Research on the Influence of the Load Direction and the Cross-Section Shape on the Young's Modulus of Elements Produced by the Fused Deposition Modeling Method
The mechanical properties and behavior of fused deposition modeling (FDM) additive manufactured (AM) polymeric products are influenced by a variety of parameters. The subject of this research was to determine how parameters such as compressive load direction and the shape of the 3D-printed specimens...
Saved in:
Published in | Journal of materials engineering and performance Vol. 31; no. 10; pp. 7906 - 7912 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
New York
Springer US
01.10.2022
|
Subjects | |
Online Access | Get full text |
ISSN | 1059-9495 1544-1024 |
DOI | 10.1007/s11665-022-06848-8 |
Cover
Abstract | The mechanical properties and behavior of fused deposition modeling (FDM) additive manufactured (AM) polymeric products are influenced by a variety of parameters. The subject of this research was to determine how parameters such as compressive load direction and the shape of the 3D-printed specimens affect elastic modulus measurements for four different polylactic acid (PLA) filaments. The methods of measurement of compressive Young’s modulus of FDM 3D prints are not yet clearly standardized, although their values are important in creating accurate numerical models of the strength AM products. In this paper, the authors prepared four sets of specimens. Each set consisted of five sample triplets—one with circular, one with triangular and three with square cross sections to perform tri-directional quasistatic compression trials. Based on the results, it was concluded that the shape of the specimens did not affect elastic modulus values for sets made of the same material. However way the direction of the load applied caused test results to vary differently for different types of PLA material. |
---|---|
AbstractList | The mechanical properties and behavior of fused deposition modeling (FDM) additive manufactured (AM) polymeric products are influenced by a variety of parameters. The subject of this research was to determine how parameters such as compressive load direction and the shape of the 3D-printed specimens affect elastic modulus measurements for four different polylactic acid (PLA) filaments. The methods of measurement of compressive Young’s modulus of FDM 3D prints are not yet clearly standardized, although their values are important in creating accurate numerical models of the strength AM products. In this paper, the authors prepared four sets of specimens. Each set consisted of five sample triplets—one with circular, one with triangular and three with square cross sections to perform tri-directional quasistatic compression trials. Based on the results, it was concluded that the shape of the specimens did not affect elastic modulus values for sets made of the same material. However way the direction of the load applied caused test results to vary differently for different types of PLA material. |
Author | Kowalski, Łukasz Pawlik, Jan Bajda, Szymon Bembenek, Michał |
Author_xml | – sequence: 1 givenname: Michał orcidid: 0000-0002-7665-8058 surname: Bembenek fullname: Bembenek, Michał email: bembenek@agh.edu.pl organization: Faculty of Mechanical Engineering and Robotics, AGH University of Science and Technology – sequence: 2 givenname: Łukasz surname: Kowalski fullname: Kowalski, Łukasz organization: Faculty of Mechanical Engineering and Robotics, AGH University of Science and Technology – sequence: 3 givenname: Jan surname: Pawlik fullname: Pawlik, Jan organization: Faculty of Mechanical Engineering and Robotics, AGH University of Science and Technology – sequence: 4 givenname: Szymon surname: Bajda fullname: Bajda, Szymon organization: Faculty of Metals Engineering and Industrial Computer Science, AGH University of Science and Technology |
