Distributed Gradient Tracking for Unbalanced Optimization With Different Constraint Sets
Gradient tracking methods have become popular for distributed optimization in recent years, partially because they achieve linear convergence using only a constant step-size for strongly convex optimization. In this article, we construct a counterexample on constrained optimization to show that dire...
Saved in:
| Published in | IEEE transactions on automatic control Vol. 68; no. 6; pp. 3633 - 3640 |
|---|---|
| Main Authors | , , , |
| Format | Journal Article |
| Language | English |
| Published |
New York
IEEE
01.06.2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Subjects | |
| Online Access | Get full text |
| ISSN | 0018-9286 1558-2523 |
| DOI | 10.1109/TAC.2022.3192316 |
Cover
| Abstract | Gradient tracking methods have become popular for distributed optimization in recent years, partially because they achieve linear convergence using only a constant step-size for strongly convex optimization. In this article, we construct a counterexample on constrained optimization to show that direct extension of gradient tracking by using projections cannot guarantee the correctness. Then, we propose projected gradient tracking algorithms with diminishing step-sizes rather than a constant one for distributed strongly convex optimization with different constraint sets and unbalanced graphs. Our basic algorithm can achieve <inline-formula><tex-math notation="LaTeX">O(\ln T/{T})</tex-math></inline-formula> convergence rate. Moreover, we design an epoch iteration scheme and improve the convergence rate as <inline-formula><tex-math notation="LaTeX">O(1/{T})</tex-math></inline-formula>. |
|---|---|
| AbstractList | Gradient tracking methods have become popular for distributed optimization in recent years, partially because they achieve linear convergence using only a constant step-size for strongly convex optimization. In this article, we construct a counterexample on constrained optimization to show that direct extension of gradient tracking by using projections cannot guarantee the correctness. Then, we propose projected gradient tracking algorithms with diminishing step-sizes rather than a constant one for distributed strongly convex optimization with different constraint sets and unbalanced graphs. Our basic algorithm can achieve <inline-formula><tex-math notation="LaTeX">O(\ln T/{T})</tex-math></inline-formula> convergence rate. Moreover, we design an epoch iteration scheme and improve the convergence rate as <inline-formula><tex-math notation="LaTeX">O(1/{T})</tex-math></inline-formula>. Gradient tracking methods have become popular for distributed optimization in recent years, partially because they achieve linear convergence using only a constant step-size for strongly convex optimization. In this article, we construct a counterexample on constrained optimization to show that direct extension of gradient tracking by using projections cannot guarantee the correctness. Then, we propose projected gradient tracking algorithms with diminishing step-sizes rather than a constant one for distributed strongly convex optimization with different constraint sets and unbalanced graphs. Our basic algorithm can achieve [Formula Omitted] convergence rate. Moreover, we design an epoch iteration scheme and improve the convergence rate as [Formula Omitted]. |
| Author | Fan, Yuan Liang, Shu Hong, Yiguang Cheng, Songsong |
