Recommender systems in model-driven engineering A systematic mapping review
Recommender systems are information filtering systems used in many online applications like music and video broadcasting and e-commerce platforms. They are also increasingly being applied to facilitate software engineering activities. Following this trend, we are witnessing a growing research intere...
        Saved in:
      
    
          | Published in | Software and systems modeling Vol. 21; no. 1; pp. 249 - 280 | 
|---|---|
| Main Authors | , , , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
        Berlin/Heidelberg
          Springer Berlin Heidelberg
    
        01.02.2022
     | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 1619-1366 1619-1374  | 
| DOI | 10.1007/s10270-021-00905-x | 
Cover
| Abstract | Recommender systems are information filtering systems used in many online applications like music and video broadcasting and e-commerce platforms. They are also increasingly being applied to facilitate software engineering activities. Following this trend, we are witnessing a growing research interest on recommendation approaches that assist with modelling tasks and model-based development processes. In this paper, we report on a systematic mapping review (based on the analysis of 66 papers) that classifies the existing research work on recommender systems for model-driven engineering (MDE). This study aims to serve as a guide for tool builders and researchers in understanding the MDE tasks that might be subject to recommendations, the applicable recommendation techniques and evaluation methods, and the open challenges and opportunities in this field of research. | 
    
|---|---|
| AbstractList | Recommender systems are information filtering systems used in many online applications like music and video broadcasting and e-commerce platforms. They are also increasingly being applied to facilitate software engineering activities. Following this trend, we are witnessing a growing research interest on recommendation approaches that assist with modelling tasks and model-based development processes. In this paper, we report on a systematic mapping review (based on the analysis of 66 papers) that classifies the existing research work on recommender systems for model-driven engineering (MDE). This study aims to serve as a guide for tool builders and researchers in understanding the MDE tasks that might be subject to recommendations, the applicable recommendation techniques and evaluation methods, and the open challenges and opportunities in this field of research. | 
    
| Author | Cantador, Iván de Lara, Juan Guerra, Esther Almonte, Lissette  | 
    
| Author_xml | – sequence: 1 givenname: Lissette surname: Almonte fullname: Almonte, Lissette email: lissette.almonte@uam.es organization: Modelling and Software Engineering Research Group, Universidad Autónoma de Madrid – sequence: 2 givenname: Esther surname: Guerra fullname: Guerra, Esther organization: Modelling and Software Engineering Research Group, Universidad Autónoma de Madrid – sequence: 3 givenname: Iván surname: Cantador fullname: Cantador, Iván organization: Information Retrieval Group, Universidad Autónoma de Madrid – sequence: 4 givenname: Juan surname: de Lara fullname: de Lara, Juan organization: Modelling and Software Engineering Research Group, Universidad Autónoma de Madrid  | 
    
| BookMark | eNp9z89LwzAUwPEgE5xz_4Cn_gNxL2maNEcZ_hgMBNFzSNPXEWnTkVTZ_ntbJx487JR3yPc9PtdkFvqAhNwyuGMAapUYcAUUOKMAGgp6uCBzJpmmLFdi9jdLeUWWKfkKQHCthZRzsnpF13cdhhpjlo5pwC5lPmRdX2NL6-i_MGQYdj4gRh92N-SysW3C5e-7IO-PD2_rZ7p9edqs77fUcc0GWjiJurJNWY13HLJKQ42qLEpVlYopbQUrLAclrRCopg-oQfK6QZBSCZUvSHna62KfUsTGOD_YwfdhiNa3hoGZ7OZkN6Pd_NjNYUz5v3QffWfj8XyUn6K0n5gYzUf_GcNIPFd9A9Jkbps | 
    
| CitedBy_id | crossref_primary_10_1145_3702975 crossref_primary_10_1145_3687301 crossref_primary_10_1007_s10270_023_01104_6 crossref_primary_10_1007_s10270_023_01093_6 crossref_primary_10_1007_s10270_023_01094_5 crossref_primary_10_1007_s10664_024_10483_3 crossref_primary_10_1007_s10270_022_01056_3 crossref_primary_10_1016_j_infsof_2024_107492 crossref_primary_10_3390_buildings13092280 crossref_primary_10_1016_j_csl_2022_101468 crossref_primary_10_1145_3631976 crossref_primary_10_1016_j_jobe_2023_106701 crossref_primary_10_1007_s10664_024_10584_z crossref_primary_10_1007_s10639_023_11817_2 crossref_primary_10_1109_ACCESS_2025_3535527  | 
    
| Cites_doi | 10.1016/j.jss.2013.04.076 10.14236/ewic/EASE2008.8 10.18293/SEKE2016-147 10.1109/SANER.2017.7884615 10.1007/978-1-4899-7637-6_9 10.1145/3183440.3183498 10.5220/0009155600650075 10.1007/978-3-540-30187-5_28 10.1016/j.scico.2007.08.002 10.1007/s11257-011-9117-5 10.1007/978-3-030-32489-6_17 10.5381/jot.2020.19.2.a17 10.5220/0004701802910299 10.1007/s10270-015-0465-1 10.1016/j.jss.2019.110420 10.1007/978-1-4899-7637-6_3 10.1145/1858996.1859039 10.1016/j.jss.2019.110460 10.1145/2601248.2601268 10.1142/11131 10.1007/978-3-540-69073-3_27 10.1145/3344158 10.1109/TKDE.2005.99 10.1016/j.procs.2018.07.207 10.1007/s10009-010-0150-1 10.1109/MODELS-C.2019.00108 10.5381/jot.2020.19.2.a13 10.1007/s10515-012-0102-y 10.1007/s11192-015-1595-5 10.4018/IJISMD.2016070105 10.1177/0037549709340530 10.1145/3106237.3119874 10.1007/978-3-540-87877-3_20 10.1007/s10270-012-0243-2 10.1109/QUATIC.2018.00020 10.1109/RE.2014.6912283 10.1145/3417990.3421396 10.1016/j.datak.2011.02.002 10.1007/978-0-387-85820-3_3 10.1007/978-0-387-85820-3_7 10.1109/ASWEC.2009.21 10.1007/978-3-319-19237-6_5 10.1109/MODELS-C.2019.00099 10.1145/302405.302672 10.1007/s10270-016-0541-1 10.1007/978-1-4899-7637-6_2 10.1109/TII.2013.2258677 10.1109/RSSE.2012.6233402 10.1145/2398857.2384665 10.1007/s10515-014-0144-4 10.1145/2970276.2970328 10.1109/ICSE-C.2017.119 10.1023/A:1021240730564 10.1016/j.infsof.2015.03.007 10.1109/SNAMS.2018.8554581 10.1145/371920.372071 10.1109/MS.2009.161 10.1007/978-3-319-19578-0_46 10.1007/978-3-540-69100-6_1 10.1145/3038912.3052569 10.1145/2523599.2523605 10.1007/978-3-642-41533-3_2 10.1109/ICSE-NIER.2019.00014 10.1109/ICSE.2012.6227059 10.1109/MODELS.2017.5 10.1017/CBO9780511763113 10.1145/1743546.1743583 10.1007/978-3-030-11030-7_7 10.1007/s007790170019 10.1007/s10270-013-0354-4 10.1007/978-1-4899-7637-6_8 10.1007/978-1-4899-7637-6 10.1016/j.ins.2012.09.039 10.1109/MODELS.2017.25 10.1109/TSE.2016.2620458 10.1023/A:1006544522159 10.1007/3-540-45923-5_12 10.1016/j.infsof.2014.06.007 10.1007/978-3-642-04425-0_24 10.1007/s10515-019-00264-4 10.1145/1869542.1869549 10.1016/j.jss.2015.11.036 10.1109/ICSE.2019.00109 10.1109/AICCSA.2016.7945659 10.1109/MC.2006.58 10.1145/219717.219748 10.1109/ICRA.2013.6631223 10.1145/2852082 10.1016/j.scico.2019.05.003 10.1007/978-3-540-28631-8_15 10.1145/2663500 10.1007/978-0-387-85820-3_21 10.1007/978-1-4899-7637-6_15 10.1109/TCYB.2016.2545688 10.1109/MS.2015.61 10.5220/0008938002270236 10.1109/MODELS.2015.7338245 10.18293/SEKE2019-050 10.1007/978-3-319-61473-1_12 10.1007/978-3-540-69489-2_18 10.1016/j.is.2020.101545 10.1007/978-3-642-41533-3_11 10.1145/3183440.3183479 10.1016/j.jvlc.2015.02.005 10.2200/S00751ED2V01Y201701SWE004 10.1007/s10270-020-00814-5 10.5220/0006555700710082 10.21236/ADA235785 10.1007/978-3-642-12186-9_49 10.1145/3417990.3420200 10.1002/9780470249260 10.1145/3365438.3410947  | 
    
| ContentType | Journal Article | 
    
| Copyright | The Author(s) 2021 | 
    
| Copyright_xml | – notice: The Author(s) 2021 | 
    
| DBID | C6C AAYXX CITATION  | 
    
| DOI | 10.1007/s10270-021-00905-x | 
    
| DatabaseName | Springer Nature OA Free Journals CrossRef  | 
    
| DatabaseTitle | CrossRef | 
    
| DatabaseTitleList | CrossRef  | 
    
| Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher  | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Computer Science | 
    
| EISSN | 1619-1374 | 
    
| EndPage | 280 | 
    
| ExternalDocumentID | 10_1007_s10270_021_00905_x | 
    
| GrantInformation_xml | – fundername: Consejería de Educación, Juventud y Deporte, Comunidad de Madrid grantid: P2018/TCS-4314 funderid: http://dx.doi.org/10.13039/501100008433 – fundername: Ministerio de Ciencia e Innovación grantid: PID2019-108965GB-I00; RTI2018-095255-B-I00 funderid: http://dx.doi.org/10.13039/501100004837 – fundername: European Commission grantid: Marie Sklodowska-Curie grant agreement No 813884 funderid: http://dx.doi.org/10.13039/501100000780  | 
    
