Novel K-medoids based SMOTE Integrated with Locality Preserving Projections for Fault Diagnosis
In the field of the fault diagnosis of industrial processes, there are many problems in process data, such as missing critical fault data, high repeatability of normal state data, and poor representation of faults data, which may reduce the accuracy of fault diagnosis. In this paper, a novel K-medoi...
Saved in:
| Published in | IEEE transactions on instrumentation and measurement Vol. 71; p. 1 |
|---|---|
| Main Authors | , , , , |
| Format | Journal Article |
| Language | English |
| Published |
New York
IEEE
2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Subjects | |
| Online Access | Get full text |
| ISSN | 0018-9456 1557-9662 |
| DOI | 10.1109/TIM.2022.3218551 |
Cover
| Abstract | In the field of the fault diagnosis of industrial processes, there are many problems in process data, such as missing critical fault data, high repeatability of normal state data, and poor representation of faults data, which may reduce the accuracy of fault diagnosis. In this paper, a novel K-medoids based synthetic minority over-sampling technique that combines locality preserving projections (KMS-LPP), is proposed for fault diagnosis. First, the synthetic minority sampling technology (SMOTE) is designed based on K-medoid to generate minority fault samples to address the imbalanced problem of data. Second, to extract the key fault-relevant features and reserve the local structure information at the same time, the manifold learning (ML) approach locality preserving projections (LPP) is performed to reduce the dimensionality of data. Finally, the Adaboost. M2, as an ensemble classifier, is conducted for fault classification. Simulations of the Tennessee Eastman process (TEP) are performed for validation of the performance of the presented KMS-LPP method. The obtained results show that KMS-LPP has enhanced the performance of fault diagnosis due to its higher accuracy compared with traditional oversampling and feature extraction methods, which indicates the effectiveness of KMS-LPP. |
|---|---|
| AbstractList | In the field of the fault diagnosis of industrial processes, there are many problems in process data, such as missing critical fault data, high repeatability of normal state data, and poor representation of faults data, which may reduce the accuracy of fault diagnosis. In this paper, a novel K-medoids based synthetic minority over-sampling technique that combines locality preserving projections (KMS-LPP), is proposed for fault diagnosis. First, the synthetic minority sampling technology (SMOTE) is designed based on K-medoid to generate minority fault samples to address the imbalanced problem of data. Second, to extract the key fault-relevant features and reserve the local structure information at the same time, the manifold learning (ML) approach locality preserving projections (LPP) is performed to reduce the dimensionality of data. Finally, the Adaboost. M2, as an ensemble classifier, is conducted for fault classification. Simulations of the Tennessee Eastman process (TEP) are performed for validation of the performance of the presented KMS-LPP method. The obtained results show that KMS-LPP has enhanced the performance of fault diagnosis due to its higher accuracy compared with traditional oversampling and feature extraction methods, which indicates the effectiveness of KMS-LPP. In the field of the fault diagnosis of industrial processes, there are many problems in process data, such as missing critical fault data, high repeatability of normal state data, and poor representation of faults data, which may reduce the accuracy of fault diagnosis. In this