Distributed Gradient Tracking for Unbalanced Optimization With Different Constraint Sets

Gradient tracking methods have become popular for distributed optimization in recent years, partially because they achieve linear convergence using only a constant step-size for strongly convex optimization. In this article, we construct a counterexample on constrained optimization to show that dire...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on automatic control Vol. 68; no. 6; pp. 3633 - 3640
Main Authors Cheng, Songsong, Liang, Shu, Fan, Yuan, Hong, Yiguang
Format Journal Article
LanguageEnglish
Published New York IEEE 01.06.2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN0018-9286
1558-2523
DOI10.1109/TAC.2022.3192316

Cover

Abstract Gradient tracking methods have become popular for distributed optimization in recent years, partially because they achieve linear convergence using only a constant step-size for strongly convex optimization. In this article, we construct a counterexample on constrained optimization to show that direct extension of gradient tracking by using projections cannot guarantee the correctness. Then, we propose projected gradient tracking algorithms with diminishing step-sizes rather than a constant one for distributed strongly convex optimization with different constraint sets and unbalanced graphs. Our basic algorithm can achieve <inline-formula><tex-math notation="LaTeX">O(\ln T/{T})</tex-math></inline-formula> convergence rate. Moreover, we design an epoch iteration scheme and improve the convergence rate as <inline-formula><tex-math notation="LaTeX">O(1/{T})</tex-math></inline-formula>.
AbstractList Gradient tracking methods have become popular for distributed optimization in recent years, partially because they achieve linear convergence using only a constant step-size for strongly convex optimization. In this article, we construct a counterexample on constrained optimization to show that direct extension of gradient tracking by using projections cannot guarantee the correctness. Then, we propose projected gradient tracking algorithms with diminishing step-sizes rather than a constant one for distributed strongly convex optimization with different constraint sets and unbalanced graphs. Our basic algorithm can achieve <inline-formula><tex-math notation="LaTeX">O(\ln T/{T})</tex-math></inline-formula> convergence rate. Moreover, we design an epoch iteration scheme and improve the convergence rate as <inline-formula><tex-math notation="LaTeX">O(1/{T})</tex-math></inline-formula>.
Gradient tracking methods have become popular for distributed optimization in recent years, partially because they achieve linear convergence using only a constant step-size for strongly convex optimization. In this article, we construct a counterexample on constrained optimization to show that direct extension of gradient tracking by using projections cannot guarantee the correctness. Then, we propose projected gradient tracking algorithms with diminishing step-sizes rather than a constant one for distributed strongly convex optimization with different constraint sets and unbalanced graphs. Our basic algorithm can achieve [Formula Omitted] convergence rate. Moreover, we design an epoch iteration scheme and improve the convergence rate as [Formula Omitted].