| GroupedDBID | -59 -5G -BR -EM -Y2 -~C .4S .86 .DC .VR 06D 0R~ 0VY 123 1N0 203 2J2 2JN 2JY 2KG 2LR 2P1 2VQ 2~H 30V 3V. 4.4 406 408 409 40D 40E 5VS 67Z 6NX 8AO 8FE 8FG 8TC 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYOK AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDBF ABDZT ABECU ABFTD ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACSNA ACUHS ACZOJ ADHHG ADHIR ADINQ ADKNI ADKPE ADMLS ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFGCZ AFKRA AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMTXH AMXSW AMYLF AMYQR AOCGG ARAPS ARCSS ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN AZQEC B-. B0M BA0 BDATZ BENPR BGLVJ BGNMA BPHCQ BSONS C6C CAG CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 DWQXO EAD EAP EBLON EBS EDO EIOEI EJD EMK EPL ESBYG ESX FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNUQQ GNWQR GQ6 GQ7 GQ8 GXS H13 HCIFZ HF~ HG5 HG6 HLICF HMJXF HQYDN HRMNR HVGLF HZ~ I-F I09 IHE IJ- IKXTQ ITM IWAJR IXC IXE IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ K6V K7- KDC KOV LAS LLZTM M0N M4Y MA- N2Q NB0 NPVJJ NQJWS NU0 O9- O93 O9J OAM P62 P9O PF0 PQQKQ PROAC PT4 Q2X QOS R89 R9I RIG RNS ROL RPX RSV S16 S1Z S27 S3B SAP SCO SDH SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 TSG TSK TSV TUC TUS U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR Z45 Z5O Z7R Z7S Z7X Z7Z Z81 Z83 Z88 ZMTXR ~8M AAPKM AAYXX ABBRH ABDBE ABFSG ABRTQ ACSTC ADHKG AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT PQGLB PUEGO  | 
    
| ID | FETCH-LOGICAL-c291t-5c6e9baf8b994ce1b90de78587b87179a415a2076a44e7ce1be9062dfe0667473 | 
    
| IEDL.DBID | C6C | 
    
| ISSN | 1619-1366 | 
    
| IngestDate | Thu Apr 24 23:02:11 EDT 2025 Wed Oct 01 03:34:49 EDT 2025 Fri Feb 21 02:47:26 EST 2025  | 
    
| IsDoiOpenAccess | true | 
    
| IsOpenAccess | true | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Issue | 1 | 
    
| Keywords | Model-driven engineering Systematic mapping review Recommender systems  | 
    
| Language | English | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-c291t-5c6e9baf8b994ce1b90de78587b87179a415a2076a44e7ce1be9062dfe0667473 | 
    
| OpenAccessLink | https://doi.org/10.1007/s10270-021-00905-x | 
    
| PageCount | 32 | 
    
| ParticipantIDs | crossref_citationtrail_10_1007_s10270_021_00905_x crossref_primary_10_1007_s10270_021_00905_x springer_journals_10_1007_s10270_021_00905_x  | 
    
| ProviderPackageCode | CITATION AAYXX  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 20220200 2022-02-00  | 
    