BookMark | eNp9kL1OwzAUhS1UJNrCCzB5YzLYTuw4I2r5qVQE4mdgihznpk2V2pWdDH0aXhU3hYWB6foene_I90zQyDoLCF0yes0ozW4CY1IKQjknVKpUEXWCxkykKWGUp6P4piIneZqLMzQJYUMjxHk6Rl-vEEB7s8bO4m4NeGHrtgdrALt6EJZOV3jeeDBdEz3aVoM88y4E8vajvq31Dn4jPl1vV1cBP7mqb_twCLprYQu2C_jFR9FAhcv94L3vQ1zmsHOhGZIiBG1jV_gJurWrztFprdsAFz9zij7u795nj2T5_LCY3S6J4TnriDA6EwIYJJxzyTJmyrrUiWJGiDIpldZZLhIq0iwveS2ZkQpMKpUEKnli8mSK1DHXHO7yUBem6fThR53XTVswWhyKLo5FF7HoYii6UBHlf9Cdb7ba7_-HkiMUotmuwBcb13sbT_yP-gboyZQa |
CitedBy_id | crossref_primary_10_3390_polym14122446 crossref_primary_10_3390_electronics11101582 crossref_primary_10_3390_s22218105 crossref_primary_10_3390_nano12142413 |
Cites_doi | 10.1016/j.promfg.2019.06.001 10.1002/app.48449 10.1007/s11668-016-0067-4 10.1021/acs.chemrev.7b00074 10.3390/app7060579 10.1108/13552540210441166 10.1016/j.proeng.2016.01.207 10.1016/j.compositesb.2019.01.025 10.1016/j.prostr.2016.06.019 10.1016/j.promfg.2019.06.089 10.1016/B978-0-12-818311-3.00017-3 10.1007/s10704-017-0257-4 10.1016/j.proeng.2017.06.080 10.1088/1742-6596/2133/1/012026 10.1016/j.matdes.2014.02.038 10.1016/j.matdes.2019.108089 10.1016/j.compscitech.2020.108077 10.1515/cls-2016-0016 10.1089/3dp.2016.0054 10.1016/j.addma.2018.10.022 10.1016/j.procir.2019.03.008 10.3390/technologies5020020 10.1002/pen.20886 10.1016/j.procir.2015.07.024 10.1016/j.compositesb.2019.107341 10.1016/j.compositesb.2017.01.019 |
ContentType | Journal Article |
Copyright | ASM International 2022 |
Copyright_xml | – notice: ASM International 2022 |
DBID | AAYXX CITATION |
DOI | 10.1007/s11665-022-06848-8 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1544-1024 |
EndPage | 7912 |
ExternalDocumentID | 10_1007_s11665_022_06848_8 |
GroupedDBID | -4Y -58 -5G -BR -EM -Y2 -~C .4S .86 .DC .VR 06C 06D 0R~ 0VY 199 1N0 1SB 2.D 203 28- 29K 2J2 2JN 2JY 2KG 2KM 2LR 2VQ 2~H 30V 3V. 4.4 406 408 40D 40E 5GY 5VS 67Z 6NX 6TJ 78A 88I 8AF 8FE 8FG 8TC 8UJ 8WZ 95- 95. 95~ 96X 9M8 A6W AAAVM AABHQ AACDK AAHNG AAIAL AAIKT AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABDZT ABECU ABFTD ABFTV ABHLI ABHQN ABJCF ABJNI ABJOX ABKCH ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACGOD ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACSVP ACZOJ ADHHG ADHIR ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFGCZ AFKRA AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARCSS ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN AZQEC B-. BA0 BBWZM BDATZ BENPR BGLVJ BGNMA BPHCQ CAG CCPQU COF CS3 CSCUP CZ9 D-I D1I DDRTE DNIVK DPUIP DU5 DWQXO EBLON EBS EDO EIOEI EJD ESBYG F5P FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC G-Y G-Z GGCAI GGRSB GJIRD GNUQQ GNWQR GQ6 GQ7 H13 HCIFZ HF~ HG5 HG6 HMJXF HRMNR HVGLF HZ~ I-F IJ- IKXTQ ITM IWAJR IXC IZQ I~X I~Z J-C J0Z JBSCW JZLTJ KB. KC. KDC KOV L6V LLZTM M2P M4Y M7S MA- MK~ N2Q NB0 NDZJH NF0 NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM P19 P2P P9N PDBOC PF0 PQQKQ PROAC PT4 PT5 PTHSS Q2X QF4 QM1 QN7 QO4 QOK QOR QOS R4E R89 R9I RHV RIG RNI RNS ROL RPX RSV RZK S16 S1Z S26 S27 S28 S3B SAP SCG SCLPG SCM SDH SDM SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TSG TSK TSV TUC TUS U2A UG4 ULE UOJIU UTJUX UZXMN VC2 VFIZW VXZ W48 W4F WK8 XSW YLTOR Z45 Z5O Z7R Z7S Z7V Z7W Z7X Z7Y Z7Z Z81 Z83 Z85 Z86 Z88 Z8M Z8N Z8Q Z8R Z8T Z8W Z8Z Z92 ZMTXR ~EX AAPKM AAYXX ABBRH ABDBE ABFSG ACSTC ADHKG AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT |
ID | FETCH-LOGICAL-c291t-5ca755e1e32226171cbfba381c55b3b8aa795305479b2f61c68ec4686e0623c93 |
IEDL.DBID | AGYKE |
ISSN | 1059-9495 |