| Author_xml | – sequence: 1 givenname: Songsong orcidid: 0000-0001-5566-6836 surname: Cheng fullname: Cheng, Songsong email: sscheng@amss.ac.cn organization: School of Electrical Engineering and Automation, Anhui University, Hefei, China – sequence: 2 givenname: Shu orcidid: 0000-0002-9719-1987 surname: Liang fullname: Liang, Shu email: sliangresearch@163.com organization: Department of Control Science and Engineering, Tongji University, Shanghai, China – sequence: 3 givenname: Yuan orcidid: 0000-0001-6716-7129 surname: Fan fullname: Fan, Yuan email: yuanf@ahu.edu.cn organization: School of Electrical Engineering and Automation, Anhui University, Hefei, China – sequence: 4 givenname: Yiguang orcidid: 0000-0001-9505-8739 surname: Hong fullname: Hong, Yiguang email: yghong@iss.ac.cn organization: Department of Control Science and Engineering, Tongji University, Shanghai, China |
| BookMark | eNp9kD1PwzAQhi1UJNrCjsQSiTnFH3Fij1UKBakSA61gsxzbAZfWKbY7wK_HoRUDA9PdSc9zZ78jMHCdMwBcIjhBCPKb5bSeYIjxhCCOCSpPwBBRynJMMRmAIYSI5Ryz8gyMQlinsSwKNAQvMxuit80-Gp3NvdTWuJgtvVTv1r1mbeezlWvkRjqVgMddtFv7JaPtXPZs41s2s21rfO_UnUubpE3tk4nhHJy2chPMxbGOwerudlnf54vH-UM9XeQKcxRzKpmEEhLMtNGa0LZoKoWQZpohqivVKI6qQqKKGM0lxAwzpSgtyoohTkpMxuD6sHfnu4-9CVGsu7136aTACSk4pwVMVHmglO9C8KYVysafb_RP3ggERZ-iSCmKPkVxTDGJ8I-483Yr_ed_ytVBscaYX5wzQjDG5BuwA37D |
| CODEN | IETAA9 |
| CitedBy_id | crossref_primary_10_1002_rnc_7917 crossref_primary_10_1007_s12555_023_0211_3 crossref_primary_10_1002_asjc_3467 crossref_primary_10_1109_TNSE_2024_3374765 crossref_primary_10_1016_j_jfranklin_2024_107492 crossref_primary_10_1109_LCSYS_2024_3367917 crossref_primary_10_1109_TAC_2023_3347328 crossref_primary_10_1016_j_neunet_2025_107257 crossref_primary_10_1109_TAC_2024_3453382 crossref_primary_10_1109_TSIPN_2024_3402354 crossref_primary_10_1002_rnc_7666 crossref_primary_10_1016_j_jfranklin_2023_11_017 crossref_primary_10_1109_TAC_2024_3385311 crossref_primary_10_1007_s43684_024_00063_z crossref_primary_10_1109_ACCESS_2023_3305529 crossref_primary_10_1016_j_jfranklin_2024_107466 crossref_primary_10_1177_01423312241297730 |
| Cites_doi | 10.1109/TAC.2014.2364096 10.1109/CDC.2015.7402509 10.1016/j.arcontrol.2019.05.006 10.1109/TAC.2019.2942513 10.1016/j.sysconle.2016.07.009 10.1109/TAC.2019.2912494 10.14736/kyb-2020-3-0559 10.1016/j.ins.2017.09.038 10.1016/j.automatica.2021.109738 10.1109/TAC.2016.2628807 10.1007/s10107-020-01487-0 10.1109/TCNS.2019.2915015 10.1109/TAC.2019.2934216 10.1137/16M1084316 10.1137/14096668X 10.1109/TAC.2020.2972824 10.1016/j.automatica.2017.12.053 10.1109/TAC.2020.3009363 10.1109/TAC.2013.2278132 10.1109/TAC.2010.2041686 10.1109/TAC.2020.2989281 10.1109/TSP.2020.3031071 10.1109/TAC.2016.2615066 10.1109/TAC.2019.2915745 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023 |
| DBID | 97E RIA RIE AAYXX CITATION 7SC 7SP 7TB 8FD FR3 JQ2 L7M L~C L~D |
| DOI | 10.1109/TAC.2022.3192316 |
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database Engineering Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
| DatabaseTitle | CrossRef Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Engineering Research Database Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Technology Research Database |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1558-2523 |
| EndPage | 3640 |
