An Optimal Transport Formulation of the Ensemble Kalman Filter

Controlled interacting particle systems such as the ensemble Kalman filter (EnKF) and the feedback particle filter (FPF) are numerical algorithms to approximate the solution of the nonlinear filtering problem in continuous time. The distinguishing feature of these algorithms is that the Bayesian upd...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on automatic control Vol. 66; no. 7; pp. 3052 - 3067
Main Authors Taghvaei, Amirhossein, Mehta, Prashant G.
Format Journal Article
LanguageEnglish
Published New York IEEE 01.07.2021
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN0018-9286
1558-2523
DOI10.1109/TAC.2020.3015410

Cover

Abstract Controlled interacting particle systems such as the ensemble Kalman filter (EnKF) and the feedback particle filter (FPF) are numerical algorithms to approximate the solution of the nonlinear filtering problem in continuous time. The distinguishing feature of these algorithms is that the Bayesian update step is implemented using a feedback control law. It has been noted in the literature that the control law is not unique. This is the main problem addressed in this article. To obtain a unique control law, the filtering problem is formulated here as an optimal transportation problem. An explicit formula for the (mean-field type) optimal control law is derived in the linear Gaussian setting. Comparisons are made with the control laws for different types of EnKF algorithms described in the literature. Via empirical approximation of the mean-field control law, a finite-<inline-formula><tex-math notation="LaTeX">N</tex-math></inline-formula> controlled interacting particle algorithm is obtained. For this algorithm, the equations for empirical mean and covariance are derived and shown to be identical to the Kalman filter. This allows strong conclusions on convergence and error properties based on the classical filter stability theory for the Kalman filter. It is shown that, under certain technical conditions, the mean squared error converges to zero even with a finite number of particles. A detailed propagation of chaos analysis is carried out for the finite-<inline-formula><tex-math notation="LaTeX">N</tex-math></inline-formula> algorithm. The analysis is used to prove weak convergence of the empirical distribution as <inline-formula><tex-math notation="LaTeX">N\rightarrow \infty</tex-math></inline-formula>. For a certain simplified filtering problem, analytical comparison of the mse with the importance sampling-based algorithms is described. The analysis helps explain the favorable scaling properties of the control-based algorithms reported in several numerical studies in recent literature.
AbstractList Controlled interacting particle systems such as the ensemble Kalman filter (EnKF) and the feedback particle filter (FPF) are numerical algorithms to approximate the solution of the nonlinear filtering problem in continuous time. The distinguishing feature of these algorithms is that the Bayesian update step is implemented using a feedback control law. It has been noted in the literature that the control law is not unique. This is the main problem addressed in this article. To obtain a unique control law, the filtering problem is formulated here as an optimal transportation problem. An explicit formula for the (mean-field type) optimal control law is derived in the linear Gaussian setting. Comparisons are made with the control laws for different types of EnKF algorithms described in the literature. Via empirical approximation of the mean-field control law, a finite-[Formula Omitted] controlled interacting particle algorithm is obtained. For this algorithm, the equations for empirical mean and covariance are derived and shown to be identical to the Kalman filter. This allows strong conclusions on convergence and error properties based on the classical filter stability theory for the Kalman filter. It is shown that, under certain technical conditions, the mean squared error converges to zero even with a finite number of particles. A detailed propagation of chaos analysis is carried out for the finite-[Formula Omitted] algorithm. The analysis is used to prove weak convergence of the empirical distribution as [Formula Omitted]. For a certain simplified filtering problem, analytical comparison of the mse with the importance sampling-based algorithms is described. The analysis helps explain the favorable scaling properties of the control-based algorithms reported in several numerical studies in recent literature.