Author Fan, Yuan
Liang, Shu
Hong, Yiguang
Cheng, Songsong
Author_xml – sequence: 1
  givenname: Songsong
  orcidid: 0000-0001-5566-6836
  surname: Cheng
  fullname: Cheng, Songsong
  email: sscheng@amss.ac.cn
  organization: School of Electrical Engineering and Automation, Anhui University, Hefei, China
– sequence: 2
  givenname: Shu
  orcidid: 0000-0002-9719-1987
  surname: Liang
  fullname: Liang, Shu
  email: sliangresearch@163.com
  organization: Department of Control Science and Engineering, Tongji University, Shanghai, China
– sequence: 3
  givenname: Yuan
  orcidid: 0000-0001-6716-7129
  surname: Fan
  fullname: Fan, Yuan
  email: yuanf@ahu.edu.cn
  organization: School of Electrical Engineering and Automation, Anhui University, Hefei, China
– sequence: 4
  givenname: Yiguang
  orcidid: 0000-0001-9505-8739
  surname: Hong
  fullname: Hong, Yiguang
  email: yghong@iss.ac.cn
  organization: Department of Control Science and Engineering, Tongji University, Shanghai, China
BookMark eNp9kD1PwzAQhi1UJNrCjsQSiTnFH3Fij1UKBakSA61gsxzbAZfWKbY7wK_HoRUDA9PdSc9zZ78jMHCdMwBcIjhBCPKb5bSeYIjxhCCOCSpPwBBRynJMMRmAIYSI5Ryz8gyMQlinsSwKNAQvMxuit80-Gp3NvdTWuJgtvVTv1r1mbeezlWvkRjqVgMddtFv7JaPtXPZs41s2s21rfO_UnUubpE3tk4nhHJy2chPMxbGOwerudlnf54vH-UM9XeQKcxRzKpmEEhLMtNGa0LZoKoWQZpohqivVKI6qQqKKGM0lxAwzpSgtyoohTkpMxuD6sHfnu4-9CVGsu7136aTACSk4pwVMVHmglO9C8KYVysafb_RP3ggERZ-iSCmKPkVxTDGJ8I-483Yr_ed_ytVBscaYX5wzQjDG5BuwA37D
CODEN IETAA9
CitedBy_id crossref_primary_10_1002_rnc_7917
crossref_primary_10_1007_s12555_023_0211_3
crossref_primary_10_1002_asjc_3467
crossref_primary_10_1109_TNSE_2024_3374765
crossref_primary_10_1016_j_jfranklin_2024_107492
crossref_primary_10_1109_LCSYS_2024_3367917
crossref_primary_10_1109_TAC_2023_3347328
crossref_primary_10_1016_j_neunet_2025_107257
crossref_primary_10_1109_TAC_2024_3453382
crossref_primary_10_1109_TSIPN_2024_3402354
crossref_primary_10_1002_rnc_7666
crossref_primary_10_1016_j_jfranklin_2023_11_017
crossref_primary_10_1109_TAC_2024_3385311
crossref_primary_10_1007_s43684_024_00063_z
crossref_primary_10_1109_ACCESS_2023_3305529
crossref_primary_10_1016_j_jfranklin_2024_107466
crossref_primary_10_1177_01423312241297730
Cites_doi 10.1109/TAC.2014.2364096
10.1109/CDC.2015.7402509
10.1016/j.arcontrol.2019.05.006
10.1109/TAC.2019.2942513
10.1016/j.sysconle.2016.07.009
10.1109/TAC.2019.2912494
10.14736/kyb-2020-3-0559
10.1016/j.ins.2017.09.038
10.1016/j.automatica.2021.109738
10.1109/TAC.2016.2628807
10.1007/s10107-020-01487-0
10.1109/TCNS.2019.2915015
10.1109/TAC.2019.2934216
10.1137/16M1084316
10.1137/14096668X
10.1109/TAC.2020.2972824
10.1016/j.automatica.2017.12.053
10.1109/TAC.2020.3009363
10.1109/TAC.2013.2278132
10.1109/TAC.2010.2041686
10.1109/TAC.2020.2989281
10.1109/TSP.2020.3031071
10.1109/TAC.2016.2615066
10.1109/TAC.2019.2915745
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
7SP
7TB
8FD
FR3
JQ2
L7M
L~C
L~D
DOI 10.1109/TAC.2022.3192316
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Technology Research Database
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1558-2523
EndPage 3640
ExternalDocumentID 10_1109_TAC_2022_3192316
9833222
Genre orig-research
GrantInformation_xml – fundername: Shanghai Municipal Science and Technology Major Project
  grantid: 2021SHZDZX0100