| ExternalDocumentID | 10_1109_TAC_2022_3192316 9833222 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: Shanghai Municipal Science and Technology Major Project grantid: 2021SHZDZX0100 – fundername: Natural Science Foundation of Anhui Province; Anhui Provincial Natural Science Foundation grantid: 2008085J32 funderid: 10.13039/501100003995 – fundername: National Natural Science Foundation of China grantid: 62103003; 72171171; 61903027; 61973002; 61733018 funderid: 10.13039/501100001809 |
| GroupedDBID | -~X .DC 0R~ 29I 3EH 4.4 5GY 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACGFS ACIWK ACNCT AENEX AETIX AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD F5P HZ~ H~9 IAAWW IBMZZ ICLAB IDIHD IFIPE IFJZH IPLJI JAVBF LAI M43 MS~ O9- OCL P2P RIA RIE RNS TAE TN5 VH1 VJK ~02 AAYXX CITATION 7SC 7SP 7TB 8FD FR3 JQ2 L7M L~C L~D |
| ID | FETCH-LOGICAL-c291t-5a8a0a0328dedd35f4b7c11d8d815d7cbc9174a173ed9a02828cc554678193623 |
| IEDL.DBID | RIE |
| ISSN | 0018-9286 |
| IngestDate | Mon Jun 30 08:23:33 EDT 2025 Thu Apr 24 22:56:50 EDT 2025 Wed Oct 01 04:15:58 EDT 2025 Wed Aug 27 02:22:05 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 6 |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c291t-5a8a0a0328dedd35f4b7c11d8d815d7cbc9174a173ed9a02828cc554678193623 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0001-5566-6836 0000-0002-9719-1987 0000-0001-6716-7129 0000-0001-9505-8739 |
| PQID | 2819499540 |
| PQPubID | 85475 |
| PageCount | 8 |
| ParticipantIDs | proquest_journals_2819499540 crossref_primary_10_1109_TAC_2022_3192316 crossref_citationtrail_10_1109_TAC_2022_3192316 ieee_primary_9833222 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2023-06-01 |
| PublicationDateYYYYMMDD | 2023-06-01 |
| PublicationDate_xml | – month: 06 year: 2023 text: 2023-06-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York |
| PublicationTitle | IEEE transactions on automatic control |
| PublicationTitleAbbrev | TAC |
| PublicationYear | 2023 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref13 ref15 ref11 ref10 ref2 ref1 ref17 ref16 ref19 ref18 li (ref12) 0 lü (ref7) 2018; 422 ref24 ref23 ref25 ref20 ref22 ref21 nedi? (ref14) 2010; 55 ref8 ref9 ref4 ref3 ref6 ref5 |
| References_xml | – ident: ref17 doi: 10.1109/TAC.2014.2364096 – ident: ref20 doi: 10.1109/CDC.2015.7402509 – ident: ref1 doi: 10.1016/j.arcontrol.2019.05.006 – ident: ref8 doi: 10.1109/TAC.2019.2942513 – ident: ref15 doi: 10.1016/j.sysconle.2016.07.009 – ident: ref24 doi: 10.1109/TAC.2019.2912494 – ident: ref10 doi: 10.14736/kyb-2020-3-0559 – volume: 422 start-page: 516 year: 2018 ident: ref7 article-title: Geometrical convergence rate for distributed optimization with time-varying directed graphs and uncoordinated step-sizes publication-title: Inf Sci doi: 10.1016/j.ins.2017.09.038 – ident: ref16 doi: 10.1016/j.automatica.2021.109738 – start-page: 1662 year: 0 ident: ref12 article-title: Communication-efficient distributed optimization in networks with gradient tracking and variance reduction publication-title: Proc Int Conf Artif Intell Statist – ident: ref23 doi: 10.1109/TAC.2016.2628807 – ident: ref11 doi: 10.1007/s10107-020-01487-0 – ident: ref2 doi: 10.1109/TCNS.2019.2915015 – ident: ref25 doi: 10.1109/TAC.2019.2934216 – ident: ref5 doi: 10.1137/16M1084316 – ident: ref21 doi: 10.1137/14096668X – ident: ref9 doi: 10.1109/TAC.2020.2972824 – ident: ref4 doi: 10.1016/j.automatica.2017.12.053 – ident: ref18 doi: 10.1109/TAC.2020.3009363 – ident: ref22 doi: 10.1109/TAC.2013.2278132 – volume: 55 start-page: 922 year: 2010 ident: ref14 article-title: Constrained consensus and optimization in multi-agent networks publication-title: IEEE Trans Autom Control doi: 10.1109/TAC.2010.2041686 – ident: ref6 doi: 10.1109/TAC.2020.2989281 – ident: ref13 doi: 10.1109/TSP.2020.3031071 – ident: ref19 doi: 10.1109/TAC.2016.2615066 – ident: ref3 doi: 10.1109/TAC.2019.2915745 |