| PublicationDateYYYYMMDD | 2022-02-01 | 
    
| PublicationDate_xml | – month: 2 year: 2022 text: 20220200  | 
    
| PublicationDecade | 2020 | 
    
| PublicationPlace | Berlin/Heidelberg | 
    
| PublicationPlace_xml | – name: Berlin/Heidelberg | 
    
| PublicationTitle | Software and systems modeling | 
    
| PublicationTitleAbbrev | Softw Syst Model | 
    
| PublicationYear | 2022 | 
    
| Publisher | Springer Berlin Heidelberg | 
    
| Publisher_xml | – name: Springer Berlin Heidelberg | 
    
| References | Gomes, P.: Software design retrieval using bayesian networks and wordnet. In: 7th European Conf. on Advances in Case-Based Reasoning (ECCBR), volume 3155 of Lecture Notes in Computer Science, pp. 184–197. Springer (2004) Garbe, H.: Intelligent assistance in a problem solving environment for UML class diagrams by combining a generative system with constraints. In: eLearning, IADIS (2012) Méndez, D., Graziotin, D., Wagner, S., Seibold, H.: Open science in software engineering. In: Contemporary Empirical Methods in Software Engineering, pp. 477–501. Springer (2020) de OliveiraMCFreitasDBonifácioRPintoGLoDFinding needles in a haystack: leveraging co-change dependencies to recommend refactoringsJ. Syst. Softw.201915811042010.1016/j.jss.2019.110420 PatiTKolliSHillJHProactive modeling: a new model intelligence techniqueSoftw. Syst. Model.201716249952110.1007/s10270-015-0465-1 Pescador, A., de Lara, J.: DSL-maps: from requirements to design of domain-specific languages. In: 31st IEEE/ACM International Conference on Automated Software Engineering (ASE), pp. 438–443. ACM (2016) Ohrndorf, M., Pietsch, C., Kelter, U., Kehrer, T.: ReVision: a tool for history-based model repair recommendations. In: 40th International Conference on Software Engineering (ICSE), Companion Proceeedings, pp. 105–108. ACM (2018) BaudryBGhoshSFleureyFFranceRBTraonYLMottuJBarriers to systematic model transformation testingCommun. ACM201053613914310.1145/1743546.1743583 Cerqueira, T., Ramalho, F., Marinho, L.B.: A content-based approach for recommending UML sequence diagrams. In: 28th International Conference on Software Engineering and Knowledge Engineering (SEKE), pp. 644–649 (2016) BurkeRKnowledge-based recommender systemsEncycl. Libr. Inf. Syst.200069Supplement 32175186 Neubauer, P., Bill, R., Mayerhofer, T., Wimmer, M.: Automated generation of consistency-achieving model editors. In: IEEE 24th International Conference on Software Analysis, Evolution and Reengineering (SANER), pp. 127–137. IEEE Computer Society (2017) Knijnenburg, B.P., Willemsen, M.C.: Evaluating recommender systems with user experiments. In: Recommender Systems Handbook, pp. 309–352. Springer (2015) Brambilla, M., Cabot, J., Wimmer, M.: Model-Driven Software Engineering in Practice, 2nd edn. Synthesis Lectures on Software Engineering. Morgan & Claypool Publishers (2017) Hornung, T., Koschmider, A., Lausen, G.: Recommendation based process modeling support: method and user experience. In: 27th International Conference on Conceptual Modeling (ER), volume 5231 of Lecture Notes in Computer Science, pp. 265–278. Springer (2008) Kuschke, T., Mäder, P.: RapMOD - in situ auto-completion for graphical models: poster. In: 39th International Conference on Software Engineering (ICSE), Companion Volume, pp. 303–304. IEEE Computer Society (2017) Sipio, C.D., Ruscio, D.D., Nguyen, P.T.: Democratizing the development of recommender systems by means of low-code platforms. In: 1st LowCode Workshop (LowCode@MoDELS), pp. 68:1–68:9. ACM (2020) Saini, R., Mussbacher, G., Guo, J.L.C., Kienzle, J.: Teaching modelling literacy: An artificial intelligence approach. In: 22nd ACM/IEEE International Conference on Model Driven Engineering Languages and Systems (MoDELS), Companion Proceedings, pp. 714–719. IEEE (2019) Dyck, A., Ganser, A., Lichter, H.: Enabling model recommenders for command-enabled editors. In: 1st International Workshop on Model-driven Engineering By Example (MDEBE@MoDELS), volume 1104 of CEUR Workshop Proceedings, pp. 12–21 (2013) RabbiFLamoYYuICKristensenLMDiagrammatic development of domain specific modelling languages with webdpfInt. J. Inf. Syst. Model. Des.2016739311410.4018/IJISMD.2016070105 Sánchez Cuadrado, J., Guerra, E., de Lara, J.: AnATLyzer: an advanced IDE for ATL model transformations. In: 40th International Conference on Software Engineering (ICSE), Companion Proceedings, pp. 85–88. ACM (2018) Nguyen, P.T., Rocco, J.D., Ruscio, D.D., Ochoa, L., Degueule, T., Penta., M.D.: FOCUS: a recommender system for mining API function calls and usage patterns. In: 41st International Conference on Software Engineering (ICSE), pp. 1050–1060. IEEE/ACM (2019) Adomavicius, G., Tuzhilin, A.: Context-aware recommender systems. In: Recommender Systems Handbook, pp. 217–253. Springer (2011) Anguel, F., Amirat, A., Bounour, N.: Hybrid approach for metamodel and model co-evolution. In: 5th IFIP TC 5 International Conference on Computer Science and its Applications (CIIA), pp. 563–573. Springer (2015) Stephan, M.: Towards a cognizant virtual software modeling assistant using model clones. In: 41st International Conference on Software Engineering: New Ideas and Emerging Results (NIER@ICSE), pp. 21–24. IEEE/ACM (2019) Tsunoda, M., Kakimoto, T., Ohsugi, N., Monden, A., Matsumoto, K.: Javawock: A Java class recommender system based on collaborative filtering. In: 17th International Conference on Software Engineering and Knowledge Engineering (SEKE), pp. 491–497 (2005) Batot, E., Kessentini, W., Sahraoui, H.A., Famelis, M.: Heuristic-based recommendation for metamodel—OCL coevolution. In: 20th ACM/IEEE International Conference on Model Driven Engineering Languages and Systems (MoDELS), pp. 210–220. IEEE Computer Society (2017) Brosch, P., Seidl, M., Kappel, G.: A recommender for conflict resolution support in optimistic model versioning. In: ACM SIGPLAN Conference on Object-Oriented Programming, Systems, Languages, and Applications, SPLASH/OOPSLA Companion, pp. 43–50. ACM (2010) DeyAKUnderstanding and using contextPers. Ubiquit. Comput.2001514710.1007/s007790170019 Sarwar, B., Karypis, G., Konstan, J., Riedl, J.: Item-based collaborative filtering recommendation algorithms. In: 10th International Conference on the World-Wide Web (WWW), pp. 285–295 (2001) Jiang, H., Zhang, J., Li, X., Ren, Z., Lo, D., Wu, X., Luo, Z.: Recommending new features from mobile app descriptions. ACM Trans. Softw. Eng. Methodol. 28(4), 22:1–22:29 (2019) Ning, X., Desrosiers, C., Karypis, G.: A comprehensive survey of neighborhood-based recommendation methods. In: Recommender Systems Handbook, pp. 37–76. Springer (2015) JézéquelJCombemaleBBaraisOMonperrusMFouquetFMashup of metalanguages and its implementation in the Kermeta language workbenchSoftw. Syst. Model.201514290592010.1007/s10270-013-0354-4 MillerGAWordNet: A lexical database for EnglishCommun. ACM19953811394110.1145/219717.219748 Rangiha, M.E., Comuzzi, M., Karakostas, B.: Role and task recommendation and social tagging to enable social business process management. In: BPMDS/EMMSAD@CAiSE, volume 214 of Lecture Notes in Business Information Processing, pp. 68–82. Springer (2015) Simulink. https://www.mathworks.com/products/simulink.html (2020) QVT 1.3. http://www.omg.org/spec/QVT/ (2016) Dyck, A., Ganser, A., Lichter, H.: On designing recommenders for graphical domain modeling environments. In: 2nd International Conference on Model-Driven Engineering and Software Development (MODELSWARD), pp. 291–299. SciTePress (2014) Khider, H., Hammoudi, S., Benna, A., Meziane, A.: Social business process model recommender: An MDE approach. In: 5th International Conference on Social Networks Analysis, Management and Security (SNAMS), pp. 106–113. IEEE (2018) Mussbacher, G., Combemale, B., Abrahão, S., Bencomo, N., Burgueño, L., Engels, G., Kienzle, J., Kühne, T., Mosser, S., Sahraoui, H.A., Weyssow, M.: Towards an assessment grid for intelligent modeling assistance. In: 23rd International Conference on Model Driven Engineering Languages and Systems, Companion Proceedings, pp. 48:1–48:10. ACM (2020) MussbacherGCombemaleBKienzleJAbrahãoSAliHBencomoNBúrMBurgueñoLEngelsGJeanjeanPJézéquelJKühneTMosserSSahraouiHASyrianiEVarróDWeyssowMOpportunities in intelligent modeling assistanceSoftw. Syst. Model.20201951045105310.1007/s10270-020-00814-5 SeguraÁMde LaraJExtremo: an eclipse plugin for modelling and meta-modelling assistanceSci. Comput. Program.2019180718010.1016/j.scico.2019.05.003 Kluza, K., Baran, M., Bobek, S., Nalepa, G.J.: Overview of recommendation techniques in business process modeling. In: Proceedings of 9th Workshop on Knowledge Engineering and Software Engineering (KESE9), volume 1070 of CEUR Workshop Proceedings. CEUR-WS.org (2013) PetersenKVakkalankaSKuzniarzLGuidelines for conducting systematic mapping studies in software engineering: an updateInf. Softw. Technol.20156411810.1016/j.infsof.2015.03.007 López, J.A.H., Cuadrado, J.S.: MAR: a structure-based search engine for models. In: ACM/IEEE 23rd International Conference on Model Driven Engineering Languages and Systems (MoDELS), pp. 57–67. ACM (2020) OCL. http://www.omg.org/spec/OCL/ (2014) DengSWangDLiYCaoBYinJWuZZhouMA recommendation system to facilitate business process modelingIEEE Trans. Cybern.20174761380139410.1109/TCYB.2016.2545688 Großkopf, A., Brunnert, J., Wehrmeyer, S., Weske, M.: Bpmncommunity.org: a forum for process modeling practitioners - A data repository for empirical BPM research. In: Business Process Management Workshops, BPM, volume 43 of Lecture Notes in Business Information Processing, pp. 525–528. Springer (2010) Huh, J., Grundy, J.C., Hosking, J.G., Li, K.N., Amor, R.: Integrated data mapping for a software meta-tool. In: 20th Australian Software Engineering Conference (ASWEC), pp. 111–120. IEEE Computer Society (2009) Koren, Y., Bell, R.: Advances in collaborative filtering. In: Recommender Systems Handbook, pp. 77–118. Springer (2015) UML 2.5.1. https://www.uml.org/ (2017) Nguyen, P.T., Rocco, J.D., Ruscio, D.D., Penta, M.D.: CrossRec: supporting software developers by recommending third-party libraries. J. Syst. Softw. 161, 110460 (17 pages) (2020) Muslu, K., Brun, Y., Holmes, R., Ernst, M.D., Notkin, D.: Speculative analysis of integrated development environment recommendations. In: 27th Annual ACM SIGPLAN Conf. on Object-Oriented Programming, Systems, Languages, and Applications (OOPSLA), pp. 669–682. ACM (2012) TintarevNMasthoffJEvaluating the effectiveness of explanations for recommender systemsUser Model. User-Adap. Int.2012224–539943910 905_CR67 905_CR66 G Mussbacher (905_CR90) 2020; 19 905_CR69 905_CR68 S Paydar (905_CR100) 2015; 22 905_CR132 905_CR61 905_CR135 905_CR60 A Koschmider (905_CR71) 2011; 70 905_CR134 905_CR63 J Reimann (905_CR111) 2013; 12 905_CR137 MC de Oliveira (905_CR30) 2019; 158 E Guerra (905_CR44) 2013; 20 905_CR62 905_CR136 905_CR139 905_CR64 905_CR138 MC Kim (905_CR65) 2015; 104 905_CR78 905_CR77 C Cai (905_CR24) 2019; 26 905_CR79 ÁM Segura (905_CR124) 2018; 53 905_CR70 905_CR72 905_CR74 905_CR73 905_CR76 L Quijano-Sánchez (905_CR106) 2020; 92 ÁM Segura (905_CR123) 2019; 180 JD Rocco (905_CR114) 2015; 32 MJ Pazzani (905_CR102) 1999; 13 905_CR89 905_CR88 M Gasparic (905_CR41) 2016; 113 905_CR81 905_CR80 905_CR83 905_CR82 905_CR85 905_CR87 T Pati (905_CR99) 2017; 16 A Bellogín (905_CR14) 2013; 221 905_CR19 N Tintarev (905_CR133) 2012; 22 905_CR12 905_CR11 M Borg (905_CR18) 2017; 43 905_CR16 905_CR15 R Burke (905_CR23) 2002; 12 905_CR17 905_CR92 905_CR91 905_CR94 905_CR93 905_CR96 905_CR95 AK Dey (905_CR32) 2001; 5 905_CR98 905_CR97 MP Robillard (905_CR113) 2010; 27 S Sen (905_CR127) 2010; 86 Y Li (905_CR75) 2014; 10 905_CR27 F Jouault (905_CR59) 2008; 72 905_CR26 J Sánchez Cuadrado (905_CR119) 2018; 17 R Burke (905_CR22) 2000; 69 905_CR29 905_CR28 GA Miller (905_CR84) 1995; 38 905_CR21 905_CR2 905_CR1 905_CR6 B Baudry (905_CR13) 2010; 53 905_CR7 905_CR4 905_CR5 905_CR34 905_CR33 905_CR8 905_CR36 905_CR9 905_CR35 905_CR38 905_CR37 S Deng (905_CR31) 2017; 47 905_CR39 F Rabbi (905_CR109) 2016; 7 905_CR104 905_CR103 S Paydar (905_CR101) 2015; 57 905_CR108 905_CR107 J Brooke (905_CR20) 1996; 189 905_CR45 905_CR47 905_CR46 905_CR49 905_CR48 905_CR120 DC Schmidt (905_CR122) 2006; 39 905_CR110 905_CR112 G Adomavicius (905_CR3) 2005; 17 905_CR115 905_CR40 905_CR43 905_CR117 905_CR42 J Jézéquel (905_CR57) 2015; 14 905_CR116 905_CR118 I Avazpour (905_CR10) 2015; 28 905_CR56 905_CR55 905_CR58 GC Cawley (905_CR25) 2010; 11 905_CR131 K Petersen (905_CR105) 2015; 64 905_CR130 905_CR121 905_CR50 905_CR52 905_CR126 905_CR51 905_CR125 905_CR54 905_CR128 905_CR53 905_CR129 N Moha (905_CR86) 2010; 12  | 
    
