Novel K-medoids based SMOTE Integrated with Locality Preserving Projections for Fault Diagnosis

In the field of the fault diagnosis of industrial processes, there are many problems in process data, such as missing critical fault data, high repeatability of normal state data, and poor representation of faults data, which may reduce the accuracy of fault diagnosis. In this paper, a novel K-medoi...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on instrumentation and measurement Vol. 71; p. 1
Main Authors Zhu, Qun-Xiong, Wang, Xin-Wei, Zhang, Ning, Xu, Yuan, He, Yan-Lin
Format Journal Article
LanguageEnglish
Published New York IEEE 2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN0018-9456
1557-9662
DOI10.1109/TIM.2022.3218551

Cover

Abstract In the field of the fault diagnosis of industrial processes, there are many problems in process data, such as missing critical fault data, high repeatability of normal state data, and poor representation of faults data, which may reduce the accuracy of fault diagnosis. In this paper, a novel K-medoids based synthetic minority over-sampling technique that combines locality preserving projections (KMS-LPP), is proposed for fault diagnosis. First, the synthetic minority sampling technology (SMOTE) is designed based on K-medoid to generate minority fault samples to address the imbalanced problem of data. Second, to extract the key fault-relevant features and reserve the local structure information at the same time, the manifold learning (ML) approach locality preserving projections (LPP) is performed to reduce the dimensionality of data. Finally, the Adaboost. M2, as an ensemble classifier, is conducted for fault classification. Simulations of the Tennessee Eastman process (TEP) are performed for validation of the performance of the presented KMS-LPP method. The obtained results show that KMS-LPP has enhanced the performance of fault diagnosis due to its higher accuracy compared with traditional oversampling and feature extraction methods, which indicates the effectiveness of KMS-LPP.
AbstractList In the field of the fault diagnosis of industrial processes, there are many problems in process data, such as missing critical fault data, high repeatability of normal state data, and poor representation of faults data, which may reduce the accuracy of fault diagnosis. In this paper, a novel K-medoids based synthetic minority over-sampling technique that combines locality preserving projections (KMS-LPP), is proposed for fault diagnosis. First, the synthetic minority sampling technology (SMOTE) is designed based on K-medoid to generate minority fault samples to address the imbalanced problem of data. Second, to extract the key fault-relevant features and reserve the local structure information at the same time, the manifold learning (ML) approach locality preserving projections (LPP) is performed to reduce the dimensionality of data. Finally, the Adaboost. M2, as an ensemble classifier, is conducted for fault classification. Simulations of the Tennessee Eastman process (TEP) are performed for validation of the performance of the presented KMS-LPP method. The obtained results show that KMS-LPP has enhanced the performance of fault diagnosis due to its higher accuracy compared with traditional oversampling and feature extraction methods, which indicates the effectiveness of KMS-LPP.
In the field of the fault diagnosis of industrial processes, there are many problems in process data, such as missing critical fault data, high repeatability of normal state data, and poor representation of faults data, which may reduce the accuracy of fault diagnosis. In this article, a novel K-medoids-based synthetic minority oversampling technique that combines locality preserving projections (KMS-LPP) is proposed for fault diagnosis. First, the synthetic minority sampling technology (SMOTE) is designed based on K-medoid to generate minority fault samples to address the imbalanced problem of data. Second, to extract the key fault-relevant features and reserve the local structure information at the same time, the manifold learning (ML) approach locality preserving projections (LPP) is performed to reduce the dimensionality of data. Finally, the Adaboost. M2, as an ensemble classifier, is conducted for fault classification. Simulations of the Tennessee Eastman process (TEP) are performed for validation of the performance of the presented KMS-LPP method. The obtained results show that KMS-LPP has enhanced the performance of fault diagnosis due to its higher accuracy compared with traditional oversampling and feature extraction methods, which indicates the effectiveness of KMS-LPP.