| SSID | ssj0016441 |
| Score | 2.5492136 |
| Snippet | Gradient tracking methods have become popular for distributed optimization in recent years, partially because they achieve linear convergence using only a... |
| SourceID | proquest crossref ieee |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 3633 |
| SubjectTerms | Algorithms Basic converters Computational geometry Constraints Convergence Convex functions Convexity different constraint sets Directed graphs distrib- uted optimization gradient tracking Heuristic algorithms Iterative methods Linear programming Multi-agent systems Optimization Tracking unbalanced graphs |
| Title | Distributed Gradient Tracking for Unbalanced Optimization With Different Constraint Sets |
| URI | https://ieeexplore.ieee.org/document/9833222 https://www.proquest.com/docview/2819499540 |
| Volume | 68 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 1558-2523 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0016441 issn: 0018-9286 databaseCode: RIE dateStart: 19630101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwED4BEwy8CqJQkAcWJNLGiZM4Y8VTSMBAK7pF8SMCAS0q7sKvx-e4ES8hNg-2ZPls332-z_cBHGrGBI1TEVApwoDFvAoELy1qjbhE0ruilSPI3qSXQ3Y1SkYLcNz8hdFaO_KZ7mLT5fLVRM7wqayX8xgTA4uwmPG0_qvVZAzQr9e3rj3AEW9SkmHeG_RPLBCMIotPMZxJv7ggp6ny4yJ23uV8Da7n86pJJU_dmRFd-f6tZON_J74Oqz7MJP16X2zAgh5vwsqn4oMtGJ1izVyUu9KKXEwd9csQ67skvp4TG8yS4Vgg81HaDrf2annxfzbJ_aN5IKdeWsUQFP10UhOG3GnztgXD87PByWXgdRYCGeXUBEnJy7DEwnpKKxUnFROZpFRxxWmiMimkxXSspFmsVV46kCYlstsyG05YBxhvw9J4MtY7QFSiWVJpWlFJEZkKmZQ5S3XIJM0rRtvQmy99IX0Rcpzgc-HASJgX1lgFGqvwxmrDUTPitS7A8UffFq59088vexs6c-sW_oS-FZhAZFgML9z9fdQeLKO0fE0L68CSmc70vg1AjDhwO-8Djs_WPg |
| linkProvider | IEEE |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwED5BGYCBN6JQwAMLEmnjxG6TEVGgvAda0S2KHxEIaFHrLvx6fE4a8RJi82BLls_23ef7fB_AgWZM0LApPCqF77EwyjwRpRa1BpFE0ruimSPI3jY7PXbZ5_0ZOCr_wmitHflM17HpcvlqKCf4VNaIoxATA7MwxxljPP-tVeYM0LPn9649wkFUJiX9uNE9PrFQMAgsQsWApvnFCTlVlR9XsfMvZ8twM51ZTit5rk-MqMv3b0Ub_zv1FVgqAk1ynO-MVZjRgzVY_FR-cB36bayai4JXWpHzkSN_GWK9l8T3c2LDWdIbCOQ-Stvhzl4ur8WvTfLwZB5JuxBXMQRlP53YhCH32ow3oHd22j3peIXSgieDmBqPp1Hqp1haT2mlQp4x0ZKUqkhFlKuWFNKiOpbSVqhVnDqYJiXy21o2oLAuMNyEymA40FtAFNeMZ5pmVFLEpkLyNGZN7TNJ44zRKjSmS5_Iogw5TvAlcXDEjxNrrASNlRTGqsJhOeItL8HxR991XPuyX7HsVahNrZsUZ3ScYAqRYTk8f_v3Ufsw3-neXCfXF7dXO7CAQvM5SawGFTOa6F0bjhix53bhB_Cv2Ys |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Distributed+Gradient+Tracking+for+Unbalanced+Optimization+With+Different+Constraint+Sets&rft.jtitle=IEEE+transactions+on+automatic+control&rft.au=Cheng%2C+Songsong&rft.au=Liang%2C+Shu&rft.au=Fan%2C+Yuan&rft.au=Hong%2C+Yiguang&rft.date=2023-06-01&rft.issn=0018-9286&rft.eissn=1558-2523&rft.volume=68&rft.issue=6&rft.spage=3633&rft.epage=3640&rft_id=info:doi/10.1109%2FTAC.2022.3192316&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TAC_2022_3192316 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0018-9286&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0018-9286&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0018-9286&client=summon |