Mismatched Binary Hypothesis Testing: Error Exponent Sensitivity
We study the problem of mismatched binary hypothesis testing between i.i.d. distributions. We analyze the tradeoff between the pairwise error probability exponents when the actual distributions generating the observation are different from the distributions used in the likelihood ratio test, sequent...
Saved in:
| Published in | IEEE transactions on information theory Vol. 68; no. 10; pp. 6738 - 6761 |
|---|---|
| Main Authors | , |
| Format | Journal Article |
| Language | English |
| Published |
New York
IEEE
01.10.2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Subjects | |
| Online Access | Get full text |
| ISSN | 0018-9448 1557-9654 |
| DOI | 10.1109/TIT.2022.3171438 |
Cover
| Summary: | We study the problem of mismatched binary hypothesis testing between i.i.d. distributions. We analyze the tradeoff between the pairwise error probability exponents when the actual distributions generating the observation are different from the distributions used in the likelihood ratio test, sequential probability ratio test, and Hoeffding's generalized likelihood ratio test in the composite setting. When the real distributions are within a small divergence ball of the test distributions, we find the deviation of the worst-case error exponent of each test with respect to the matched error exponent. In addition, we consider the case where an adversary tampers with the observation, again within a divergence ball of the observation type. We show that the tests are more sensitive to distribution mismatch than to adversarial observation tampering. |
|---|---|
| Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ISSN: | 0018-9448 1557-9654 |
| DOI: | 10.1109/TIT.2022.3171438 |