IngestDate | Tue Jul 01 03:15:15 EDT 2025 Thu Apr 24 23:01:22 EDT 2025 Fri Feb 21 02:44:41 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 10 |
Keywords | compressive strength Young modulus elastic modulus 3D printing FDM |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c291t-5ca755e1e32226171cbfba381c55b3b8aa795305479b2f61c68ec4686e0623c93 |
ORCID | 0000-0002-7665-8058 |
PageCount | 7 |
ParticipantIDs | crossref_citationtrail_10_1007_s11665_022_06848_8 crossref_primary_10_1007_s11665_022_06848_8 springer_journals_10_1007_s11665_022_06848_8 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20221000 2022-10-00 |
PublicationDateYYYYMMDD | 2022-10-01 |
PublicationDate_xml | – month: 10 year: 2022 text: 20221000 |
PublicationDecade | 2020 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York |
PublicationTitle | Journal of materials engineering and performance |
PublicationTitleAbbrev | J. of Materi Eng and Perform |
PublicationYear | 2022 |
Publisher | Springer US |
Publisher_xml | – name: Springer US |
References | Sculpteo (2021) The State of 3D Printing—The data you need to understand the 3D Printing world and build your 3D Printing strategy. https://www.sculpteo.com/en/ebooks/state-of-3d-printing-report-2021/. Accessed 13 Jan 2022 LigonSCLiskaRStampflJPolymers for 3D Printing and Customized Additive ManufacturingChemical Reviews201711710212102901:CAS:528:DC%2BC2sXht1eku7bP10.1021/acs.chemrev.7b00074 YaoTDengZZhangKLiSA method to Predict the Ultimate Tensile Strength of 3D Printing Polylactic Acid (PLA) Materials with Different Printing OrientationsCompos. Part B Eng.20191633934021:CAS:528:DC%2BC1MXhtVagurY%3D10.1016/j.compositesb.2019.01.025 DrozdovADde ClavilleCJThe Effect of Porosity on Elastic Moduli of Polymer FoamsJ. Appl. Polym. Sci.202010.1002/app.48449 TDS Easy PLA. https://fiberlogy.com/wp-content/uploads/2018/05/TDS-EASY-PLA_EN-1.pdf. Accessed 13 Jan 2022 AlaimoGMarconiSCostatoLAuricchioFInfluence of Meso-Structure and Chemical Composition on FDM 3D-Printed PartsCompos. Part B Eng.20171133713801:CAS:528:DC%2BC2sXislGhtLY%3D10.1016/j.compositesb.2017.01.019 AbbotDWKallonDVVAnghelCDubePFinite Element Analysis of 3D Printed Model via Compression TestsProcedia Manuf.20193516417310.1016/j.promfg.2019.06.001 XuJXuFGaoGThe Effect of 3D Printing Process Parameters on the Mechanical Properties of PLA PartsJ. Phys. Conf. Ser.2021213301202610.1088/1742-6596/2133/1/012026 Grand View Research Inc. (2021) 3D Printing Market Size, Share & Trends Analysis Report By Component, By Printer Type (Desktop, Industrial), By Technology, By Software, By Application, By Vertical, By Material, By Region, And Segment Forecasts, 2021 - 2028. https://www.grandviewresearch.com/industry-analysis/3d-printing-industry-analysis ShahrubudinNLeeTCRamlanRAn Overview on 3D Printing Technology: Technological, Materials, and ApplicationsProcedia Manuf.2019351286129610.1016/j.promfg.2019.06.089 KoziorTKunderaCEvaluation of the Influence of Parameters of FDM Technology on the Selected Mechanical Properties of ModelsProcedia Eng.201719246346810.1016/j.proeng.2017.06.080 GardanJMakkeARechoNA Method to Improve the Fracture Toughness Using 3D Printing by Extrusion DepositionProcedia Struct. Integr.2016214415110.1016/j.prostr.2016.06.019 TorradoARRobersonDAFailure Analysis and Anisotropy Evaluation of 3D-Printed Tensile Test Specimens of Different Geometries and Print Raster PatternsJ. Failure Anal. Prevent.20161615416410.1007/s11668-016-0067-4 LayMThajudinNLNHamidZAAComparison of Physical and Mechanical Properties of PLA, ABS and Nylon 6 Fabricated Using Fused Deposition Modeling and Injection MoldingCompos. Part B Eng.20191761073411:CAS:528:DC%2BC1MXit1Cmt7vL10.1016/j.compositesb.2019.107341 