0018-9456&client=summon