Author Xu, Yuan
Wang, Xin-Wei
He, Yan-Lin
Zhu, Qun-Xiong
Zhang, Ning
Author_xml – sequence: 1
  givenname: Qun-Xiong
  orcidid: 0000-0002-2719-0516
  surname: Zhu
  fullname: Zhu, Qun-Xiong
  organization: College of Information Science and Technology, Beijing University of Chemical Technology, Beijing, China
– sequence: 2
  givenname: Xin-Wei
  orcidid: 0000-0002-3352-6872
  surname: Wang
  fullname: Wang, Xin-Wei
  organization: College of Information Science and Technology, Beijing University of Chemical Technology, Beijing, China
– sequence: 3
  givenname: Ning
  orcidid: 0000-0002-6793-1518
  surname: Zhang
  fullname: Zhang, Ning
  organization: College of Information Science and Technology, Beijing University of Chemical Technology, Beijing, China
– sequence: 4
  givenname: Yuan
  orcidid: 0000-0003-1828-8244
  surname: Xu
  fullname: Xu, Yuan
  organization: College of Information Science and Technology, Beijing University of Chemical Technology, Beijing, China
– sequence: 5
  givenname: Yan-Lin
  orcidid: 0000-0001-9999-3679
  surname: He
  fullname: He, Yan-Lin
  organization: College of Information Science and Technology, Beijing University of Chemical Technology, Beijing, China
BookMark eNp9kE1LAzEQhoMo2Kp3wUvA89Z8bLLJUWqrxVYF6zmk2aSmbDc1SSv-e7dUPHjwNMPwPjPD0wfHbWgtAJcYDTBG8mY-mQ0IImRACRaM4SPQw4xVheScHIMeQlgUsmT8FPRTWiGEKl5WPaCews428LFY2zr4OsGFTraGr7Pn-QhO2myXUedu8OnzO5wGoxufv-BLtMnGnW-XXRtW1mQf2gRdiHCst02Gd14v25B8OgcnTjfJXvzUM_A2Hs2HD8X0-X4yvJ0WhkicC8Ys11VZO2dIqcuFRNxq4wTnzGFiTE2c0TXjgteaSsE4r4wRlBMhsVloR8_A9WHvJoaPrU1ZrcI2tt1JRSpaUiEYZl2KH1ImhpSidcr4rPfP56h9ozBSe5mqk6n2MtWPzA5Ef8BN9Gsdv_5Drg6It9b-xqWkVCBCvwHBhoH3
CODEN IEIMAO
CitedBy_id crossref_primary_10_1109_TASE_2023_3279829
crossref_primary_10_1109_TII_2024_3424211
crossref_primary_10_1109_JSEN_2023_3331837
crossref_primary_10_1021_acs_iecr_4c02220
crossref_primary_10_1109_TCYB_2025_3531494
crossref_primary_10_3934_mbe_2023226
crossref_primary_10_1016_j_aei_2024_102972
crossref_primary_10_1016_j_neucom_2024_127355
crossref_primary_10_1109_JIOT_2024_3387328
crossref_primary_10_1016_j_ymssp_2024_111994
crossref_primary_10_1016_j_ress_2024_110745
crossref_primary_10_1109_JSEN_2024_3415713
crossref_primary_10_1109_TIM_2023_3291774
crossref_primary_10_1109_TIM_2025_3541712
Cites_doi 10.1109/TNNLS.2019.2920903
10.1109/TR.2021.3139539
10.1109/TII.2022.3182774
10.1016/j.measurement.2021.110119
10.1109/TIE.2014.2345331
10.1016/0165-1684(94)90029-9
10.1109/TIM.2019.2954151
10.1109/TIM.2022.3149097
10.1016/j.ins.2018.10.029
10.1016/j.isatra.2021.08.030
10.1109/TR.2021.3115108
10.1007/s10489-019-01624-z
10.1109/TCYB.2021.3109618
10.1016/j.isatra.2019.08.022
10.1109/TKDE.2019.2905559
10.1111/mice.12752
10.1016/j.patcog.2021.108169
10.1109/TIM.2021.3125975
10.1016/j.ins.2018.06.056
10.1016/j.artmed.2015.07.005
10.1016/j.engappai.2020.104062
10.1109/TIM.2020.3035464
10.1016/j.patcog.2017.12.017
10.1109/TII.2021.3100284
10.1016/S1007-0214(10)70043-2
10.1021/acs.iecr.9b00320
10.1016/j.isatra.2019.07.001
10.1016/j.neucom.2018.06.077
10.1109/TIE.2020.2967708
10.1613/jair.953
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
DBID 97E
RIA
RIE
AAYXX
CITATION
7SP
7U5
8FD
L7M
DOI 10.1109/TIM.2022.3218551