GriffithsCAHowarthJRowbothamGDAReesAEffect of Build Parameters on Processing Efficiency and Material Performance in Fused Deposition ModellingProcedia CIRP201649283210.1016/j.procir.2015.07.024 International Organization for Standardization (2012) ISO 527, Plastics — Determination of tensile properties ASTM International (2015) ASTM-D695, Standard Test Method for Compressive Properties of Rigid Plastics BrischettoSFerroCMaggiorePTorreRCompression Tests of ABS Specimens for UAV Components Produced via the FDM TechniqueTechnologies201752010.3390/technologies5020020 PLA Starter - ROSA3D. https://rosa3d.pl/portfolio-items/plastarter-2/?fbclid=IwAR2-C3gmibE6jiX-r4ZAD1f9kKR8Lx5BCuVxuKaqTOslxWnXv77wtRoAJT4. Accessed 13 Jan 2022 SzykiedansKCredoWMechanical Properties of FDM and SLA Low-Cost 3-D PrintsProcedia Eng.20161362572621:CAS:528:DC%2BC28XisFOitLY%3D10.1016/j.proeng.2016.01.207 HeQWangHFuKYeL3D Printed Continuous CF/PA6 Composites: Effect of Microscopic Voids on Mechanical PerformanceCompos. Sci. Technol.20201911080771:CAS:528:DC%2BB3cXmvFSntr8%3D10.1016/j.compscitech.2020.108077 TDS Impact PLA. https://2b3d.pl/public/assets//TDS IMPACT PLA PL.pdf. Accessed 13 Jan 2022 ZouaouiMLabergereCGardanJNumerical Prediction of 3d Printed Specimens Based on a Strengthening Method of Fracture ToughnessProcedia CIRP201981404410.1016/j.procir.2019.03.008 FanegasNGómezMAJiménezIOptimizing the Balance Between Impact Strength and Stiffness in Polypropylene/Elastomer Blends by Incorporation of a Nucleating AgentPolym. Eng. Sci.20084880871:CAS:528:DC%2BD1cXjtFahsw%3D%3D10.1002/pen.20886 AndersonIMechanical Properties of Specimens 3D Printed with Virgin and Recycled Polylactic Acid3D Print. Addit. Manuf.2017411011510.1089/3dp.2016.0054 TymrakBMKreigerMPearceJMMechanical Properties of Components Fabricated with Open-Source 3-D Printers Under Realistic Environmental ConditionsMater. Des.2014582422461:CAS:528:DC%2BC2cXltlelsbg%3D10.1016/j.matdes.2014.02.038 BrischettoSCianoAFerroCGA Multipurpose Modular Drone with Adjustable Arms Produced via the FDM Additive Manufacturing ProcessCurved Layered Struct.2016320221310.1515/cls-2016-0016 ZaldivarRJMclouthTDFerrelliGLEffect of Initial Filament Moisture Content on the Microstructure and Mechanical Performance of ULTEM ® 9085 3D Printed PartsAddit. Manuf.2018244574661:CAS:528:DC%2BC1cXisVaksL3J10.1016/j.addma.2018.10.022 CuiffoMASnyderJElliottAMImpact of the Fused Deposition (FDM) Printing Process on Polylactic Acid (PLA) Chemistry and StructureAppl. Sci. (Switzerland)201771141:CAS:528:DC%2BC1cXitFymu77M10.3390/app7060579 GardanJMakkeARechoNImproving the Fracture Toughness of 3D Printed Thermoplastic Polymers by Fused Deposition ModelingInt. J. Fracture201821011510.1007/s10704-017-0257-4 PrzybytekAKucińska-LipkaJJanikHThermoplastic Elastomer Filaments and Their Application in 3D PrintingElastomery2016203239 ZhaoYChenYZhouYNovel Mechanical Models of Tensile Strength and Elastic Property of FDM AM PLA Materials: Experimental and Theoretical AnalysesMater. Des.20191811080891:CAS:528:DC%2BC1MXhsFCmtrbI10.1016/j.matdes.2019.108089 C.W. Hull (1984) Apparatus for Production of Three-Dmensonal Objects By Stereo Thography. Patent 16 Ahn SH, Montero M, Odell D, et al (2002) Anisotropic material properties of fused deposition modeling ABS M Zouaoui (6848_CR22) 2019; 81 S Brischetto (6848_CR17) 2017; 5 J Xu (6848_CR15) 2021; 2133 AR Torrado (6848_CR5) 2016; 16 Q He (6848_CR34) 2020; 191 Y Zhao (6848_CR20) 2019; 181 N Shahrubudin (6848_CR4) 2019; 35 DW Abbot (6848_CR19) 2019; 35 6848_CR29 MA Cuiffo (6848_CR10) 2017; 7 BM Tymrak (6848_CR8) 2014; 58 6848_CR27 6848_CR26 N Fanegas (6848_CR31) 2008; 48 6848_CR25 AD Drozdov (6848_CR33) 2020 SC Ligon (6848_CR6) 2017; 117 T Kozior (6848_CR12) 2017; 192 J Gardan (6848_CR24) 2016; 2 K Szykiedans (6848_CR11) 2016; 136 A Przybytek (6848_CR28) 2016; 20 I Anderson (6848_CR7) 2017; 4 J Gardan (6848_CR23) 2018; 210 CA Griffiths (6848_CR14) 2016; 49 G Alaimo (6848_CR18) 2017; 113 6848_CR1 6848_CR3 6848_CR2 M Lay (6848_CR9) 2019; 176 6848_CR13 S Brischetto (6848_CR16) 2016; 3 T Yao (6848_CR21) 2019; 163 RJ Zaldivar (6848_CR32) 2018; 24 6848_CR30 |