| References_xml | – reference: Lops, P., De Gemmis, M., Semeraro, G.: Content-based recommender systems: State of the art and trends. In: Recommender Systems Handbook, pp. 73–105. Springer (2011) – reference: Hayashi, S., YiBing, P., Sato, M., Mori, K., Sejeon, S., Haruna, S.: Test driven development of UML models with SMART modeling system. In: 7th International Conference on The Unified Modelling Language: Modelling Languages and Applications (UML), volume 3273 of Lecture Notes in Computer Science, pp. 395–409. Springer (2004) – reference: Knijnenburg, B.P., Willemsen, M.C.: Evaluating recommender systems with user experiments. In: Recommender Systems Handbook, pp. 309–352. Springer (2015) – reference: Garbe, H.: Intelligent assistance in a problem solving environment for UML class diagrams by combining a generative system with constraints. In: eLearning, IADIS (2012) – reference: Kögel, S., Groner, R., Tichy, M.: Automatic change recommendation of models and meta models based on change histories. In: 10th Workshop on Models and Evolution (ME@MoDELS), volume 1706 of CEUR Workshop Proceedings, pp. 14–19 (2016) – reference: KoschmiderAHornungTOberweisARecommendation-based editor for business process modelingData Knowl. Eng.201170648350310.1016/j.datak.2011.02.002 – reference: SeguraÁMde LaraJNeubauerPWimmerMAutomated modelling assistance by integrating heterogeneous information sourcesComput. Lang. Syst. Struct.20185390120 – reference: Adomavicius, G., Tuzhilin, A.: Context-aware recommender systems. In: Recommender Systems Handbook, pp. 217–253. Springer (2011) – reference: Chowdhury, S.R., Daniel, F., Casati, F.: Recommendation and weaving of reusable mashup model patterns for assisted development. ACM Trans. Internet. Technol. 14(2–3), 21:1–21:23 (2014) – reference: Kögel, S.: Recommender system for model driven software development. In: 11th Joint Meeting on Foundations of Software Engineering (ESEC/FSE), pp. 1026–1029. ACM (2017) – reference: MOF 2.5.1. https://www.omg.org/mof/ (2016) – reference: Nassar, N., Radke, H., Arendt, T.: Rule-based repair of EMF models: an automated interactive approach. In: 10th International Conference on Theory and Practice of Model Transformation (ICMT), volume 10374 of Lecture Notes in Computer Science, pp. 171–181. Springer (2017) – reference: Pescador, A., de Lara, J.: DSL-maps: from requirements to design of domain-specific languages. In: 31st IEEE/ACM International Conference on Automated Software Engineering (ASE), pp. 438–443. ACM (2016) – reference: SchmidtDCGuest editor’s introduction: model-driven engineeringComputer2006392253110.1109/MC.2006.58 – reference: Gomes, P.: Software design retrieval using bayesian networks and wordnet. In: 7th European Conf. on Advances in Case-Based Reasoning (ECCBR), volume 3155 of Lecture Notes in Computer Science, pp. 184–197. Springer (2004) – reference: Rangiha, M.E., Comuzzi, M., Karakostas, B.: Role and task recommendation and social tagging to enable social business process management. In: BPMDS/EMMSAD@CAiSE, volume 214 of Lecture Notes in Business Information Processing, pp. 68–82. Springer (2015) – reference: Großkopf, A., Brunnert, J., Wehrmeyer, S., Weske, M.: Bpmncommunity.org: a forum for process modeling practitioners - A data repository for empirical BPM research. In: Business Process Management Workshops, BPM, volume 43 of Lecture Notes in Business Information Processing, pp. 525–528. Springer (2010) – reference: KimMCChenCA scientometric review of emerging trends and new developments in recommendation systemsScientometrics2015104123926310.1007/s11192-015-1595-5 – reference: Maki, S., Kpodjedo, S., Boussaidi, G.E.: Context extraction in recommendation systems in software engineering: a preliminary survey, pp. 151–160. In: IBM Corp (2015) – reference: Koren, Y., Bell, R.: Advances in collaborative filtering. In: Recommender Systems Handbook, pp. 77–118. Springer (2015) – reference: Segura, Á.M., Pescador, A., de Lara, J., Wimmer, M.: An extensible meta-modelling assistant. In: 20th IEEE International Enterprise Distributed Object Computing Conference (EDOC), pp. 1–10. IEEE Computer Society (2016) – reference: RabbiFLamoYYuICKristensenLMDiagrammatic development of domain specific modelling languages with webdpfInt. J. Inf. Syst. Model. Des.2016739311410.4018/IJISMD.2016070105 – reference: DeyAKUnderstanding and using contextPers. Ubiquit. Comput.2001514710.1007/s007790170019 – reference: Dyck, A., Ganser, A., Lichter, H.: A framework for model recommenders—requirements, architecture and tool support. In: 2nd International Conference on Model-Driven Engineering and Software Development (MODELSWARD), pp. 282–290. SciTePress (2014) – reference: Ning, X., Desrosiers, C., Karypis, G.: A comprehensive survey of neighborhood-based recommendation methods. In: Recommender Systems Handbook, pp. 37–76. Springer (2015) – reference: Tisi, M., Mottu, J., Kolovos, D.S., de Lara, J., Guerra, E., Ruscio, D.D., Pierantonio, A., Wimmer, M.: Lowcomote: training the next generation of experts in scalable low-code engineering platforms. In: STAF (Co-Located Events), volume 2405 of CEUR Workshop Proceedings, pp. 73–78. CEUR-WS.org (2019) – reference: BurkeRKnowledge-based recommender systemsEncycl. Libr. Inf. Syst.200069Supplement 32175186 – reference: France, R.B., Bieman, J.M., Mandalaparty, S.P., Cheng, B.H.C., Jensen, A.C.: Repository for model driven development (remodd). In: 34th International Conference on Software Engineering (ICSE), pp. 1471–1472. IEEE Computer Society (2012) – reference: RobillardMPWalkerRJZimmermannTRecommendation systems for software engineeringIEEE Softw.2010274808610.1109/MS.2009.161 – reference: Jannach, D., Jugovac, M., Lerche, L.: Supporting the design of machine learning workflows with a recommendation system. ACM Trans. Interact. Intell. Syst. 6(1), 8:1–8:35 (2016) – reference: Nechypurenko, A., Wuchner, E., White, J., Schmidt, D.C.: Applying model intelligence frameworks for deployment problem in real-time and embedded systems. In: Models in Software Engineering, Workshops and Symposia at MoDELS’06, Reports and Revised Selected Papers, volume 4364 of Lecture Notes in Computer Science, pp. 143–151. Springer (2006) – reference: BellogínACantadorICastellsPA comparative study of heterogeneous item recommendations in social systemsInf. Sci.2013221142169299626610.1016/j.ins.2012.09.039 – reference: Kuschke, T., Mäder, P.: RapMOD - in situ auto-completion for graphical models: poster. In: 39th International Conference on Software Engineering (ICSE), Companion Volume, pp. 303–304. IEEE Computer Society (2017) – reference: ReimannJSeifertMAßmannUOn the reuse and recommendation of model refactoring specificationsSoftw. Syst. Model.201312357959610.1007/s10270-012-0243-2 – reference: Berkovsky, S., Cantador, I., Tikk, D.: Collaborative Recommendations: Algorithms, Practical Challenges and Applications. World Scientific (2018) – reference: Dyck, A., Ganser, A., Lichter, H.: Enabling model recommenders for command-enabled editors. In: 1st International Workshop on Model-driven Engineering By Example (MDEBE@MoDELS), volume 1104 of CEUR Workshop Proceedings, pp. 12–21 (2013) – reference: Masthoff, J.: Group recommender systems: Combining individual models. In: Recommender Systems Handbook, pp. 677–702. Springer (2011) – reference: GasparicMJanesAWhat recommendation systems for software engineering recommend: a systematic literature reviewJ. Syst. Softw.201611310111310.1016/j.jss.2015.11.036 – reference: Stephan, M.: Towards a cognizant virtual software modeling assistant using model clones. In: 41st International Conference on Software Engineering: New Ideas and Emerging Results (NIER@ICSE), pp. 21–24. IEEE/ACM (2019) – reference: MillerGAWordNet: A lexical database for EnglishCommun. ACM19953811394110.1145/219717.219748 – reference: Sarwar, B., Karypis, G., Konstan, J., Riedl, J.: Item-based collaborative filtering recommendation algorithms. In: 10th International Conference on the World-Wide Web (WWW), pp. 285–295 (2001) – reference: Batot, E., Kessentini, W., Sahraoui, H.A., Famelis, M.: Heuristic-based recommendation for metamodel—OCL coevolution. In: 20th ACM/IEEE International Conference on Model Driven Engineering Languages and Systems (MoDELS), pp. 210–220. IEEE Computer Society (2017) – reference: Bobek, S., Baran, M., Kluza, K., Nalepa, G.J.: Application of bayesian networks to recommendations in business process modeling. In: Workshop AI Meets Business Processes co-located with AI*IA, volume 1101 of CEUR Workshop Proceedings, pp. 41–50 (2013) – reference: Khider, H., Hammoudi, S., Meziane, A.: Business process model recommendation as a transformation process in MDE: conceptualization and first experiments. In: 8th International Conference on Model-Driven Engineering and Software Development (MODELSWARD), pp. 65–75. SciTePress (2020) – reference: Ricci, F., Rokach, L., Shapira, B. (eds.): Recommender Systems Handbook. Springer (2015) – reference: MussbacherGCombemaleBKienzleJAbrahãoSAliHBencomoNBúrMBurgueñoLEngelsGJeanjeanPJézéquelJKühneTMosserSSahraouiHASyrianiEVarróDWeyssowMOpportunities in intelligent modeling assistanceSoftw. Syst. Model.20201951045105310.1007/s10270-020-00814-5 – reference: Cerqueira, T., Ramalho, F., Marinho, L.B.: A content-based approach for recommending UML sequence diagrams. In: 28th