article, a novel K-medoids-based synthetic minority oversampling technique that combines locality preserving projections (KMS-LPP) is proposed for fault diagnosis. First, the synthetic minority sampling technology (SMOTE) is designed based on K-medoid to generate minority fault samples to address the imbalanced problem of data. Second, to extract the key fault-relevant features and reserve the local structure information at the same time, the manifold learning (ML) approach locality preserving projections (LPP) is performed to reduce the dimensionality of data. Finally, the Adaboost. M2, as an ensemble classifier, is conducted for fault classification. Simulations of the Tennessee Eastman process (TEP) are performed for validation of the performance of the presented KMS-LPP method. The obtained results show that KMS-LPP has enhanced the performance of fault diagnosis due to its higher accuracy compared with traditional oversampling and feature extraction methods, which indicates the effectiveness of KMS-LPP. |
| Author | Xu, Yuan Wang, Xin-Wei He, Yan-Lin Zhu, Qun-Xiong Zhang, Ning |
| Author_xml | – sequence: 1 givenname: Qun-Xiong orcidid: 0000-0002-2719-0516 surname: Zhu fullname: Zhu, Qun-Xiong organization: College of Information Science and Technology, Beijing University of Chemical Technology, Beijing, China – sequence: 2 givenname: Xin-Wei orcidid: 0000-0002-3352-6872 surname: Wang fullname: Wang, Xin-Wei organization: College of Information Science and Technology, Beijing University of Chemical Technology, Beijing, China – sequence: 3 givenname: Ning orcidid: 0000-0002-6793-1518 surname: Zhang fullname: Zhang, Ning organization: College of Information Science and Technology, Beijing University of Chemical Technology, Beijing, China – sequence: 4 givenname: Yuan orcidid: 0000-0003-1828-8244 surname: Xu fullname: Xu, Yuan organization: College of Information Science and Technology, Beijing University of Chemical Technology, Beijing, China – sequence: 5 givenname: Yan-Lin orcidid: 0000-0001-9999-3679 surname: He fullname: He, Yan-Lin organization: College of Information Science and Technology, Beijing University of Chemical Technology, Beijing, China |
| BookMark | eNp9kE1LAzEQhoMo2Kp3wUvA89Z8bLLJUWqrxVYF6zmk2aSmbDc1SSv-e7dUPHjwNMPwPjPD0wfHbWgtAJcYDTBG8mY-mQ0IImRACRaM4SPQw4xVheScHIMeQlgUsmT8FPRTWiGEKl5WPaCews428LFY2zr4OsGFTraGr7Pn-QhO2myXUedu8OnzO5wGoxufv-BLtMnGnW-XXRtW1mQf2gRdiHCst02Gd14v25B8OgcnTjfJXvzUM_A2Hs2HD8X0-X4yvJ0WhkicC8Ys11VZO2dIqcuFRNxq4wTnzGFiTE2c0TXjgteaSsE4r4wRlBMhsVloR8_A9WHvJoaPrU1ZrcI2tt1JRSpaUiEYZl2KH1ImhpSidcr4rPfP56h9ozBSe5mqk6n2MtWPzA5Ef8BN9Gsdv_5Drg6It9b-xqWkVCBCvwHBhoH3 |
| CODEN | IEIMAO |
| CitedBy_id | crossref_primary_10_1109_TASE_2023_3279829 crossref_primary_10_1109_TII_2024_3424211 crossref_primary_10_1109_JSEN_2023_3331837 crossref_primary_10_1021_acs_iecr_4c02220 crossref_primary_10_1109_TCYB_2025_3531494 crossref_primary_10_3934_mbe_2023226 crossref_primary_10_1016_j_aei_2024_102972 crossref_primary_10_1016_j_neucom_2024_127355 crossref_primary_10_1109_JIOT_2024_3387328 crossref_primary_10_1016_j_ymssp_2024_111994 crossref_primary_10_1016_j_ress_2024_110745 crossref_primary_10_1109_JSEN_2024_3415713 crossref_primary_10_1109_TIM_2023_3291774 crossref_primary_10_1109_TIM_2025_3541712 |
| Cites_doi | 10.1109/TNNLS.2019.2920903 10.1109/TR.2021.3139539 10.1109/TII.2022.3182774 10.1016/j.measurement.2021.110119 10.1109/TIE.2014.2345331 10.1016/0165-1684(94)90029-9 10.1109/TIM.2019.2954151 10.1109/TIM.2022.3149097 10.1016/j.ins.2018.10.029 10.1016/j.isatra.2021.08.030 10.1109/TR.2021.3115108 10.1007/s10489-019-01624-z 10.1109/TCYB.2021.3109618 10.1016/j.isatra.2019.08.022 10.1109/TKDE.2019.2905559 10.1111/mice.12752 10.1016/j.patcog.2021.108169 10.1109/TIM.2021.3125975 10.1016/j.ins.2018.06.056 10.1016/j.artmed.2015.07.005 10.1016/j.engappai.2020.104062 10.1109/TIM.2020.3035464 10.1016/j.patcog.2017.12.017 10.1109/TII.2021.3100284 10.1016/S1007-0214(10)70043-2 10.1021/acs.iecr.9b00320 10.1016/j.isatra.2019.07.001 10.1016/j.neucom.2018.06.077 10.1109/TIE.2020.2967708 10.1613/jair.953 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022 |