References_xml | – reference: KoziorTKunderaCEvaluation of the Influence of Parameters of FDM Technology on the Selected Mechanical Properties of ModelsProcedia Eng.201719246346810.1016/j.proeng.2017.06.080 – reference: XuJXuFGaoGThe Effect of 3D Printing Process Parameters on the Mechanical Properties of PLA PartsJ. Phys. Conf. Ser.2021213301202610.1088/1742-6596/2133/1/012026 – reference: LigonSCLiskaRStampflJPolymers for 3D Printing and Customized Additive ManufacturingChemical Reviews201711710212102901:CAS:528:DC%2BC2sXht1eku7bP10.1021/acs.chemrev.7b00074 – reference: FanegasNGómezMAJiménezIOptimizing the Balance Between Impact Strength and Stiffness in Polypropylene/Elastomer Blends by Incorporation of a Nucleating AgentPolym. Eng. Sci.20084880871:CAS:528:DC%2BD1cXjtFahsw%3D%3D10.1002/pen.20886 – reference: PLA Starter - ROSA3D. https://rosa3d.pl/portfolio-items/plastarter-2/?fbclid=IwAR2-C3gmibE6jiX-r4ZAD1f9kKR8Lx5BCuVxuKaqTOslxWnXv77wtRoAJT4. Accessed 13 Jan 2022 – reference: TDS Impact PLA. https://2b3d.pl/public/assets//TDS IMPACT PLA PL.pdf. Accessed 13 Jan 2022 – reference: AlaimoGMarconiSCostatoLAuricchioFInfluence of Meso-Structure and Chemical Composition on FDM 3D-Printed PartsCompos. Part B Eng.20171133713801:CAS:528:DC%2BC2sXislGhtLY%3D10.1016/j.compositesb.2017.01.019 – reference: AndersonIMechanical Properties of Specimens 3D Printed with Virgin and Recycled Polylactic Acid3D Print. Addit. Manuf.2017411011510.1089/3dp.2016.0054 – reference: LayMThajudinNLNHamidZAAComparison of Physical and Mechanical Properties of PLA, ABS and Nylon 6 Fabricated Using Fused Deposition Modeling and Injection MoldingCompos. Part B Eng.20191761073411:CAS:528:DC%2BC1MXit1Cmt7vL10.1016/j.compositesb.2019.107341 – reference: GriffithsCAHowarthJRowbothamGDAReesAEffect of Build Parameters on Processing Efficiency and Material Performance in Fused Deposition ModellingProcedia CIRP201649283210.1016/j.procir.2015.07.024 – reference: BrischettoSCianoAFerroCGA Multipurpose Modular Drone with Adjustable Arms Produced via the FDM Additive Manufacturing ProcessCurved Layered Struct.2016320221310.1515/cls-2016-0016 – reference: ShahrubudinNLeeTCRamlanRAn Overview on 3D Printing Technology: Technological, Materials, and ApplicationsProcedia Manuf.2019351286129610.1016/j.promfg.2019.06.089 – reference: DrozdovADde ClavilleCJThe Effect of Porosity on Elastic Moduli of Polymer FoamsJ. Appl. Polym. Sci.202010.1002/app.48449 – reference: SzykiedansKCredoWMechanical Properties of FDM and SLA Low-Cost 3-D PrintsProcedia Eng.20161362572621:CAS:528:DC%2BC28XisFOitLY%3D10.1016/j.proeng.2016.01.207 – reference: HeQWangHFuKYeL3D Printed Continuous CF/PA6 Composites: Effect of Microscopic Voids on Mechanical PerformanceCompos. Sci. Technol.20201911080771:CAS:528:DC%2BB3cXmvFSntr8%3D10.1016/j.compscitech.2020.108077 – reference: C.W. Hull (1984) Apparatus for Production of Three-Dmensonal Objects By Stereo Thography. Patent 16 – reference: Ahn SH, Montero M, Odell D, et al (2002) Anisotropic material properties of fused deposition modeling ABS – reference: ZhaoYChenYZhouYNovel Mechanical Models of Tensile Strength and Elastic Property of FDM AM PLA Materials: Experimental and Theoretical