International Conference on Software Engineering and Knowledge Engineering (SEKE), pp. 644–649 (2016) – reference: Wohlin, C.: Guidelines for snowballing in systematic literature studies and a replication in software engineering. In: 18th International Conference on Evaluation and Assessment in Software Engineering, EASE, pp. 38:1–38:10. ACM (2014) – reference: Khider, H., Hammoudi, S., Benna, A., Meziane, A.: Social business process model recommender: An MDE approach. In: 5th International Conference on Social Networks Analysis, Management and Security (SNAMS), pp. 106–113. IEEE (2018) – reference: Nguyen, P.T., Rocco, J.D., Ruscio, D.D., Ochoa, L., Degueule, T., Penta., M.D.: FOCUS: a recommender system for mining API function calls and usage patterns. In: 41st International Conference on Software Engineering (ICSE), pp. 1050–1060. IEEE/ACM (2019) – reference: Anguel, F., Amirat, A., Bounour, N.: Hybrid approach for metamodel and model co-evolution. In: 5th IFIP TC 5 International Conference on Computer Science and its Applications (CIIA), pp. 563–573. Springer (2015) – reference: Saini, R., Mussbacher, G., Guo, J.L.C., Kienzle, J.: Teaching modelling literacy: An artificial intelligence approach. In: 22nd ACM/IEEE International Conference on Model Driven Engineering Languages and Systems (MoDELS), Companion Proceedings, pp. 714–719. IEEE (2019) – reference: López, J.A.H., Cuadrado, J.S.: MAR: a structure-based search engine for models. In: ACM/IEEE 23rd International Conference on Model Driven Engineering Languages and Systems (MoDELS), pp. 57–67. ACM (2020) – reference: He, X., Liao, L., Zhang, H., Nie, L., Hu, X., Chua, T.-S.: Neural collaborative filtering. In: 26th International Conference on the World-Wide Web (WWW), pp. 173–182 (2017) – reference: Hornung, T., Koschmider, A., Oberweis, A.: A recommender system for business process models. Inf. Technol., Syst. 47, 1380–1394 (2009) – reference: Kahloun, F., Ghannouchi, S.A.: Improvement of quality for business process modeling driven by guidelines. In: 22nd International Conference on Knowledge-Based and Intelligent Information & Engineering Systems (KES), volume 126 of Procedia Computer Science, pp. 39–48. Elsevier (2018) – reference: BorgMWnukKRegnellBRunesonPSupporting change impact analysis using a recommendation system: an industrial case study in a safety-critical contextIEEE Trans. Softw. Eng.201743767570010.1109/TSE.2016.2620458 – reference: Bin Abid, S., Mahajan, V., Lucio, L.: Machine learning for learnability of MDD tools. In: 31st International Conference on Software Engineering and Knowledge Engineering (SEKE), pp. 355–468 (2019) – reference: SeguraÁMde LaraJExtremo: an eclipse plugin for modelling and meta-modelling assistanceSci. Comput. Program.2019180718010.1016/j.scico.2019.05.003 – reference: Almonte, L., Cantador, I., Guerra, E., de Lara, J.: Towards automating the construction of recommender systems for low-code development platforms. In: 1st LowCode Workshop (LowCode@MoDELS), pp. 66:1–66:10. ACM (2020) – reference: BurkeRHybrid recommender systems: survey and experimentsUser Model. User-Adap. Interact.20021243313701030.6860710.1023/A:1021240730564 – reference: Rabbi, F., Lamo, Y., Yu, I.C., Kristensen, L.M.: A diagrammatic approach to model completion. In: 4th Workshop on the Analysis of Model Transformations (AMT@MoDELS), volume 1500 of CEUR Workshop Proceedings, pp. 56–65 (2015) – reference: MohaNSenSFaucherCBaraisOJézéquelJEvaluation of Kermeta for solving graph-based problemsInt. J. Softw. Tools Technol. Transfer2010123–427328510.1007/s10009-010-0150-1 – reference: BrookeJSUS-a quick and dirty usability scaleUsab. Eval. Ind.199618919447 – reference: LiYCaoBXuLYinJDengSYinYWuZAn efficient recommendation method for improving business process modelingIEEE Trans. Ind. Inf.201410150251310.1109/TII.2013.2258677 – reference: Dyck, A., Ganser, A., Lichter, H.: On designing recommenders for graphical domain modeling environments. In: 2nd International Conference on Model-Driven Engineering and Software Development (MODELSWARD), pp. 291–299. SciTePress (2014) – reference: BaudryBGhoshSFleureyFFranceRBTraonYLMottuJBarriers to systematic model transformation testingCommun. ACM201053613914310.1145/1743546.1743583 – reference: DengSWangDLiYCaoBYinJWuZZhouMA recommendation system to facilitate business process modelingIEEE Trans. Cybern.20174761380139410.1109/TCYB.2016.2545688 – reference: GuerraEde LaraJWimmerMKappelGKuselARetschitzeggerWSchönböckJSchwingerWAutomated verification of model transformations based on visual contractsAutom. Softw. Eng.201320154610.1007/s10515-012-0102-y – reference: Méndez, D., Graziotin, D., Wagner, S., Seibold, H.: Open science in software engineering. In: Contemporary Empirical Methods in Software Engineering, pp. 477–501. Springer (2020) – reference: Savary-Leblanc, M.: Improving MBSE tools UX with ai-empowered software assistants. In: 22nd ACM/IEEE International Conference on Model Driven Engineering Languages and Systems (MoDELS), Companion Volume, pp. 648–652. IEEE (2019) – reference: PetersenKVakkalankaSKuzniarzLGuidelines for conducting systematic mapping studies in software engineering: an updateInf. Softw. Technol.20156411810.1016/j.infsof.2015.03.007 – reference: Matikainen, P., Furlong, P.M., Sukthankar, R., Hebert, M.: Multi-armed recommendation bandits for selecting state machine policies for robotic systems. In: 2013 IEEE International Conference on Robotics and Automation (ICRA), pp. 4545–4551. IEEE (2013) – reference: Kluza, K., Baran, M., Bobek, S., Nalepa, G.J.: Overview of recommendation techniques in business process modeling. In: Proceedings of 9th Workshop on Knowledge Engineering and Software Engineering (KESE9), volume 1070 of CEUR Workshop Proceedings. CEUR-WS.org (2013) – reference: OCL. http://www.omg.org/spec/OCL/ (2014) – reference: AvazpourIGrundyJGrunskeLSpecifying model transformations by direct manipulation using concrete visual notations and interactive recommendationsJ. Vis. Lang. Comput.20152819521110.1016/j.jvlc.2015.02.005 – reference: Brambilla, M., Cabot, J., Wimmer, M.: Model-Driven Software Engineering in Practice, 2nd edn. Synthesis Lectures on Software Engineering. Morgan & Claypool Publishers (2017) – reference: SenSBaudryBVangheluweHTowards domain-specific model editors with automatic model completionSimulation201086210912610.1177/0037549709340530 – reference: PazzaniMJA framework for collaborative, content-based and demographic filteringArtif. Intell. Rev.1999135–639340810.1023/A:1006544522159 – reference: Petersen, K., Feldt, R., Mujtaba, S., Mattsson, M.: Systematic mapping studies in software engineering. In: 12th International Conference on Evaluation and Assessment in Software Engineering, EASE, Workshops in Computing. BCS (2008) – reference: TintarevNMasthoffJEvaluating the effectiveness of explanations for recommender systemsUser Model. User-Adap. Int.2012224–539943910.1007/s11257-011-9117-5 – reference: CawleyGCTalbotNLCOn over-fitting in model selection and subsequent selection bias in performance evaluationJ. Mach. Learn. Res.2010112079210726780231242.62051 – reference: PaydarSKahaniMA semi-automated approach to adapt activity diagrams for new use casesInf. Softw. Technol.20155754357010.1016/j.infsof.2014.06.007 – reference: Ledeczi, A., Maroti, M., Bakay, A., Karsai, G., Garrett, J., Thomason, C., Nordstrom, G., Sprinkle, J., Volgyesi, P.: The generic modeling environment. In: Workshop on Intelligent Signal Processing, vol. 17, p. 1 (2001) – reference: Sánchez CuadradoJGuerraEde LaraJQuick fixing ATL transformations with speculative analysisSoftw. Syst. Model.201817377981310.1007/s10270-016-0541-1 – reference: Muslu, K., Brun, Y., Holmes, R., Ernst, M.D., Notkin, D.: Speculative analysis of integrated development environment recommendations. In: 27th Annual ACM SIGPLAN Conf. on Object-Oriented Programming, Systems, Languages, and Applications (OOPSLA), pp. 669–682. ACM (2012) – reference: Steinberg, D., Budinsky, F., Paternostro, M., Merks, E.: EMF: Eclipse Modeling Framework, 2nd edn. Addison-Wesley Professional (2008) – reference: PatiTKolliSHillJHProactive modeling: a new model intelligence techniqueSoftw. Syst. Model.201716249952110.1007/s10270-015-0465-1 – reference: Mussbacher, G., Combemale, B., Abrahão, S., Bencomo, N., Burgueño, L., Engels, G., Kienzle, J., Kühne, T., Mosser, S., Sahraoui, H.A., Weyssow, M.: Towards an assessment grid for intelligent modeling assistance. In: 23rd International Conference on Model Driven Engineering Languages and Systems, Companion Proceedings, pp. 48:1–48:10. ACM (2020) – reference: Guy, I.: Social recommender systems. In: Recommender Systems Handbook, pp. 511–543. Springer (2015) – reference: JouaultFAllilaireFBézivinJKurtevIATL: a model transformation toolSci. Comput. Progr.2008721–2313925261211154.6836610.1016/j.scico.2007.08.002 – reference: Kuschke, T., Mäder, P., Rempel, P.: Recommending auto-completions for software modeling activities. In: 16th International Conference on Model-Driven Engineering Languages and Systems (MoDELS), volume 8107 of Lecture Notes in Computer Science, pp. 170–186. Springer (2013) – reference: Abrahão, S., Bourdeleau, F., Cheng, B.H.C., Kokaly, S., Paige, R.F., Störrle, H., Whittle, J.: User experience for model-driven engineering: Challenges and future directions. In: 20th ACM/IEEE