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Electronics & Communications Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
Electronics & Communications Abstracts
DatabaseTitleList
Solid State and Superconductivity Abstracts
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Physics
EISSN 1557-9662
EndPage 1
ExternalDocumentID 10_1109_TIM_2022_3218551
9933802
Genre orig-research
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 61973022; 62073022; 61973024
  funderid: 10.13039/501100001809
– fundername: Fundamental Research Funds for the Central Universities
  grantid: JD2225
  funderid: 10.13039/501100012226
GroupedDBID -~X
0R~
29I
4.4
5GY
5VS
6IK
85S
8WZ
97E
A6W
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACIWK
ACNCT
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
F5P
HZ~
H~9
IAAWW
IBMZZ
ICLAB
IDIHD
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
RIA
RIE
RNS
TN5
TWZ
VH1
VJK
AAYXX
CITATION
7SP
7U5
8FD
L7M
ID FETCH-LOGICAL-c291t-55e6a74dffc24a4b906eacf8665f12ccd2fcad5686da3985667cc8362891cbaf3
IEDL.DBID RIE
ISSN 0018-9456
IngestDate Mon Jun 30 10:19:59 EDT 2025
Thu Apr 24 22:58:12 EDT 2025
Wed Oct 01 03:46:41 EDT 2025
Wed Aug 27 02:29:08 EDT 2025
IsPeerReviewed true
IsScholarly true
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c291t-55e6a74dffc24a4b906eacf8665f12ccd2fcad5686da3985667cc8362891cbaf3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-2719-0516
0000-0002-3352-6872
0000-0002-6793-1518
0000-0003-1828-8244
0000-0001-9999-3679
PQID 2734388515
PQPubID 85462
PageCount 1
ParticipantIDs proquest_journals_2734388515
ieee_primary_9933802
crossref_primary_10_1109_TIM_2022_3218551
crossref_citationtrail_10_1109_TIM_2022_3218551
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20220000
2022-00-00
20220101
PublicationDateYYYYMMDD 2022-01-01
PublicationDate_xml – year: 2022
  text: 20220000
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on instrumentation and measurement
PublicationTitleAbbrev TIM
PublicationYear 2022
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref12
ref15
ref14
ref30
ref11
ref10
ref2
ref1
ref17
ref16
ref19
ref18
ref24
ref23
ref26
ref25
ref20
ref22
ref21
ref28
ref27
ref29
ref8
ref7
ref9
ref4
ref3
ref6
ref5
References_xml – ident: ref10
  doi: 10.1109/TNNLS.2019.2920903
– ident: ref22
  doi: 10.1109/TR.2021.3139539
– ident: ref28
  doi: 10.1109/TII.2022.3182774
– ident: ref12
  doi: 10.1016/j.measurement.2021.110119
– ident: ref11
  doi: 10.1109/TIE.2014.2345331
– ident: ref13
  doi: 10.1016/0165-1684(94)90029-9
– ident: ref30
  doi: 10.1109/TIM.2019.2954151
– ident: ref14
  doi: 10.1109/TIM.2022.3149097
– ident: ref16
  doi: 10.1016/j.ins.2018.10.029
– ident: ref3
  doi: 10.1016/j.isatra.2021.08.030
– ident: ref29
  doi: 10.1109/TR.2021.3115108
– ident: ref19
  doi: 10.1007/s10489-019-01624-z
– ident: ref2
  doi: 10.1109/TCYB.2021.3109618
– ident: ref27
  doi: 10.1016/j.isatra.2019.08.022
– ident: ref18
  doi: 10.1109/TKDE.2019.2905559
– ident: ref24
  doi: 10.1111/mice.12752
– ident: ref23
  doi: 10.1016/j.patcog.2021.108169
– ident: ref4
  doi: 10.1109/TIM.2021.3125975
– ident: ref17
  doi: 10.1016/j.ins.2018.06.056
– ident: ref21
  doi: 10.1016/j.artmed.2015.07.005
– ident: ref25
  doi: 10.1016/j.engappai.2020.104062
– ident: ref1
  doi: 10.1109/TIM.2020.3035464
– ident: ref20