AnalysesMater. Des.20191811080891:CAS:528:DC%2BC1MXhsFCmtrbI10.1016/j.matdes.2019.108089 – reference: BrischettoSFerroCMaggiorePTorreRCompression Tests of ABS Specimens for UAV Components Produced via the FDM TechniqueTechnologies201752010.3390/technologies5020020 – reference: ZouaouiMLabergereCGardanJNumerical Prediction of 3d Printed Specimens Based on a Strengthening Method of Fracture ToughnessProcedia CIRP201981404410.1016/j.procir.2019.03.008 – reference: GardanJMakkeARechoNA Method to Improve the Fracture Toughness Using 3D Printing by Extrusion DepositionProcedia Struct. Integr.2016214415110.1016/j.prostr.2016.06.019 – reference: ZaldivarRJMclouthTDFerrelliGLEffect of Initial Filament Moisture Content on the Microstructure and Mechanical Performance of ULTEM ® 9085 3D Printed PartsAddit. Manuf.2018244574661:CAS:528:DC%2BC1cXisVaksL3J10.1016/j.addma.2018.10.022 – reference: YaoTDengZZhangKLiSA method to Predict the Ultimate Tensile Strength of 3D Printing Polylactic Acid (PLA) Materials with Different Printing OrientationsCompos. Part B Eng.20191633934021:CAS:528:DC%2BC1MXhtVagurY%3D10.1016/j.compositesb.2019.01.025 – reference: TDS Easy PLA. https://fiberlogy.com/wp-content/uploads/2018/05/TDS-EASY-PLA_EN-1.pdf. Accessed 13 Jan 2022 – reference: GardanJMakkeARechoNImproving the Fracture Toughness of 3D Printed Thermoplastic Polymers by Fused Deposition ModelingInt. J. Fracture201821011510.1007/s10704-017-0257-4 – reference: ASTM International (2015) ASTM-D695, Standard Test Method for Compressive Properties of Rigid Plastics – reference: PrzybytekAKucińska-LipkaJJanikHThermoplastic Elastomer Filaments and Their Application in 3D PrintingElastomery2016203239 – reference: AbbotDWKallonDVVAnghelCDubePFinite Element Analysis of 3D Printed Model via Compression TestsProcedia Manuf.20193516417310.1016/j.promfg.2019.06.001 – reference: TorradoARRobersonDAFailure Analysis and Anisotropy Evaluation of 3D-Printed Tensile Test Specimens of Different Geometries and Print Raster PatternsJ. Failure Anal. Prevent.20161615416410.1007/s11668-016-0067-4 – reference: Sculpteo (2021) The State of 3D Printing—The data you need to understand the 3D Printing world and build your 3D Printing strategy. https://www.sculpteo.com/en/ebooks/state-of-3d-printing-report-2021/. Accessed 13 Jan 2022 – reference: Grand View Research Inc. (2021) 3D Printing Market Size, Share & Trends Analysis Report By Component, By Printer Type (Desktop, Industrial), By Technology, By Software, By Application, By Vertical, By Material, By Region, And Segment Forecasts, 2021 - 2028. https://www.grandviewresearch.com/industry-analysis/3d-printing-industry-analysis – reference: CuiffoMASnyderJElliottAMImpact of the Fused Deposition (FDM) Printing Process on Polylactic Acid (PLA) Chemistry and StructureAppl. Sci. (Switzerland)201771141:CAS:528:DC%2BC1cXitFymu77M10.3390/app7060579 – reference: International Organization for Standardization (2012) ISO 527, Plastics — Determination of tensile properties – reference: TymrakBMKreigerMPearceJMMechanical Properties of Components Fabricated with Open-Source 3-D Printers Under Realistic Environmental ConditionsMater. Des.2014582422461:CAS:528:DC%2BC2cXltlelsbg%3D10.1016/j.matdes.2014.02.038 – volume: 35 start-page: 164 year: 2019 ident: 6848_CR19 publication-title: Procedia Manuf. doi: 10.1016/j.promfg.2019.06.001 – year: 2020 ident: 6848_CR33 publication-title: J. Appl. Polym. Sci. doi: 10.1002/app.48449 – ident: 6848_CR3 – ident: 6848_CR1 – volume: 16 start-page: 154 year: 2016 ident: 6848_CR5 publication-title: J. Failure Anal. Prevent. doi: 10.1007/s11668-016-0067-4 – ident: 6848_CR29 – ident: 6848_CR27 – volume: 117 start-page: 10212 year: 2017 ident: 6848_CR6 publication-title: Chemical Reviews doi: 10.1021/acs.chemrev.7b00074 – ident: 6848_CR25 – volume: 7 start-page: 1 year: 2017 ident: 6848_CR10 publication-title: Appl. Sci. (Switzerland) doi: 10.3390/app7060579 – ident: 6848_CR13 doi: 10.1108/13552540210441166 – volume: 136 start-page: 257 year: 2016 ident: 6848_CR11 publication-title: Procedia Eng. doi: 10.1016/j.proeng.2016.01.207 – volume: 163 start-page: 393 year: 2019 ident: 6848_CR21 publication-title: Compos. Part B Eng. doi: 10.1016/j.compositesb.2019.01.025 – volume: 2 start-page: 144 year: 2016 ident: 6848_CR24 publication-title: Procedia Struct. Integr. doi: 10.1016/j.prostr.2016.06.019 – volume: 35 start-page: 1286 year: 2019 ident: 6848_CR4 publication-title: Procedia Manuf. doi: 10.1016/j.promfg.2019.06.089 – ident: 6848_CR2 doi: 10.1016/B978-0-12-818311-3.00017-3 – volume: 210 start-page: 1 year: 2018 ident: 6848_CR23 publication-title: Int. J. Fracture doi: 10.1007/s10704-017-0257-4 – volume: 192 start-page: 463 year: 2017 ident: 6848_CR12 publication-title: Procedia Eng. doi: 10.1016/j.proeng.2017.06.080 – volume: 2133 start-page: 012026 year: 2021 ident: 6848_CR15 publication-title: J. Phys. Conf. Ser. doi: 10.1088/1742-6596/2133/1/012026 – volume: 58 start-page: 242 year: 2014 ident: 6848_CR8 publication-title: Mater. Des. doi: 10.1016/j.matdes.2014.02.038 – volume: 181 start-page: 108089 year: 2019 ident: 6848_CR20 publication-title: Mater. Des. doi: 10.1016/j.matdes.2019.108089 – volume: 191 start-page: 108077 year: 2020 ident: 6848_CR34 publication-title: Compos. Sci. Technol. doi: 10.1016/j.compscitech.2020.108077 – ident: 6848_CR26 – volume: 3 start-page: 202 year: 2016 ident: 6848_CR16 publication-title: Curved Layered Struct. doi: 10.1515/cls-2016-0016 – volume: 20 start-page: 32 year: 2016 ident: 6848_CR28 publication-title: Elastomery – volume: 4 start-page: 110 year: 2017 ident: 6848_CR7 publication-title: 3D Print. Addit. Manuf. doi: 10.1089/3dp.2016.0054 – volume: 24 start-page: 457 year: 2018 ident: 6848_CR32 publication-title: Addit. Manuf. doi: 10.1016/j.addma.2018.10.022 – volume: 81 start-page: 40 year: 2019 ident: 6848_CR22 publication-title: Procedia CIRP doi: 10.1016/j.procir.2019.03.008 – volume: 5 start-page: 20 year: 2017 ident: 6848_CR17 publication-title: Technologies doi: 10.3390/technologies5020020 – volume: 48 start-page: 80 year: 2008 ident: 6848_CR31 publication-title: Polym. Eng. Sci. doi: 10.1002/pen.20886 – volume: 49 start-page: 28 year: 2016 ident: 6848_CR14 publication-title: Procedia CIRP doi: 10.1016/j.procir.2015.07.024 – volume: 176 start-page: 107341 year: 2019 ident: 6848_CR9 publication-title: Compos. Part B Eng. doi: 10.1016/j.compositesb.2019.107341 – volume: 113 start-page: 371 year: 2017 ident: 6848_CR18 publication-title: Compos. Part B Eng. doi: 10.1016/j.compositesb.2017.01.019 – ident: 6848_CR30 |
SSID | ssj0007224 |
Score | 2.3516695 |
Snippet | The mechanical properties and behavior of fused deposition modeling (FDM) additive manufactured (AM) polymeric products are influenced by a variety of... |
SourceID | crossref springer |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 7906 |
SubjectTerms | Characterization and Evaluation of Materials Chemistry and Materials Science Corrosion and Coatings Engineering Design Materials Science Quality Control Reliability Safety and Risk Technical Article Tribology |
Title | Research on the Influence of the Load Direction and the Cross-Section Shape on the Young's Modulus of Elements Produced by the Fused Deposition Modeling Method |
URI | https://link.springer.com/article/10.1007/s11665-022-06848-8 |
Volume | 31 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