International Conference on Model Driven Engineering Languages and Systems, MoDELS, pp. 229–236. IEEE Computer Society (2017) – reference: Florez, H., Sánchez, M. E., Villalobos, J., Vega, G.: Coevolution assistance for enterprise architecture models. In: 6th International Workshop on Models and Evolution (ME@MoDELS), pp. 27–32. ACM (2012) – reference: Quijano-SánchezLCantadorICortés-CedielMEGilORecommender systems for smart citiesInf. Syst.20209210154510.1016/j.is.2020.101545 – reference: Neubauer, P., Bill, R., Mayerhofer, T., Wimmer, M.: Automated generation of consistency-achieving model editors. In: IEEE 24th International Conference on Software Analysis, Evolution and Reengineering (SANER), pp. 127–137. IEEE Computer Society (2017) – reference: Kang, K., Cohen, S., Hess, J., Novak, W., Peterson, A.: Feature-oriented domain analysis (FODA) feasibility study. Technical Report CMU/SEI-90-TR-021, Software Engineering Institute, Carnegie Mellon University, Pittsburgh, PA (1990) – reference: Rose, L.M., Paige, R.F., Kolovos, D.S., Polack, F.: The Epsilon generation language. In: 4th European Conf. on Model Driven Architecture—Foundations and Applications (ECMDA-FA), volume 5095 of Lecture Notes in Computer Science, pp. 1–16. Springer (2008) – reference: Dwyer, M. B., Avrunin, G. S., Corbett, J. C.: Patterns in property specifications for finite-state verification. In: 21st International Conference on Software Engineering (ICSE), pp. 411–420. ACM (1999) – reference: Jiang, H., Zhang, J., Li, X., Ren, Z., Lo, D., Wu, X., Luo, Z.: Recommending new features from mobile app descriptions. ACM Trans. Softw. Eng. Methodol. 28(4), 22:1–22:29 (2019) – reference: Kelly, S., Tolvanen, J.: Domain-Specific Modeling-Enabling Full Code Generation. Wiley (2008) – reference: Steimann, F., Ulke, B.: Generic model assist. In: 16th International Conference on Model-Driven Engineering Languages and Systems (MoDELS), volume 8107 of Lecture Notes in Computer Science, pp. 18–34. Springer (2013) – reference: Jackson, D.: Software Abstractions—Logic, Language, and Analysis. MIT Press (2006). http://alloytools.org/ – reference: Mazanek, S., Minas., M.: Business process models as a showcase for syntax-based assistance in diagram editors. In: 12th International Conference on Model Driven Engineering Languages and Systems (MoDELS), volume 5795 of Lecture Notes in Computer Science, pp. 322–336. Springer (2009) – reference: Aquino, E.R., de Saqui-Sannes, P., Vingerhoeds, R.A.: A methodological assistant for use case diagrams. In: 8th International Conference on Model-Driven Engineering and Software Development (MODELSWARD), pp. 227–236. SciTePress (2020) – reference: Gunawardana, A., Shani, G.: Evaluating recommender systems. In: Recommender Systems Handbook, pp. 265–308. Springer (2015) – reference: QVT 1.3. http://www.omg.org/spec/QVT/ (2016) – reference: Agt-Rickauer, H., Kutsche, R., Sack, H.: DoMoRe—a recommender system for domain modeling. In: 6th International Conference on Model-Driven Engineering and Software Development (MODELSWARD), pp. 71–82. SciTePress (2018) – reference: Huh, J., Grundy, J.C., Hosking, J.G., Li, K.N., Amor, R.: Integrated data mapping for a software meta-tool. In: 20th Australian Software Engineering Conference (ASWEC), pp. 111–120. IEEE Computer Society (2009) – reference: de OliveiraMCFreitasDBonifácioRPintoGLoDFinding needles in a haystack: leveraging co-change dependencies to recommend refactoringsJ. Syst. Softw.201915811042010.1016/j.jss.2019.110420 – reference: Tsunoda, M., Kakimoto, T., Ohsugi, N., Monden, A., Matsumoto, K.: Javawock: A Java class recommender system based on collaborative filtering. In: 17th International Conference on Software Engineering and Knowledge Engineering (SEKE), pp. 491–497 (2005) – reference: Jannach, D., Zanker, M., Felfernig, A., Friedrich, G.: Recommender Systems–An Introduction. Cambridge University Press (2010) – reference: Ohrndorf, M., Pietsch, C., Kelter, U., Kehrer, T.: ReVision: a tool for history-based model repair recommendations. In: 40th International Conference on Software Engineering (ICSE), Companion Proceeedings, pp. 105–108. ACM (2018) – reference: Muram, F.U., Gallina, B., Rodriguez, L.G.: Preventing omission of key evidence fallacy in process-based argumentations. In: 11th International Conference on the Quality of Information and Communications Technology (QUATIC), pp. 65–73. IEEE Computer Society (2018) – reference: Acceleo. https://www.eclipse.org/acceleo/ (2020) – reference: Witt, S., Feja, S., Speck, A., Hadler, C.: Business application modeler: A process model validation and verification tool. In: IEEE 22nd International Requirements Engineering Conference (RE), pp. 333–334. IEEE Computer Society (2014) – reference: Sen, S., Baudry, B., Vangheluwe, H.: Domain-specific model editors with model completion. In: Models in Software Engineering, Workshops and Symposia at MoDELS’07, Reports and Revised Selected Papers, volume 5002 of Lecture Notes in Computer Science, pp. 259–270. Springer (2007) – reference: Iovino, L., Barriga, A., Rutle, A., Heldal, R.: Model repair with quality-based reinforcement learning. J. Object Technol. 19(2):17:1–21 (2020) – reference: Barriga, A., Rutle, A., Heldal, R.: Improving model repair through experience sharing. J. Object Technol. 19(2):13:1-21 (2020) – reference: Agt-Rickauer, H., Kutsche, R., Sack, H.: Automated recommendation of related model elements for domain models. In: 6th International Conference on Model-Driven Engineering and Software Development (MODELSWARD), Revised Selected Papers, volume 991 of CCIS, pp. 134–158. Springer (2018) – reference: Heinemann, L.: Facilitating reuse in model-based development with context-dependent model element recommendations. In: 3rd International Workshop on Recommendation Systems for Software Engineering (RSSE), pp. 16–20. IEEE (2012) – reference: Sipio, C.D., Ruscio, D.D., Nguyen, P.T.: Democratizing the development of recommender systems by means of low-code platforms. In: 1st LowCode Workshop (LowCode@MoDELS), pp. 68:1–68:9. ACM (2020) – reference: RoccoJDRuscioDDIovinoLPierantonioACollaborative repositories in model-driven engineeringIEEE Softw.2015323283410.1109/MS.2015.61 – reference: Brosch, P., Seidl, M., Kappel, G.: A recommender for conflict resolution support in optimistic model versioning. In: ACM SIGPLAN Conference on Object-Oriented Programming, Systems, Languages, and Applications, SPLASH/OOPSLA Companion, pp. 43–50. ACM (2010) – reference: Nguyen, P.T., Rocco, J.D., Ruscio, D.D., Penta, M.D.: CrossRec: supporting software developers by recommending third-party libraries. J. Syst. Softw. 161, 110460 (17 pages) (2020) – reference: Elkamel, A., Gzara, M., Ben-Abdallah, H.: An UML class recommender system for software design. In: 13th IEEE/ACS International Conference of Computer Systems and Applications (AICCSA), pp. 1–8. IEEE Computer Society (2016) – reference: Hornung, T., Koschmider, A., Lausen, G.: Recommendation based process modeling support: method and user experience. In: 27th International Conference on Conceptual Modeling (ER), volume 5231 of Lecture Notes in Computer Science, pp. 265–278. Springer (2008) – reference: PaydarSKahaniMA semantic web enabled approach to reuse functional requirements models in web engineeringAutom. Softw. Eng.201522224128810.1007/s10515-014-0144-4 – reference: Mani, S., Sinha, V.S., Dhoolia, P., Sinha, S.: Automated support for repairing input-model faults. In: 25th IEEE/ACM International Conference on Automated Software Engineering (ASE), pp. 195–204. ACM (2010) – reference: Clarisó, R., Cabot, J.: Fixing defects in integrity constraints via constraint mutation. In: 11th International Conference on the Quality of Information and Communications Technology (QUATIC), pp. 74–82. IEEE Computer Society (2018) – reference: UML 2.5.1. https://www.uml.org/ (2017) – reference: CaiCSunJDobbieGAutomatic B-model repair using model checking and machine learningAutom. Softw. Eng.201926365370410.1007/s10515-019-00264-4 – reference: Simulink. https://www.mathworks.com/products/simulink.html (2020) – reference: Wohlin, C., Runeson, P., da Mota Silveira Neto, P.A., Engström, E., do Carmo Machado, I., de Almeida, E.S.: On the reliability of mapping studies in software engineering. J. Syst. Softw. 