An Optimal Transport Formulation of the Ensemble Kalman Filter
Controlled interacting particle systems such as the ensemble Kalman filter (EnKF) and the feedback particle filter (FPF) are numerical algorithms to approximate the solution of the nonlinear filtering problem in continuous time. The distinguishing feature of these algorithms is that the Bayesian upd...
Saved in:
| Published in | IEEE transactions on automatic control Vol. 66; no. 7; pp. 3052 - 3067 |
|---|---|
| Main Authors | , |
| Format | Journal Article |
| Language | English |
| Published |
New York
IEEE
01.07.2021
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Subjects | |
| Online Access | Get full text |
| ISSN | 0018-9286 1558-2523 |
| DOI | 10.1109/TAC.2020.3015410 |
Cover
| Abstract | Controlled interacting particle systems such as the ensemble Kalman filter (EnKF) and the feedback particle filter (FPF) are numerical algorithms to approximate the solution of the nonlinear filtering problem in continuous time. The distinguishing feature of these algorithms is that the Bayesian update step is implemented using a feedback control law. It has been noted in the literature that the control law is not unique. This is the main problem addressed in this article. To obtain a unique control law, the filtering problem is formulated here as an optimal transportation problem. An explicit formula for the (mean-field type) optimal control law is derived in the linear Gaussian setting. Comparisons are made with the control laws for different types of EnKF algorithms described in the literature. Via empirical approximation of the mean-field control law, a finite-<inline-formula><tex-math notation="LaTeX">N</tex-math></inline-formula> controlled interacting particle algorithm is obtained. For this algorithm, the equations for empirical mean and covariance are derived and shown to be identical to the Kalman filter. This allows strong conclusions on convergence and error properties based on the classical filter stability theory for the Kalman filter. It is shown that, under certain technical conditions, the mean squared error converges to zero even with a finite number of particles. A detailed propagation of chaos analysis is carried out for the finite-<inline-formula><tex-math notation="LaTeX">N</tex-math></inline-formula> algorithm. The analysis is used to prove weak convergence of the empirical distribution as <inline-formula><tex-math notation="LaTeX">N\rightarrow \infty</tex-math></inline-formula>. For a certain simplified filtering problem, analytical comparison of the mse with the importance sampling-based algorithms is described. The analysis helps explain the favorable scaling properties of the control-based algorithms reported in several numerical studies in recent literature. |
|---|---|
| AbstractList | Controlled interacting particle systems such as the ensemble Kalman filter (EnKF) and the feedback particle filter (FPF) are numerical algorithms to approximate the solution of the nonlinear filtering problem in continuous time. The distinguishing feature of these algorithms is that the Bayesian update step is implemented using a feedback control law. It has been noted in the literature that the control law is not unique. This is the main problem addressed in this article. To obtain a unique control law, the filtering problem is formulated here as an optimal transportation problem. An explicit formula for the (mean-field type) optimal control law is derived in the linear Gaussian setting. Comparisons are made with the control laws for different types of EnKF algorithms described in the literature. Via empirical approximation of the mean-field control law, a finite-[Formula Omitted] controlled interacting particle algorithm is obtained. For this algorithm, the equations