| DBID | 97E RIA RIE AAYXX CITATION 7SP 7U5 8FD L7M |
| DOI | 10.1109/TIM.2022.3218551 |
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Electronics & Communications Abstracts Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace |
| DatabaseTitle | CrossRef Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace Electronics & Communications Abstracts |
| DatabaseTitleList | Solid State and Superconductivity Abstracts |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Physics |
| EISSN | 1557-9662 |
| EndPage | 1 |
| ExternalDocumentID | 10_1109_TIM_2022_3218551 9933802 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: National Natural Science Foundation of China grantid: 61973022; 62073022; 61973024 funderid: 10.13039/501100001809 – fundername: Fundamental Research Funds for the Central Universities grantid: JD2225 funderid: 10.13039/501100012226 |
| GroupedDBID | -~X 0R~ 29I 4.4 5GY 5VS 6IK 85S 8WZ 97E A6W AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACIWK ACNCT AENEX AETIX AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD F5P HZ~ H~9 IAAWW IBMZZ ICLAB IDIHD IFIPE IFJZH IPLJI JAVBF LAI M43 O9- OCL P2P RIA RIE RNS TN5 TWZ VH1 VJK AAYXX CITATION 7SP 7U5 8FD L7M |
| ID | FETCH-LOGICAL-c291t-55e6a74dffc24a4b906eacf8665f12ccd2fcad5686da3985667cc8362891cbaf3 |
| IEDL.DBID | RIE |
| ISSN | 0018-9456 |
| IngestDate | Mon Jun 30 10:19:59 EDT 2025 Thu Apr 24 22:58:12 EDT 2025 Wed Oct 01 03:46:41 EDT 2025 Wed Aug 27 02:29:08 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c291t-55e6a74dffc24a4b906eacf8665f12ccd2fcad5686da3985667cc8362891cbaf3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-2719-0516 0000-0002-3352-6872 0000-0002-6793-1518 0000-0003-1828-8244 0000-0001-9999-3679 |
| PQID | 2734388515 |
| PQPubID | 85462 |
| PageCount | 1 |
| ParticipantIDs | proquest_journals_2734388515 ieee_primary_9933802 crossref_primary_10_1109_TIM_2022_3218551 crossref_citationtrail_10_1109_TIM_2022_3218551 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 20220000 2022-00-00 20220101 |
| PublicationDateYYYYMMDD | 2022-01-01 |
| PublicationDate_xml | – year: 2022 text: 20220000 |
| PublicationDecade | 2020 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York |
| PublicationTitle | IEEE transactions on instrumentation and measurement |
| PublicationTitleAbbrev | TIM |
| PublicationYear | 2022 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref13 ref12 ref15 ref14 ref30 ref11 ref10 ref2 ref1 ref17 ref16 ref19 ref18 ref24 ref23 ref26 ref25 ref20 ref22 ref21 ref28 ref27 ref29 ref8 ref7 ref9 ref4 ref3 ref6 ref5 |
| References_xml | – ident: ref10 doi: 10.1109/TNNLS.2019.2920903 – ident: ref22 doi: 10.1109/TR.2021.3139539 – ident: ref28 doi: 10.1109/TII.2022.3182774 – ident: ref12 doi: 10.1016/j.measurement.2021.110119 – ident: ref11 doi: 10.1109/TIE.2014.2345331 – ident: ref13 doi: 10.1016/0165-1684(94)90029-9 – ident: ref30 doi: 10.1109/TIM.2019.2954151 – ident: ref14 doi: 10.1109/TIM.2022.3149097 – ident: ref16 doi: 10.1016/j.ins.2018.10.029 – ident: ref3 doi: 10.1016/j.isatra.2021.08.030 – ident: ref29 doi: 10.1109/TR.2021.3115108 – ident: ref19 doi: 10.1007/s10489-019-01624-z – ident: ref2 doi: 10.1109/TCYB.2021.3109618 – ident: ref27 doi: 10.1016/j.isatra.2019.08.022 – ident: ref18 doi: 