86(10):2594–2610 (2013) – reference: de Lara, J., Vangheluwe, H.: AToM3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$^3$$\end{document}: a tool for multi-formalism and meta-modelling. In: 5th International Conference on Fundamental Approaches to Software Engineering (FASE), volume 2306 of Lecture Notes in Computer Science, pp. 174–188. Springer (2002) – reference: AdomaviciusGTuzhilinAToward the next generation of recommender systems: a survey of the state-of-the-art and possible extensionsIEEE Trans. Knowl. Data Eng.200517673474910.1109/TKDE.2005.99 – reference: Sánchez Cuadrado, J., Guerra, E., de Lara, J.: AnATLyzer: an advanced IDE for ATL model transformations. In: 40th International Conference on Software Engineering (ICSE), Companion Proceedings, pp. 85–88. ACM (2018) – reference: JézéquelJCombemaleBBaraisOMonperrusMFouquetFMashup of metalanguages and its implementation in the Kermeta language workbenchSoftw. Syst. Model.201514290592010.1007/s10270-013-0354-4 – reference: Sánchez Cuadrado, J., Guerra, E., de Lara, J.: Quick fixing ATL model transformations. In: 18th ACM/IEEE International Conference on Model Driven Engineering Languages and Systems (MoDELS), pp. 146–155. IEEE Computer Society (2015) – ident: 905_CR139 doi: 10.1016/j.jss.2013.04.076 – ident: 905_CR104 doi: 10.14236/ewic/EASE2008.8 – ident: 905_CR26 doi: 10.18293/SEKE2016-147 – ident: 905_CR93 doi: 10.1109/SANER.2017.7884615 – ident: 905_CR67 doi: 10.1007/978-1-4899-7637-6_9 – ident: 905_CR98 doi: 10.1145/3183440.3183498 – ident: 905_CR64 doi: 10.5220/0009155600650075 – ident: 905_CR47 doi: 10.1007/978-3-540-30187-5_28 – volume: 72 start-page: 31 issue: 1–2 year: 2008 ident: 905_CR59 publication-title: Sci. Comput. Progr. doi: 10.1016/j.scico.2007.08.002 – volume: 22 start-page: 399 issue: 4–5 year: 2012 ident: 905_CR133 publication-title: User Model. User-Adap. Int. doi: 10.1007/s11257-011-9117-5 – ident: 905_CR83 doi: 10.1007/978-3-030-32489-6_17 – ident: 905_CR53 doi: 10.5381/jot.2020.19.2.a17 – ident: 905_CR36 doi: 10.5220/0004701802910299 – volume: 16 start-page: 499 issue: 2 year: 2017 ident: 905_CR99 publication-title: Softw. Syst. Model. doi: 10.1007/s10270-015-0465-1 – volume: 158 start-page: 110420 year: 2019 ident: 905_CR30 publication-title: J. Syst. Softw. doi: 10.1016/j.jss.2019.110420 – ident: 905_CR70 doi: 10.1007/978-1-4899-7637-6_3 – ident: 905_CR79 doi: 10.1145/1858996.1859039 – ident: 905_CR95 doi: 10.1016/j.jss.2019.110460 – ident: 905_CR138 doi: 10.1145/2601248.2601268 – ident: 905_CR15 doi: 10.1142/11131 – ident: 905_CR126 doi: 10.1007/978-3-540-69073-3_27 – ident: 905_CR58 doi: 10.1145/3344158 – volume: 17 start-page: 734 issue: 6 year: 2005 ident: 905_CR3 publication-title: IEEE Trans. Knowl. Data Eng. doi: 10.1109/TKDE.2005.99 – ident: 905_CR60 doi: 10.1016/j.procs.2018.07.207 – volume: 12 start-page: 273 issue: 3–4 year: 2010 ident: 905_CR86 publication-title: Int. J. Softw. Tools Technol. Transfer doi: 10.1007/s10009-010-0150-1 – ident: 905_CR116 doi: 10.1109/MODELS-C.2019.00108 – ident: 905_CR136 – ident: 905_CR11 doi: 10.5381/jot.2020.19.2.a13 – volume: 20 start-page: 5 issue: 1 year: 2013 ident: 905_CR44 publication-title: Autom. Softw. Eng. doi: 10.1007/s10515-012-0102-y – volume: 104 start-page: 239 issue: 1 year: 2015 ident: 905_CR65 publication-title: Scientometrics doi: 10.1007/s11192-015-1595-5 – volume: 7 start-page: 93 issue: 3 year: 2016 ident: 905_CR109 publication-title: Int. J. Inf. Syst. Model. Des. doi: 10.4018/IJISMD.2016070105 – volume: 86 start-page: 109 issue: 2 year: 2010 ident: 905_CR127 publication-title: Simulation doi: 10.1177/0037549709340530 – ident: 905_CR68 doi: 10.1145/3106237.3119874 – ident: 905_CR129 – ident: 905_CR50 doi: 10.1007/978-3-540-87877-3_20 – volume: 12 start-page: 579 issue: 3 year: 2013 ident: 905_CR111 publication-title: Softw. Syst. Model. doi: 10.1007/s10270-012-0243-2 – ident: 905_CR2 – ident: 905_CR28 doi: 10.1109/QUATIC.2018.00020 – ident: 905_CR69 – ident: 905_CR137 doi: 10.1109/RE.2014.6912283 – ident: 905_CR89 doi: 10.1145/3417990.3421396 – volume: 70 start-page: 483 issue: 6 year: 2011 ident: 905_CR71 publication-title: Data Knowl. Eng. doi: 10.1016/j.datak.2011.02.002 – ident: 905_CR77 doi: 10.1007/978-0-387-85820-3_3 – volume: 53 start-page: 90 year: 2018 ident: 905_CR124 publication-title: Comput. Lang. Syst. Struct. – ident: 905_CR4 doi: 10.1007/978-0-387-85820-3_7 – ident: 905_CR52 doi: 10.1109/ASWEC.2009.21 – ident: 905_CR110 doi: 10.1007/978-3-319-19237-6_5 – ident: 905_CR121 doi: 10.1109/MODELS-C.2019.00099 – ident: 905_CR85 – ident: 905_CR135 – ident: 905_CR33 doi: 10.1145/302405.302672 – volume: 17 start-page: 779 issue: 3 year: 2018 ident: 905_CR119 publication-title: Softw. Syst. Model. doi: 10.1007/s10270-016-0541-1 – ident: 905_CR107 – ident: 905_CR97 – volume: 11 start-page: 2079 year: 2010 ident: 905_CR25 publication-title: J. Mach. Learn. Res. – ident: 905_CR96 doi: 10.1007/978-1-4899-7637-6_2 – ident: 905_CR74 – volume: 10 start-page: 502 issue: 1 year: 2014 ident: 905_CR75 publication-title: IEEE Trans. Ind. Inf. doi: 10.1109/TII.2013.2258677 – ident: 905_CR66 – ident: 905_CR49 doi: 10.1109/RSSE.2012.6233402 – ident: 905_CR88 doi: 10.1145/2398857.2384665 – volume: 22 start-page: 241 issue: 2 year: 2015 ident: 905_CR100 publication-title: Autom. Softw. Eng. doi: 10.1007/s10515-014-0144-4 – ident: 905_CR103 doi: 10.1145/2970276.2970328 – volume: 189 start-page: 4 issue: 194 year: 1996 ident: 905_CR20 publication-title: Usab. Eval. Ind. – ident: 905_CR72 doi: 10.1109/ICSE-C.2017.119 – volume: 12 start-page: 331 issue: 4 year: 2002 ident: 905_CR23 publication-title: User Model. User-Adap. Interact. doi: 10.1023/A:1021240730564 – volume: 64 start-page: 1 year: 2015 ident: 905_CR105 publication-title: Inf. Softw. Technol. doi: 10.1016/j.infsof.2015.03.007 – ident: 905_CR63 doi: 10.1109/SNAMS.2018.8554581 – ident: 905_CR120 doi: 10.1145/371920.372071 – ident: 905_CR35 – volume: 27 start-page: 80 issue: 4 year: 2010 ident: 905_CR113 publication-title: IEEE Softw. doi: 10.1109/MS.2009.161 – ident: 905_CR8 doi: 10.1007/978-3-319-19578-0_46 – ident: 905_CR115 doi: 10.1007/978-3-540-69100-6_1 – ident: 905_CR48 doi: 10.1145/3038912.3052569 – ident: 905_CR38 doi: 10.1145/2523599.2523605 – ident: 905_CR130 doi: 10.1007/978-3-642-41533-3_2 – ident: 905_CR132 doi: 10.1109/ICSE-NIER.2019.00014 – ident: 905_CR39 doi: 10.1109/ICSE.2012.6227059 – ident: 905_CR1 doi: 10.1109/MODELS.2017.5 – ident: 905_CR56 doi: 10.1017/CBO9780511763113 – volume: 53 start-page: 139 issue: 6 year: 2010 ident: 905_CR13 publication-title: Commun. ACM doi: 10.1145/1743546.1743583 – ident: 905_CR5 doi: 10.1007/978-3-030-11030-7_7 – volume: 5 start-page: 4 issue: 1 year: 2001 ident: 905_CR32 publication-title: Pers. Ubiquit. Comput. doi: 10.1007/s007790170019 – volume: 14 start-page: 905 issue: 2 year: 2015 ident: 905_CR57 publication-title: Softw. Syst. Model. doi: 10.1007/s10270-013-0354-4 – ident: 905_CR45 doi: 10.1007/978-1-4899-7637-6_8 – ident: 905_CR112 doi: 10.1007/978-1-4899-7637-6 – volume: 221 start-page: 142 year: 2013 ident: 905_CR14 publication-title: Inf. Sci. doi: 10.1016/j.ins.2012.09.039 – ident: 905_CR12 doi: 10.1109/MODELS.2017.25 – volume: 43 start-page: 675 issue: 7 year: 2017 ident: 905_CR18 publication-title: IEEE Trans. Softw. Eng. doi: 10.1109/TSE.2016.2620458 – ident: 905_CR34 – volume: 13 start-page: 393 issue: 5–6 year: 1999 ident: 905_CR102 publication-title: Artif. Intell. Rev. doi: 10.1023/A:1006544522159 – ident: 905_CR29 doi: 10.1007/3-540-45923-5_12 – volume: 57 start-page: 543 year: 2015 ident: 905_CR101 publication-title: Inf. Softw. Technol. doi: 10.1016/j.infsof.2014.06.007 – ident: 905_CR82 doi: 10.1007/978-3-642-04425-0_24 – volume: 26 start-page: 653 issue: 3 year: 2019 ident: 905_CR24 publication-title: Autom. Softw. Eng. doi: 10.1007/s10515-019-00264-4 – ident: 905_CR128 – ident: 905_CR21 doi: 10.1145/1869542.1869549 – volume: 113 start-page: 101 year: 2016 ident: 905_CR41 publication-title: J. Syst. Softw. doi: 10.1016/j.jss.2015.11.036 – ident: 905_CR94 doi: 10.1109/ICSE.2019.00109 – ident: 905_CR125 – ident: 905_CR51 – ident: 905_CR131 – ident: 905_CR37 doi: 10.1109/AICCSA.2016.7945659 – volume: 39 start-page: 25 issue: 2 year: 2006 ident: 905_CR122 publication-title: Computer doi: 10.1109/MC.2006.58 – volume: 38 start-page: 39 issue: 11 year: 1995 ident: 905_CR84 publication-title: Commun. ACM doi: 10.1145/219717.219748 – ident: 905_CR54 – ident: 905_CR81 doi: 10.1109/ICRA.2013.6631223 – ident: 905_CR55 doi: 10.1145/2852082 – volume: 180 start-page: 71 year: 2019 ident: 905_CR123 publication-title: Sci. Comput. Program. doi: 10.1016/j.scico.2019.05.003 – ident: 905_CR40 – ident: 905_CR108 – ident: 905_CR42 doi: 10.1007/978-3-540-28631-8_15 – ident: 905_CR17 – ident: 905_CR27 doi: 10.1145/2663500 – ident: 905_CR80 doi: 10.1007/978-0-387-85820-3_21 – ident: 905_CR46 doi: 10.1007/978-1-4899-7637-6_15 – volume: 47 start-page: 1380 issue: 6 year: 2017 ident: 905_CR31 publication-title: IEEE Trans. Cybern. doi: 10.1109/TCYB.2016.2545688 – volume: 32 start-page: 28 issue: 3 year: 2015 ident: 905_CR114 publication-title: IEEE Softw. doi: 10.1109/MS.2015.61 – ident: 905_CR9 doi: 10.5220/0008938002270236 – ident: 905_CR117 doi: 10.1109/MODELS.2015.7338245 – ident: 905_CR78 – ident: 905_CR16 doi: 10.18293/SEKE2019-050 – ident: 905_CR91 doi: 10.1007/978-3-319-61473-1_12 – ident: 905_CR92 doi: 10.1007/978-3-540-69489-2_18 – volume: 92 start-page: 101545 year: 2020 ident: 905_CR106 publication-title: Inf. Syst. doi: 10.1016/j.is.2020.101545 – volume: 69 start-page: 175 issue: Supplement 32 year: 2000 ident: 905_CR22 publication-title: Encycl. Libr. Inf. Syst. – ident: 905_CR73 doi: 10.1007/978-3-642-41533-3_11 – ident: 905_CR87 – ident: 905_CR118 doi: 10.1145/3183440.3183479 – volume: 28 start-page: 195 year: 2015 ident: 905_CR10 publication-title: J. Vis. Lang. Comput. doi: 10.1016/j.jvlc.2015.02.005 – ident: 905_CR19 doi: 10.2200/S00751ED2V01Y201701SWE004 – volume: 19 start-page: 1045 issue: 5 year: 2020 ident: 905_CR90 publication-title: Softw. Syst. Model. doi: 10.1007/s10270-020-00814-5 – ident: 905_CR134 – ident: 905_CR6 doi: 10.5220/0006555700710082 – ident: 905_CR61 doi: 10.21236/ADA235785 – ident: 905_CR43 doi: 10.1007/978-3-642-12186-9_49 – ident: 905_CR7 doi: 10.1145/3417990.3420200 – ident: 905_CR62 doi: 10.1002/9780470249260 – ident: 905_CR76 doi: 10.1145/3365438.3410947  | 
    