for empirical mean and covariance are derived and shown to be identical to the Kalman filter. This allows strong conclusions on convergence and error properties based on the classical filter stability theory for the Kalman filter. It is shown that, under certain technical conditions, the mean squared error converges to zero even with a finite number of particles. A detailed propagation of chaos analysis is carried out for the finite-[Formula Omitted] algorithm. The analysis is used to prove weak convergence of the empirical distribution as [Formula Omitted]. For a certain simplified filtering problem, analytical comparison of the mse with the importance sampling-based algorithms is described. The analysis helps explain the favorable scaling properties of the control-based algorithms reported in several numerical studies in recent literature. Controlled interacting particle systems such as the ensemble Kalman filter (EnKF) and the feedback particle filter (FPF) are numerical algorithms to approximate the solution of the nonlinear filtering problem in continuous time. The distinguishing feature of these algorithms is that the Bayesian update step is implemented using a feedback control law. It has been noted in the literature that the control law is not unique. This is the main problem addressed in this article. To obtain a unique control law, the filtering problem is formulated here as an optimal transportation problem. An explicit formula for the (mean-field type) optimal control law is derived in the linear Gaussian setting. Comparisons are made with the control laws for different types of EnKF algorithms described in the literature. Via empirical approximation of the mean-field control law, a finite-<inline-formula><tex-math notation="LaTeX">N</tex-math></inline-formula> controlled interacting particle algorithm is obtained. For this algorithm, the equations for empirical mean and covariance are derived and shown to be identical to the Kalman filter. This allows strong conclusions on convergence and error properties based on the classical filter stability theory for the Kalman filter. It is shown that, under certain technical conditions, the mean squared error converges to zero even with a finite number of particles. A detailed propagation of chaos analysis is carried out for the finite-<inline-formula><tex-math notation="LaTeX">N</tex-math></inline-formula> algorithm. The analysis is used to prove weak convergence of the empirical distribution as <inline-formula><tex-math notation="LaTeX">N\rightarrow \infty</tex-math></inline-formula>. For a certain simplified filtering problem, analytical comparison of the mse with the importance sampling-based algorithms is described. The analysis helps explain the favorable scaling properties of the control-based algorithms reported in several numerical studies in recent literature. |
| Author | Mehta, Prashant G. Taghvaei, Amirhossein |
| Author_xml | – sequence: 1 givenname: Amirhossein orcidid: 0000-0002-1536-892X surname: Taghvaei fullname: Taghvaei, Amirhossein email: ataghvae@uci.edu organization: University of Illinois at Urbana-Champaign (UIUC), Champaign, IL, USA – sequence: 2 givenname: Prashant G. orcidid: 0000-0003-1265-7942 surname: Mehta fullname: Mehta, Prashant G. email: mehtapg@illinois.edu organization: Coordinated Science Laboratory and the Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign (UIUC), Champaign, IL, USA |
| BookMark | eNp9kEtLAzEURoNUsK3uBTcB11Nz85iZbIRSWhUL3cw-ZGKCU2aSmqQL_71TKy5cuLpc-M59nBma-OAtQrdAFgBEPjTL1YISShaMgOBALtAUhKgLKiiboCkhUBeS1uUVmqW0H9uSc5iix6XHu0PuBt3jJmqfDiFmvAlxOPY6d8Hj4HB-t3jtkx3a3uJX3Q_a403XZxuv0aXTfbI3P3WOms26WT0X293Ty2q5LQyVkAvBLVSckpYyqa2r3rQjzprxCk1BAGFVaYQwtXC0ZLyltSWOGqqN4bJtBZuj-_PYQwwfR5uy2odj9ONGRQUvKw4S5JgqzykTQ0rROmW6_P1EjrrrFRB1UqVGVeqkSv2oGkHyBzzE0Uj8_A-5OyOdtfY3LqFktGLsC3kMdDI |