– fundername: Natural Science Foundation of Anhui Province; Anhui Provincial Natural Science Foundation
  grantid: 2008085J32
  funderid: 10.13039/501100003995
– fundername: National Natural Science Foundation of China
  grantid: 62103003; 72171171; 61903027; 61973002; 61733018
  funderid: 10.13039/501100001809
GroupedDBID -~X
.DC
0R~
29I
3EH
4.4
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ACNCT
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
F5P
HZ~
H~9
IAAWW
IBMZZ
ICLAB
IDIHD
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
MS~
O9-
OCL
P2P
RIA
RIE
RNS
TAE
TN5
VH1
VJK
~02
AAYXX
CITATION
7SC
7SP
7TB
8FD
FR3
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c291t-5a8a0a0328dedd35f4b7c11d8d815d7cbc9174a173ed9a02828cc554678193623
IEDL.DBID RIE
ISSN 0018-9286
IngestDate Mon Jun 30 08:23:33 EDT 2025
Thu Apr 24 22:56:50 EDT 2025
Wed Oct 01 04:15:58 EDT 2025
Wed Aug 27 02:22:05 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 6
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c291t-5a8a0a0328dedd35f4b7c11d8d815d7cbc9174a173ed9a02828cc554678193623
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-5566-6836
0000-0002-9719-1987
0000-0001-6716-7129
0000-0001-9505-8739
PQID 2819499540
PQPubID 85475
PageCount 8
ParticipantIDs proquest_journals_2819499540
crossref_primary_10_1109_TAC_2022_3192316
crossref_citationtrail_10_1109_TAC_2022_3192316
ieee_primary_9833222
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-06-01
PublicationDateYYYYMMDD 2023-06-01
PublicationDate_xml – month: 06
  year: 2023
  text: 2023-06-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on automatic control
PublicationTitleAbbrev TAC
PublicationYear 2023
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref15
ref11
ref10
ref2
ref1
ref17
ref16
ref19
ref18
li (ref12) 0
lü (ref7) 2018; 422
ref24
ref23
ref25
ref20
ref22
ref21
nedi? (ref14) 2010; 55
ref8
ref9
ref4
ref3
ref6
ref5
References_xml – ident: ref17
  doi: 10.1109/TAC.2014.2364096
– ident: ref20
  doi: 10.1109/CDC.2015.7402509
– ident: ref1
  doi: 10.1016/j.arcontrol.2019.05.006
– ident: ref8
  doi: 10.1109/TAC.2019.2942513
– ident: ref15
  doi: 10.1016/j.sysconle.2016.07.009
– ident: ref24
  doi: 10.1109/TAC.2019.2912494
– ident: ref10
  doi: 10.14736/kyb-2020-3-0559
– volume: 422
  start-page: 516
  year: 2018
  ident: ref7
  article-title: Geometrical convergence rate for distributed optimization with time-varying directed graphs and uncoordinated step-sizes
  publication-title: Inf Sci
  doi: 10.1016/j.ins.2017.09.038
– ident: ref16
  doi: 10.1016/j.automatica.2021.109738
– start-page: 1662
  year: 0
  ident: ref12
  article-title: Communication-efficient distributed optimization in networks with gradient tracking and variance reduction
  publication-title: Proc Int Conf Artif Intell Statist
– ident: ref23
  doi: 10.1109/TAC.2016.2628807
– ident: ref11
  doi: 10.1007/s10107-020-01487-0
– ident: ref2
  doi: 10.1109/TCNS.2019.2915015
– ident: ref25
  doi: 10.1109/TAC.2019.2934216
– ident: ref5
  doi: 10.1137/16M1084316
– ident: ref21
  doi: 10.1137/14096668X
– ident: ref9
  doi: 10.1109/TAC.2020.2972824
– ident: ref4
  doi: 10.1016/j.automatica.2017.12.053
– ident: ref18
  doi: 10.1109/TAC.2020.3009363
– ident: ref22
  doi: 10.1109/TAC.2013.2278132
– volume: 55
  start-page: 922
  year: 2010