| SSID | ssib004299466 ssj0027432  | 
    
| Score | 2.4102917 | 
    
| Snippet | Recommender systems are information filtering systems used in many online applications like music and video broadcasting and e-commerce platforms. They are... | 
    
| SourceID | crossref springer  | 
    
| SourceType | Enrichment Source Index Database Publisher  | 
    
| StartPage | 249 | 
    
| SubjectTerms | Compilers Computer Science Information Systems Applications (incl.Internet) Interpreters IT in Business Programming Languages Programming Techniques Regular Paper Software Engineering Software Engineering/Programming and Operating Systems  | 
    
| Subtitle | A systematic mapping review | 
    
| Title | Recommender systems in model-driven engineering | 
    
| URI | https://link.springer.com/article/10.1007/s10270-021-00905-x | 
    
| Volume | 21 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVEBS databaseName: Academic Search Ultimate - eBooks customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn eissn: 1619-1374 dateEnd: 20241102 omitProxy: true ssIdentifier: ssj0027432 issn: 1619-1366 databaseCode: ABDBF dateStart: 20031001 isFulltext: true titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn providerName: EBSCOhost – providerCode: PRVEBS databaseName: Inspec with Full Text customDbUrl: eissn: 1619-1374 dateEnd: 20241102 omitProxy: false ssIdentifier: ssj0027432 issn: 1619-1366 databaseCode: ADMLS dateStart: 20020901 isFulltext: true titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text providerName: EBSCOhost – providerCode: PRVLSH databaseName: SpringerLink Journals customDbUrl: mediaType: online eissn: 1619-1374 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0027432 issn: 1619-1366 databaseCode: AFBBN dateStart: 20020901 isFulltext: true providerName: Library Specific Holdings – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 1619-1374 dateEnd: 20241102 omitProxy: true ssIdentifier: ssj0027432 issn: 1619-1366 databaseCode: BENPR dateStart: 20190101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Technology Collection customDbUrl: eissn: 1619-1374 dateEnd: 20241102 omitProxy: true ssIdentifier: ssj0027432 issn: 1619-1366 databaseCode: 8FG dateStart: 20020901 isFulltext: true titleUrlDefault: https://search.proquest.com/technologycollection1 providerName: ProQuest – providerCode: PRVAVX databaseName: SpringerLINK - Czech Republic Consortium customDbUrl: eissn: 1619-1374 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0027432 issn: 1619-1366 databaseCode: AGYKE dateStart: 20020101 isFulltext: true titleUrlDefault: http://link.springer.com providerName: Springer Nature – providerCode: PRVAVX databaseName: SpringerLink Journals (ICM) customDbUrl: eissn: 1619-1374 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0027432 issn: 1619-1366 databaseCode: U2A dateStart: 20020901 isFulltext: true titleUrlDefault: http://www.springerlink.com/journals/ providerName: Springer Nature  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEA7SXrz4Fuuj5OBNA_vIJptjqa1FrRct1NOSZGdB0FXaCv58J2naUpGCl93L7EImj_mGyXwfIZe8rGJcCsCEsoAJSqaYEVIyXZo0xfgLkSdJGj6KwYjfjbNxoMlxvTC_6veuxS1x0igJJr2RijKGeLGJQUr4wqzorp2r3EGTZbLlxckQ0CgWp0KEhpm__7kelNYroj7Q9PfITkCItDOf0n2yBfUB2V2oL9CwGQ-Jb5J4f_dScHROyDylrzX12jasnLhjjMKKbvCIjPq95-6ABfkDZhMVz1hmBSijq9zgyCzERkUlyDzLpcEsRyqNsVcnkRQaXSqdATjS4bICd3GVy_SYNOqPGk4IjRU3kIo415Y7hjRdakyzMs1tlXNQokXixfgLG7jBnUTFW7FiNXY-K9BnhfdZ8d0iV8tvPufMGButrxduLcIumW4wP_2f-RnZTlxbgr9NfU4as8kXXCBYmJk2aXZuhg9P7n37ct9r-1WDz1HS-QGu37XB | 
    
| linkProvider | Springer Nature | 
    
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3JTsMwEB2h9gAXyirKmgM3cJXFseNjhVoKXU6tVE6R7bgSggbUphLi67GdpKUIVep9EjmTsWeePPMewC1OJp4OBYUIk0oDlJAhQShFPBFBoPOvci1JUn9AOiP8PA7HxVDYvOx2L68k7Un9a9jNNyIpvoa_LnNDpCvHKtYAxa9Atfn40m2tnbHYlClL4GWFynRxw5AXEFIMz_z_1vUEtX47apNOuwajcrl5r8lbY5GJhvz-w-S47fccwH5RhTrNPGwOYUelR1ArFR6cYsMfgx3EmE6t3JyTkz7PndfUsfo5KJmZo9JRK0rDExi1W8OHDiokFpD0mZehUBLFBJ9EQntMKk8wN1E0CiMqNJKijOv8zn2XEq5_GzUGyhAbJxNlmmMxDU6hkn6k6gwcj2GhAuJFXGLDwsYTrqFcyLGcRFgxUgev9GssC_5xI4PxHq-Yk41HYu2R2Hok_qrD3fKZz5x9Y6P1fenpuNiJ8w3m59uZ38BuZ9jvxb2nQfcC9nwzBmG7ty-hks0W6koXJ5m4LmLxB0yC1es | 
    
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1JSwMxFA5SQby4i3XNwZuGTmYyyeQo1VK34sFCbyHbgGDH0o7gzzfJzHQBKXh_CeRlee-R930fANfE5NgdBYso19YVKClHijKGpFFJ4uKvjQJJ0uuA9ofkaZSOllD8odu9-ZKsMA2epakoOxOTd5aAb7EXTIldKRzxKEUui9wkLrp5DYMu7a68tsQnLPMSLEiWuTSHI5xQWsNo_p5zNVSt_pOG8NPbAzt13gjvqo3eBxu2OAC7jSYDrK_oIQjQifE4CMTBiqZ5Bj8KGBRvkJn6xw3aBQnhERj2Ht67fVSLIiAdc1yiVFPLlcwz5VamLVY8MpZlacaUq30Yly4iyzhiVDpHM29gPRWxya1vZyUsOQat4quwJwBiTpRNKM6kJp43TRrpiq9UEp1nxHLaBrhZv9A1Y7gXrvgUC65j7zPhfCaCz8RPG9zMx0wqvoy11reNW0V9d2ZrzE__Z34Ftt7ue-LlcfB8BrZjj1sI7dbnoFVOv-2FyyZKdRkOzC8_37zm | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Recommender+systems+in+model-driven+engineering&rft.jtitle=Software+and+systems+modeling&rft.au=Almonte%2C+Lissette&rft.au=Guerra%2C+Esther&rft.au=Cantador%2C+Iv%C3%A1n&rft.au=de+Lara%2C+Juan&rft.date=2022-02-01&rft.issn=1619-1366&rft.eissn=1619-1374&rft.volume=21&rft.issue=1&rft.spage=249&rft.epage=280&rft_id=info:doi/10.1007%2Fs10270-021-00905-x&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s10270_021_00905_x | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1619-1366&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1619-1366&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1619-1366&client=summon |