| CODEN | IETAA9 |
| CitedBy_id | crossref_primary_10_1016_j_ifacol_2022_11_075 crossref_primary_10_1109_TAC_2022_3223319 crossref_primary_10_1016_j_arcontrol_2023_03_006 crossref_primary_10_1109_TAC_2022_3172268 crossref_primary_10_1371_journal_pone_0319558 crossref_primary_10_1016_j_automatica_2024_111740 crossref_primary_10_3934_fods_2021018 crossref_primary_10_1109_MCS_2021_3076391 crossref_primary_10_1137_20M1382404 crossref_primary_10_1109_TAES_2023_3299916 crossref_primary_10_1016_j_ifacol_2024_10_164 crossref_primary_10_1109_MCS_2021_3076390 |
| Cites_doi | 10.1007/s10543-010-0302-4 10.1007/s10492-011-0031-2 10.1115/1.4037780 10.1307/mmj/1029003026 10.1115/1.3658902 10.1137/17M1119056 10.1109/TAC.2013.2258825 10.1214/193940307000000518 10.1109/CDC40024.2019.9030018 10.1137/130907367 10.1017/S0962492919000011 10.1007/978-3-319-18347-3_2 10.1162/neco_a_01172 10.1007/978-3-319-68445-1_16 10.1137/16M1102707 10.1016/j.automatica.2016.04.019 10.1093/oso/9780199219704.001.0001 10.4310/CDM.1997.v1997.n1.a2 10.1214/14-AAP1061 10.1080/17442500902723575 10.1137/140965363 10.1088/0951-7715/29/2/657 10.1175/1520-0493(2001)129<0123:ASEKFF>2.0.CO;2 10.1109/ACC.2016.7525474 10.1007/s10236-003-0036-9 10.1016/j.conengprac.2013.11.005 10.1214/074921708000000228 10.1137/S0363012993256617 10.1214/17-AAP1317 10.1109/CDC.2018.8618878 10.1137/16M1087497 10.1049/ip-f-2.1993.0015 10.1029/94JC00572 10.1088/0951-7715/27/10/2579 10.1109/CDC40024.2019.9029897 10.1175/1520-0493(2002)130<1913:EDAWPO>2.0.CO;2 10.1127/0941-2948/2012/0307 10.1007/978-0-387-76896-0 10.1109/CDC.2017.8264109 10.1137/13094743X 10.1007/s10957-015-0803-z 10.1137/S0036141096303359 10.1016/j.jcp.2012.07.022 10.1137/17M1125340 10.1175/2008MWR2529.1 10.23919/ACC.2018.8431003 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021 |
| DBID | 97E RIA RIE AAYXX CITATION 7SC 7SP 7TB 8FD FR3 JQ2 L7M L~C L~D |
| DOI | 10.1109/TAC.2020.3015410 |
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database Engineering Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
| DatabaseTitle | CrossRef Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Engineering Research Database Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Technology Research Database |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1558-2523 |
| EndPage | 3067 |
| ExternalDocumentID | 10_1109_TAC_2020_3015410 9163273 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: NSF CMMI grantid: 1462773; 1761622 |
| GroupedDBID | -~X .DC 0R~ 29I 3EH 4.4 5GY 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACGFS ACIWK ACNCT AENEX AETIX AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD F5P HZ~ H~9 IAAWW IBMZZ ICLAB IDIHD IFIPE IFJZH IPLJI JAVBF LAI M43 MS~ O9- OCL P2P RIA RIE RNS TAE TN5 VH1 VJK ~02 AAYXX CITATION 7SC 7SP 7TB 8FD FR3 JQ2 L7M L~C L~D |
| ID | FETCH-LOGICAL-c291t-54e17420b239aef7daf0fec001a21510376c55c85f2634b28e0f2c2acc49bb53 |
| IEDL.DBID | RIE |
| ISSN | 0018-9286 |
| IngestDate | Mon Jun 30 10:09:36 EDT 2025 Thu Apr 24 22:51:27 EDT 2025 Wed Oct 01 04:15:52 EDT 2025 Wed Aug 27 02:26:42 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 7 |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c291t-54e17420b239aef7daf0fec001a21510376c55c85f2634b28e0f2c2acc49bb53 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-1536-892X 0000-0003-1265-7942 |
| PQID | 2546741919 |
| PQPubID | 85475 |
| PageCount | 16 |
| ParticipantIDs | proquest_journals_2546741919 crossref_primary_10_1109_TAC_2020_3015410 crossref_citationtrail_10_1109_TAC_2020_3015410 ieee_primary_9163273 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2021-07-01 |
| PublicationDateYYYYMMDD | 2021-07-01 |
| PublicationDate_xml | – month: 07 year: 2021 text: 2021-07-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York |