  ident: ref14
  article-title: Constrained consensus and optimization in multi-agent networks
  publication-title: IEEE Trans Autom Control
  doi: 10.1109/TAC.2010.2041686
– ident: ref6
  doi: 10.1109/TAC.2020.2989281
– ident: ref13
  doi: 10.1109/TSP.2020.3031071
– ident: ref19
  doi: 10.1109/TAC.2016.2615066
– ident: ref3
  doi: 10.1109/TAC.2019.2915745
SSID ssj0016441
Score 2.5492136
Snippet Gradient tracking methods have become popular for distributed optimization in recent years, partially because they achieve linear convergence using only a...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 3633
SubjectTerms Algorithms
Basic converters
Computational geometry
Constraints
Convergence
Convex functions
Convexity
different constraint sets
Directed graphs
distrib- uted optimization
gradient tracking
Heuristic algorithms
Iterative methods
Linear programming
Multi-agent systems
Optimization
Tracking
unbalanced graphs
Title Distributed Gradient Tracking for Unbalanced Optimization With Different Constraint Sets
URI https://ieeexplore.ieee.org/document/9833222
https://www.proquest.com/docview/2819499540
Volume 68
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1558-2523
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0016441
  issn: 0018-9286
  databaseCode: RIE
  dateStart: 19630101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwED4BEwy8CqJQkAcWJNLGiZM4Y8VTSMBAK7pF8SMCAS0q7sKvx-e4ES8hNg-2ZPls332-z_cBHGrGBI1TEVApwoDFvAoELy1qjbhE0ruilSPI3qSXQ3Y1SkYLcNz8hdFaO_KZ7mLT5fLVRM7wqayX8xgTA4uwmPG0_qvVZAzQr9e3rj3AEW9SkmHeG_RPLBCMIotPMZxJv7ggp6ny4yJ23uV8Da7n86pJJU_dmRFd-f6tZON_J74Oqz7MJP16X2zAgh5vwsqn4oMtGJ1izVyUu9KKXEwd9csQ67skvp4TG8yS4Vgg81HaDrf2annxfzbJ_aN5IKdeWsUQFP10UhOG3GnztgXD87PByWXgdRYCGeXUBEnJy7DEwnpKKxUnFROZpFRxxWmiMimkxXSspFmsVV46kCYlstsyG05YBxhvw9J4MtY7QFSiWVJpWlFJEZkKmZQ5S3XIJM0rRtvQmy99IX0Rcpzgc-HASJgX1lgFGqvwxmrDUTPitS7A8UffFq59088vexs6c-sW_oS-FZhAZFgML9z9fdQeLKO0fE0L68CSmc70vg1AjDhwO-8Djs_WPg
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwED5BGYCBN6JQwAMLEmnjxG6TEVGgvAda0S2KHxEIaFHrLvx6fE4a8RJi82BLls_23ef7fB_AgWZM0LApPCqF77EwyjwRpRa1BpFE0ruimSPI3jY7PXbZ5_0ZOCr_wmitHflM17HpcvlqKCf4VNaIoxATA7MwxxljPP-tVeYM0LPn9649wkFUJiX9uNE9PrFQMAgsQsWApvnFCTlVlR9XsfMvZ8twM51ZTit5rk-MqMv3b0Ub_zv1FVgqAk1ynO-MVZjRgzVY_FR-cB36bayai4JXWpHzkSN_GWK9l8T3c2LDWdIbCOQ-Stvhzl4ur8WvTfLwZB5JuxBXMQRlP53YhCH32ow3oHd22j3peIXSgieDmBqPp1Hqp1haT2mlQp4x0ZKUqkhFlKuWFNKiOpbSVqhVnDqYJiXy21o2oLAuMNyEymA40FtAFNeMZ5pmVFLEpkLyNGZN7TNJ44zRKjSmS5_Iogw5TvAlcXDEjxNrrASNlRTGqsJhOeItL8HxR991XPuyX7HsVahNrZsUZ3ScYAqRYTk8f_v3Ufsw3-neXCfXF7dXO7CAQvM5SawGFTOa6F0bjhix53bhB_Cv2Ys
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Distributed+Gradient+Tracking+for+Unbalanced+Optimization+With+Different+Constraint+Sets&rft.jtitle=IEEE+transactions+on+automatic+control&rft.au=Cheng%2C+Songsong&rft.au=Liang%2C+Shu&rft.au=Fan%2C+Yuan&rft.au=Hong%2C+Yiguang&rft.date=2023-06-01&rft.issn=0018-9286&rft.eissn=1558-2523&rft.volume=68&rft.issue=6&rft.spage=3633&rft.epage=3640&rft_id=info:doi/10.1109%2FTAC.2022.3192316&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TAC_2022_3192316
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0018-9286&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0018-9286&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0018-9286&client=summon