journalDatabaseRights | – providerCode: PRVLSH databaseName: SpringerLink Journals customDbUrl: mediaType: online eissn: 1544-1024 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0007224 issn: 1059-9495 databaseCode: AFBBN dateStart: 19920201 isFulltext: true providerName: Library Specific Holdings – providerCode: PRVAVX databaseName: SpringerLINK - Czech Republic Consortium customDbUrl: eissn: 1544-1024 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0007224 issn: 1059-9495 databaseCode: AGYKE dateStart: 19970101 isFulltext: true titleUrlDefault: http://link.springer.com providerName: Springer Nature – providerCode: PRVAVX databaseName: SpringerLink Journals (ICM) customDbUrl: eissn: 1544-1024 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0007224 issn: 1059-9495 databaseCode: U2A dateStart: 19970101 isFulltext: true titleUrlDefault: http://www.springerlink.com/journals/ providerName: Springer Nature |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NT-MwEB0t7QUOLJ-iLFQ-rMQBgkgaO86xQAu7UIQEleAU2Y4rJFBSkebA_pn9q4wdG-hqhcQx1thy7PH4jfxmBuCn5EdaUZEEORMqiGluSACUIZBTMmSa9yaxiR0eXbHzcfz7jt65oLDKs939k6S11O_BbiFjJpo4MoVSYh7wBWhT46C0oN0_u78YvFngJGqK2SJ0CFL0AFywzP9Hmb-Q5l9D7SUz_A5jP72GW_J4WM_kofrzT-bGr85_BZYd6iT9Rk1W4Zsu1mDpQy7CdfjrOXikLAiiQvLLly8h5cQ2XJYiJ85Eoowoctt8Yn4ruHGtNw9iqv0Q1pTsVWRU5vVTXZmBBg1dvSLXNtWszol8sbLDusKPU-1ZZKaTjZUnI1vkegPGw8HtyXngqjcEKkrDWUCVSCjVoTZvOYiTQiUnUiBAUJTKnuRCJClFaxMnqYwmLFSMaxUzzvQRQjKV9jahVZSF3gJCWYqoMkLo1EN3KRFpFCqOEhq9W6pT0YHQb2GmXGpzU2HjKXtPymwWP8PFz-ziZ7wD-299pk1ij0-lD_ymZu6QV5-Ib39N_AcsRkYvLEdwB1qz51rvItaZyS6q9vD4-KrrVLwLC-Oo_wqzBvWK |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9wwEB61y6HtAUpbVF7FByQONAhnY8c5rpbdLrCLkGAleopsxyskUIKazaH8Gf4qY8fmJYTEMdZ45Njj8Wf5mxmAbSX2jWYyjQoudZSwwpIAGEcgpxXlRnRniY0dnpzw0TQ5umAXPiisDmz38CTpPPVjsBvl3EYTx7ZQSiIi8REWEipE0oGF3p-_x4MHD5zGbTFbhA5RhjcAHyzzupbnB9Lz11B3yAyXYBqG13JLrvaaudrTty8yN753_F9h0aNO0mvNZBk-mPIbfHmSi_A73AUOHqlKgqiQHIbyJaSauYZxJQviXSTKyLJwzX37W9GZbz27lDcmqHCuZKcmk6porpvaKhq0dPWanLpUs6Yg6r-THTY1fhyYwCKznVysPJm4Itc_YDocnPdHka_eEOk4o_OIaZkyZqixbzmIk6hWMyURIGjGVFcJKdOMobdJ0kzFM041F0YnXHCzj5BMZ90V6JRVaX4CYTxDVBkjdOridSmVWUy1QAmDt1tmMrkKNCxhrn1qc1th4zp_TMpsJz_Hyc_d5OdiFXYf-ty0iT3elP4dFjX3m7x-Q3ztfeJb8Gl0Phnn48OT43X4HFsbcXzBDejM_zVmE3HPXP3yZn4P8ZH2Fg |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1La8MwDDZbB2M7jD1Z9_RhsMMW2qSx4xxLH7RbWwpdobdgOw47lKQszWG_Zn91spP0AaOwY4wsQ2Rbn7A-CaEnwepKEu5ZIeXSckmokwAIBSAnhU0Va0Su5g4PR7Q3dd9mZLbB4jfZ7uWTZM5p0FWa4mVtEUa1NfHNplQzix3dNMVlFttHBy74ah1-TZ3m6i72nLytLYAIy4dYoKDN_K1j2zVtv4sad9M9RScFTsTN3LBnaE_F5-h4o3rgBfops-ZwEmPAcbhfNhzBSWQGBgkPcXGpgQyPQzPc0stbk2J08skXqlRhDv9ziodJmM2zVCvq5AnmKR6b4rAqxOLbyHazFD7aqsz70pMMux0PTVvqSzTtdj5aPavot2BJx7eXFpHcI0TZSr--ALKxpYgEB5cuCRENwTj3fAL3g-v5womoLSlT0qWMqjqAKOk3rlAlTmJ1jTChPuBAB8BOAwIcj_uOLRlIKIhHifJ5Fdnlrw5kUYxc98SYB-syyto8AZgnMOYJWBW9rOYs8lIcO6VfSwsGxbFMd4jf_E_8ER2O291g0B-936IjR28ik-B3hyrLr0zdA1BZigezF38B5iDdUQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Research+on+the+Influence+of+the+Load+Direction+and+the+Cross-Section+Shape+on+the+Young%27s+Modulus+of+Elements+Produced+by+the+Fused+Deposition+Modeling+Method&rft.jtitle=Journal+of+materials+engineering+and+performance&rft.au=Bembenek%2C+Micha%C5%82&rft.au=Kowalski%2C+%C5%81ukasz&rft.au=Pawlik%2C+Jan&rft.au=Bajda%2C+Szymon&rft.date=2022-10-01&rft.pub=Springer+US&rft.issn=1059-9495&rft.eissn=1544-1024&rft.volume=31&rft.issue=10&rft.spage=7906&rft.epage=7912&rft_id=info:doi/10.1007%2Fs11665-022-06848-8&rft.externalDocID=10_1007_s11665_022_06848_8 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1059-9495&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1059-9495&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1059-9495&client=summon |