| PublicationTitle | IEEE transactions on automatic control |
| PublicationTitleAbbrev | TAC |
| PublicationYear | 2021 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref13 ref56 ref12 ref15 ref58 ref14 ref53 ref52 ref55 ref11 ref54 ref10 evensen (ref16) 2006 ref17 ref19 ref18 gland (ref32) 2009 ref51 ref50 ref46 ref48 bishop (ref39) 2018 ref47 ref41 ref44 ref49 ref7 ref9 heng (ref26) 2016 ref3 ref5 berntorp (ref43) 0 ref40 ref35 ref34 ref37 ref36 ref31 ref30 ref33 stano (ref42) 2013 ref1 ref38 doucet (ref4) 2009; 12 xiong (ref57) 2008; 18 villani (ref8) 2003; 58 tilton (ref45) 0 kwakernaak (ref59) 1972; 1 ref24 ref23 moral (ref6) 0 ref25 ref22 taghvaei (ref2) 0 ref28 ref27 ref29 ref60 daum (ref20) 0; 6969 daum (ref21) 0 |
| References_xml | – ident: ref19 doi: 10.1007/s10543-010-0302-4 – ident: ref33 doi: 10.1007/s10492-011-0031-2 – year: 2018 ident: ref39 article-title: On the stability of matrix-valued Riccati diffusions publication-title: arXiv 1808 00235 – ident: ref17 doi: 10.1115/1.4037780 – ident: ref49 doi: 10.1307/mmj/1029003026 – ident: ref46 doi: 10.1115/1.3658902 – ident: ref40 doi: 10.1137/17M1119056 – ident: ref13 doi: 10.1109/TAC.2013.2258825 – ident: ref51 doi: 10.1214/193940307000000518 – ident: ref31 doi: 10.1109/CDC40024.2019.9030018 – ident: ref22 doi: 10.1137/130907367 – ident: ref55 doi: 10.1017/S0962492919000011 – ident: ref23 doi: 10.1007/978-3-319-18347-3_2 – ident: ref25 doi: 10.1162/neco_a_01172 – ident: ref56 doi: 10.1007/978-3-319-68445-1_16 – ident: ref58 doi: 10.1137/16M1102707 – year: 2009 ident: ref32 article-title: Large sample asymptotics for the ensemble Kalman filter – ident: ref14 doi: 10.1016/j.automatica.2016.04.019 – volume: 18 year: 2008 ident: ref57 publication-title: An Introduction to Stochastic Filtering Theory doi: 10.1093/oso/9780199219704.001.0001 – ident: ref7 doi: 10.4310/CDM.1997.v1997.n1.a2 – ident: ref53 doi: 10.1214/14-AAP1061 – ident: ref18 doi: 10.1080/17442500902723575 – ident: ref36 doi: 10.1137/140965363 – ident: ref34 doi: 10.1088/0951-7715/29/2/657 – ident: ref15 doi: 10.1175/1520-0493(2001)129<0123:ASEKFF>2.0.CO;2 – ident: ref1 doi: 10.1109/ACC.2016.7525474 – ident: ref10 doi: 10.1007/s10236-003-0036-9 – start-page: 1633 year: 0 ident: ref43 article-title: Feedback particle filter: Application and evaluation publication-title: Proc 18th Int Conf Inf Fusion – ident: ref41 doi: 10.1016/j.conengprac.2013.11.005 – ident: ref50 doi: 10.1214/074921708000000228 – year: 2006 ident: ref16 publication-title: Data Assimilation The Ensemble Kalman Filter – ident: ref60 doi: 10.1137/S0363012993256617 – ident: ref37 doi: 10.1214/17-AAP1317 – ident: ref47 doi: 10.1109/CDC.2018.8618878 – year: 2013 ident: ref42 article-title: Nonlinear state and parameter estimation for hopper dredgers – ident: ref38 doi: 10.1137/16M1087497 – year: 2016 ident: ref26 article-title: On the use of transport and optimal control methods for Monte Carlo simulation – ident: ref3 doi: 10.1049/ip-f-2.1993.0015 – ident: ref9 doi: 10.1029/94JC00572 – start-page: 1827 year: 0 ident: ref45 article-title: A comparative study of nonlinear filtering techniques – ident: ref35 doi: 10.1088/0951-7715/27/10/2579 – ident: ref48 doi: 10.1109/CDC40024.2019.9029897 – ident: ref11 doi: 10.1175/1520-0493(2002)130<1913:EDAWPO>2.0.CO;2 – ident: ref12 doi: 10.1127/0941-2948/2012/0307 – ident: ref5 doi: 10.1007/978-0-387-76896-0 – start-page: 4261 year: 0 ident: ref2 article-title: Error analysis for the linear feedback particle filter publication-title: Proc IEEE Annu Amer Control Conf – ident: ref29 doi: 10.1109/CDC.2017.8264109 – volume: 12 start-page: 656 year: 2009 ident: ref4 article-title: A tutorial on particle filtering and smoothing: Fifteen years later publication-title: The Oxford Handbook