  doi: 10.1016/j.patcog.2017.12.017
– ident: ref5
  doi: 10.1109/TII.2021.3100284
– ident: ref7
  doi: 10.1016/S1007-0214(10)70043-2
– ident: ref9
  doi: 10.1021/acs.iecr.9b00320
– ident: ref6
  doi: 10.1016/j.isatra.2019.07.001
– ident: ref26
  doi: 10.1016/j.neucom.2018.06.077
– ident: ref8
  doi: 10.1109/TIE.2020.2967708
– ident: ref15
  doi: 10.1613/jair.953
SSID ssj0007647
Score 2.4739792
Snippet In the field of the fault diagnosis of industrial processes, there are many problems in process data, such as missing critical fault data, high repeatability...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1
SubjectTerms Clustering algorithms
Data imbalance
Fault diagnosis
Feature extraction
Industrial Process
Interpolation
Laplace equations
Locality Preserving Projections
Machine learning
Manifolds (mathematics)
Oversampling
Principal component analysis
Sampling methods
SMOTE
Title Novel K-medoids based SMOTE Integrated with Locality Preserving Projections for Fault Diagnosis
URI https://ieeexplore.ieee.org/document/9933802
https://www.proquest.com/docview/2734388515
Volume 71
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1557-9662
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0007647
  issn: 0018-9456
  databaseCode: RIE
  dateStart: 19630101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1JSwMxFH6oIOjBXawbOXgRnHaWJJMcRS1u1YMVvA2TTcTSip168Nf7MktxQzwM5DAJgffyvi8vL18ADrRRLsHIFzhHVUClDoNcWBFwGjprbCiN9HeHezf8_J5ePrCHGTia3oWx1pbFZ7btm-VZvhnpiU-VdRBLcVwMuLOp4NVdrWnUTTmt9DEjXMDICpojyVB2-hc93AjGcTtBPGMs-gJB5ZsqPwJxiS7dZeg186qKSp7bk0K19fs3ycb_TnwFlmqaSY4rv1iFGTtcg8VP4oNrMF8Wf-rxOmQ3ozc7IFcBIuPoyYyJhzZD7nq3_TNy0ehJGOJztuTagx9Sd-KLN3ygGT5is0zneA8mSIJJN58MCnJaVfE9jTfgvnvWPzkP6ocXAh3LqAgYszxPqXFOxzSnSoYc47Pz0nguirU2sdO5YVxwkydSICNMtRYIhUJGWuUu2YS54Whot4AYzlQq8lgYwaiT6Lf4JdaERqXKSNaCTmOLTNeq5P5xjEFW7k5CmaH1Mm-9rLZeCw6nPV4qRY4__l33xpj-V9uhBbuNubN6yY4zr_OTCCSgbPv3Xjuw4Meu8i-7MFe8TuweMpJC7Zeu-AGsad5T
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LTxsxEB4hKgQ98EaEUvChFyQ22Ye9ax8rIEogmx4IEjdr_UKIKKmaTQ_99R3vIyotqjis5IO9u9I3nm88Hn8G-KKNcgl6vsA5qgIqdBgU3PIgpaGzxobCCH92OB-ngwd6-8ge1-BydRbGWlsVn9mub1Z7-Waulz5V1kMuxfeiw_3AKKWsPq218rtZSmuFzAinMMYF7aZkKHqTYY5LwTjuJshojEWvSKi6VeUfV1zxS38H8vbP6rKSl-6yVF396y_Rxvf--i5sN4Em-Vpbxh6s2dk-fPxDfnAfNqryT704ADme_7RTchcgN86fzYJ4cjPkPv82uSHDVlHCEJ-1JSNPfxi8E1--4V3N7AmbVULH2zDBMJj0i-W0JNd1Hd_z4hAe-jeTq0HQXL0Q6FhEZcCYTYuMGud0TAuqRJiih3ZeHM9FsdYmdrowLOWpKRLBMSbMtOZIhlxEWhUuOYL12Xxmj4GYlKmMFzE3nFEn0HLxSawJjcqUEawDvRYLqRtdcn89xlRW65NQSERPevRkg14HLlYjvteaHP_pe-DBWPVrcOjAaQu3bCbtQnqln4RjCMpO3h51DpuDST6So-H47hNs-e_U2ZhTWC9_LO1njE9KdVaZ5W94P-Gg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Novel+K-medoids+based+SMOTE+Integrated+with+Locality+Preserving+Projections+for+Fault+Diagnosis&rft.jtitle=IEEE+transactions+on+instrumentation+and+measurement&rft.au=Zhu%2C+Qun-Xiong&rft.au=Wang%2C+Xin-Wei&rft.au=Zhang%2C+Ning&rft.au=Xu%2C+Yuan&rft.date=2022&rft.pub=IEEE&rft.issn=0018-9456&rft.spage=1&rft.epage=1&rft_id=info:doi/10.1109%2FTIM.2022.3218551&rft.externalDocID=9933802
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0018-9456&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0018-9456&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0018-9456&client=summon