10.1109/TKDE.2019.2905559 – ident: ref24 doi: 10.1111/mice.12752 – ident: ref23 doi: 10.1016/j.patcog.2021.108169 – ident: ref4 doi: 10.1109/TIM.2021.3125975 – ident: ref17 doi: 10.1016/j.ins.2018.06.056 – ident: ref21 doi: 10.1016/j.artmed.2015.07.005 – ident: ref25 doi: 10.1016/j.engappai.2020.104062 – ident: ref1 doi: 10.1109/TIM.2020.3035464 – ident: ref20 doi: 10.1016/j.patcog.2017.12.017 – ident: ref5 doi: 10.1109/TII.2021.3100284 – ident: ref7 doi: 10.1016/S1007-0214(10)70043-2 – ident: ref9 doi: 10.1021/acs.iecr.9b00320 – ident: ref6 doi: 10.1016/j.isatra.2019.07.001 – ident: ref26 doi: 10.1016/j.neucom.2018.06.077 – ident: ref8 doi: 10.1109/TIE.2020.2967708 – ident: ref15 doi: 10.1613/jair.953 |
| SSID | ssj0007647 |
| Score | 2.4739792 |
| Snippet | In the field of the fault diagnosis of industrial processes, there are many problems in process data, such as missing critical fault data, high repeatability... |
| SourceID | proquest crossref ieee |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 1 |
| SubjectTerms | Clustering algorithms Data imbalance Fault diagnosis Feature extraction Industrial Process Interpolation Laplace equations Locality Preserving Projections Machine learning Manifolds (mathematics) Oversampling Principal component analysis Sampling methods SMOTE |
| Title | Novel K-medoids based SMOTE Integrated with Locality Preserving Projections for Fault Diagnosis |
| URI | https://ieeexplore.ieee.org/document/9933802 https://www.proquest.com/docview/2734388515 |
| Volume | 71 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 1557-9662 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0007647 issn: 0018-9456 databaseCode: RIE dateStart: 19630101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1JSwMxFH6oIOjBXawbOXgRnHaWJJMcRS1u1YMVvA2TTcTSip168Nf7MktxQzwM5DAJgffyvi8vL18ADrRRLsHIFzhHVUClDoNcWBFwGjprbCiN9HeHezf8_J5ePrCHGTia3oWx1pbFZ7btm-VZvhnpiU-VdRBLcVwMuLOp4NVdrWnUTTmt9DEjXMDICpojyVB2-hc93AjGcTtBPGMs-gJB5ZsqPwJxiS7dZeg186qKSp7bk0K19fs3ycb_TnwFlmqaSY4rv1iFGTtcg8VP4oNrMF8Wf-rxOmQ3ozc7IFcBIuPoyYyJhzZD7nq3_TNy0ehJGOJztuTagx9Sd-KLN3ygGT5is0zneA8mSIJJN58MCnJaVfE9jTfgvnvWPzkP6ocXAh3LqAgYszxPqXFOxzSnSoYc47Pz0nguirU2sdO5YVxwkydSICNMtRYIhUJGWuUu2YS54Whot4AYzlQq8lgYwaiT6Lf4JdaERqXKSNaCTmOLTNeq5P5xjEFW7k5CmaH1Mm-9rLZeCw6nPV4qRY4__l33xpj-V9uhBbuNubN6yY4zr_OTCCSgbPv3Xjuw4Meu8i-7MFe8TuweMpJC7Zeu-AGsad5T |
| linkProvider | IEEE |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LTxsxEB4hKgQ98EaEUvChFyQ22Ye9ax8rIEogmx4IEjdr_UKIKKmaTQ_99R3vIyotqjis5IO9u9I3nm88Hn8G-KKNcgl6vsA5qgIqdBgU3PIgpaGzxobCCH92OB-ngwd6-8ge1-BydRbGWlsVn9mub1Z7-Waulz5V1kMuxfeiw_3AKKWsPq218rtZSmuFzAinMMYF7aZkKHqTYY5LwTjuJshojEWvSKi6VeUfV1zxS38H8vbP6rKSl-6yVF396y_Rxvf--i5sN4Em-Vpbxh6s2dk-fPxDfnAfNqryT704ADme_7RTchcgN86fzYJ4cjPkPv82uSHDVlHCEJ-1JSNPfxi8E1--4V3N7AmbVULH2zDBMJj0i-W0JNd1Hd_z4hAe-jeTq0HQXL0Q6FhEZcCYTYuMGud0TAuqRJiih3ZeHM9FsdYmdrowLOWpKRLBMSbMtOZIhlxEWhUuOYL12Xxmj4GYlKmMFzE3nFEn0HLxSawJjcqUEawDvRYLqRtdcn89xlRW65NQSERPevRkg14HLlYjvteaHP_pe-DBWPVrcOjAaQu3bCbtQnqln4RjCMpO3h51DpuDST6So-H47hNs-e_U2ZhTWC9_LO1njE9KdVaZ5W94P-Gg |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Novel+K-medoids+based+SMOTE+Integrated+with+Locality+Preserving+Projections+for+Fault+Diagnosis&rft.jtitle=IEEE+transactions+on+instrumentation+and+measurement&rft.au=Zhu%2C+Qun-Xiong&rft.au=Wang%2C+Xin-Wei&rft.au=Zhang%2C+Ning&rft.au=Xu%2C+Yuan&rft.date=2022&rft.pub=IEEE&rft.issn=0018-9456&rft.spage=1&rft.epage=1&rft_id=info:doi/10.1109%2FTIM.2022.3218551&rft.externalDocID=9933802 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0018-9456&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0018-9456&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0018-9456&client=summon |