of Nonlinear Filtering – ident: ref28 doi: 10.1137/13094743X – ident: ref54 doi: 10.1007/s10957-015-0803-z – ident: ref27 doi: 10.1137/S0036141096303359 – volume: 6969 year: 0 ident: ref20 article-title: Particle flow for nonlinear filters with log-homotopy publication-title: Proc SPIE – year: 0 ident: ref21 article-title: Generalized Gromov method for stochastic particle flow filters publication-title: Proc SPIE – ident: ref24 doi: 10.1016/j.jcp.2012.07.022 – volume: 1 year: 1972 ident: ref59 publication-title: Linear Optimal Control Systems – start-page: 47 year: 0 ident: ref6 article-title: Feynman-Kac formulae publication-title: Feynman-Kac Formulae – ident: ref44 doi: 10.1137/17M1125340 – volume: 58 year: 2003 ident: ref8 publication-title: Topics in Optimal Transportation – ident: ref52 doi: 10.1175/2008MWR2529.1 – ident: ref30 doi: 10.23919/ACC.2018.8431003 |
| SSID | ssj0016441 |
| Score | 2.5096145 |
| Snippet | Controlled interacting particle systems such as the ensemble Kalman filter (EnKF) and the feedback particle filter (FPF) are numerical algorithms to... |
| SourceID | proquest crossref ieee |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 3052 |
| SubjectTerms | Algorithms Approximation algorithms Control systems Control theory Convergence Empirical equations Error analysis Feedback control Filtering algorithms Importance sampling Kalman filter Kalman filters Monte Carlo methods Optimal control stochastic processes Symmetric matrices Transportation problem |
| Title | An Optimal Transport Formulation of the Ensemble Kalman Filter |
| URI | https://ieeexplore.ieee.org/document/9163273 https://www.proquest.com/docview/2546741919 |
| Volume | 66 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 1558-2523 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0016441 issn: 0018-9286 databaseCode: RIE dateStart: 19630101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PT8IwFH4BTnrwFxpRND14MXFQuq2sFxNCWIgGvWDCbWlLlxhhGBkX_3pfu7EQNcbbDm3WvNe-972-1-8B3PBAKEUj4aUSY5Mg4r4nApaiQvru2sNXjmJj8sTHL8HDLJzV4K56C2OMccVnpmM_XS5_vtIbe1XWRSjjo7utQ70f8eKtVpUxsH69sLp4gFlUpSSp6E4HQwwEGcanFjDYt7I7Lsj1VPlhiJ13iQ9hsl1XUVTy1tnkqqM_v1E2_nfhR3BQwkwyKPbFMdRMdgL7O-SDTbgfZOQZDcYSx1UU5yRGDFt29CKrlCA8JKNsbZZqYcijXCxlRuJXm2E_hWk8mg7HXtlNwdNM9HIvDAxGH4wq5gtp0v5cpjQ1GgUmrdunaGl0GOooTBn3A8UiQ1OmmdTaqjP0z6CRrTJzDkREHE0kQ_AieTAPqQyF0oriXxTGW5y3oLuVb6JLpnHb8GKRuIiDigQ1kliNJKVGWnBbzXgvWDb-GNu0Aq7GlbJtQXurwqQ8huvEkv0jZBI9cfH7rEvYY7ZIxdXftqGRf2zMFaKMXF277fUFD0fJ6A |
| linkProvider | IEEE |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwED4VGICBV0GUpwcWJNK6jp3GC1KFWpVHy1KkbpHtOhKiTRG0C7-es5NGCBBiy2Ar1p19953v_B3ARcSl1jSWQaowNuFxFAaSsxQV0vLXHqH2FBv9QdR74ncjMarAVfkWxlrri89s3X36XP54ZhbuqqyBUCZEd7sCa4JzLvLXWmXOwHn23O7iEWZxmZSksjFs32AoyDBCdZDBvZb94oR8V5Ufptj7l-429Jcry8tKXuqLua6bj2-kjf9d-g5sFUCTtPOdsQsVm-3B5hf6wSpctzPyiCZjiuNKknPSRRRb9PQis5QgQCSd7N1O9cSSezWZqox0n12OfR-G3c7wphcU_RQCw2RzHghuMf5gVLNQKpu2xiqlqTUoMOUcP0VbY4QwsUhZFHLNYktTZpgyxilUhAewms0yewhExhEaSYbwRUV8LKgSUhtN8S8aI64oqkFjKd_EFFzjruXFJPExB5UJaiRxGkkKjdTgspzxmvNs_DG26gRcjitkW4OTpQqT4iC-J47uH0GTbMqj32edw3pv2H9IHm4H98ewwVzJiq_GPYHV-dvCniLmmOszv9U-AdDfzTU |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+Optimal+Transport+Formulation+of+the+Ensemble+Kalman+Filter&rft.jtitle=IEEE+transactions+on+automatic+control&rft.au=Taghvaei%2C+Amirhossein&rft.au=Mehta%2C+Prashant+G.&rft.date=2021-07-01&rft.issn=0018-9286&rft.eissn=1558-2523&rft.volume=66&rft.issue=7&rft.spage=3052&rft.epage=3067&rft_id=info:doi/10.1109%2FTAC.2020.3015410&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TAC_2020_3015410 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0018-9286&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0018-9286&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0018-9286&client=summon |