Controlled interacting particle systems such as the ensemble Kalman filter (EnKF) and the feedback particle filter (FPF) are numerical algorithms to approximate the solution of the nonlinear filtering problem in continuous time. The distinguishing feature of these algorithms is that the Bayesian update step is implemented using a feedback control law. It has been noted in the literature that the control law is not unique. This is the main problem addressed in this article. To obtain a unique control law, the filtering problem is formulated here as an optimal transportation problem. An explicit formula for the (mean-field type) optimal control law is derived in the linear Gaussian setting. Comparisons are made with the control laws for different types of EnKF algorithms described in the literature. Via empirical approximation of the mean-field control law, a finite-<inline-formula><tex-math notation="LaTeX">N</tex-math></inline-formula> controlled interacting particle algorithm is obtained. For this algorithm, the equations for empirical mean and covariance are derived and shown to be identical to the Kalman filter. This allows strong conclusions on convergence and error properties based on the classical filter stability theory for the Kalman filter. It is shown that, under certain technical conditions, the mean squared error converges to zero even with a finite number of particles. A detailed propagation of chaos analysis is carried out for the finite-<inline-formula><tex-math notation="LaTeX">N</tex-math></inline-formula> algorithm. The analysis is used to prove weak convergence of the empirical distribution as <inline-formula><tex-math notation="LaTeX">N\rightarrow \infty</tex-math></inline-formula>. For a certain simplified filtering problem, analytical comparison of the mse with the importance sampling-based algorithms is described. The analysis helps explain the favorable scaling properties of the control-based algorithms reported in several numerical studies in recent literature.
Author Mehta, Prashant G.
Taghvaei, Amirhossein
Author_xml – sequence: 1
  givenname: Amirhossein
  orcidid: 0000-0002-1536-892X
  surname: Taghvaei
  fullname: Taghvaei, Amirhossein
  email: ataghvae@uci.edu
  organization: University of Illinois at Urbana-Champaign (UIUC), Champaign, IL, USA
– sequence: 2
  givenname: Prashant G.
  orcidid: 0000-0003-1265-7942
  surname: Mehta
  fullname: Mehta, Prashant G.
  email: mehtapg@illinois.edu
  organization: Coordinated Science Laboratory and the Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign (UIUC), Champaign, IL, USA
BookMark eNp9kEtLAzEURoNUsK3uBTcB11Nz85iZbIRSWhUL3cw-ZGKCU2aSmqQL_71TKy5cuLpc-M59nBma-OAtQrdAFgBEPjTL1YISShaMgOBALtAUhKgLKiiboCkhUBeS1uUVmqW0H9uSc5iix6XHu0PuBt3jJmqfDiFmvAlxOPY6d8Hj4HB-t3jtkx3a3uJX3Q_a403XZxuv0aXTfbI3P3WOms26WT0X293Ty2q5LQyVkAvBLVSckpYyqa2r3rQjzprxCk1BAGFVaYQwtXC0ZLyltSWOGqqN4bJtBZuj-_PYQwwfR5uy2odj9ONGRQUvKw4S5JgqzykTQ0rROmW6_P1EjrrrFRB1UqVGVeqkSv2oGkHyBzzE0Uj8_A-5OyOdtfY3LqFktGLsC3kMdDI
CODEN IETAA9
CitedBy_id crossref_primary_10_1016_j_ifacol_2022_11_075
crossref_primary_10_1109_TAC_2022_3223319
crossref_primary_10_1016_j_arcontrol_2023_03_006
crossref_primary_10_1109_TAC_2022_3172268
crossref_primary_10_1371_journal_pone_0319558
crossref_primary_10_1016_j_automatica_2024_111740
crossref_primary_10_3934_fods_2021018
crossref_primary_10_1109_MCS_2021_3076391
crossref_primary_10_1137_20M1382404
crossref_primary_10_1109_TAES_2023_3299916
crossref_primary_10_1016_j_ifacol_2024_10_164
crossref_primary_10_1109_MCS_2021_3076390
Cites_doi 10.1007/s10543-010-0302-4
10.1007/s10492-011-0031-2
10.1115/1.4037780
10.1307/mmj/1029003026
10.1115/1.3658902
10.1137/17M1119056
10.1109/TAC.2013.2258825
10.1214/193940307000000518
10.1109/CDC40024.2019.9030018
10.1137/130907367
10.1017/S0962492919000011
10.1007/978-3-319-18347-3_2
10.1162/neco_a_01172
10.1007/978-3-319-68445-1_16
10.1137/16M1102707
10.1016/j.automatica.2016.04.019
10.1093/oso/9780199219704.001.0001
10.4310/CDM.1997.v1997.n1.a2
10.1214/14-AAP1061
10.1080/17442500902723575
10.1137/140965363
10.1088/0951-7715/29/2/657
10.1175/1520-0493(2001)129<0123:ASEKFF>2.0.CO;2
10.1109/ACC.2016.7525474
10.1007/s10236-003-0036-9
10.1016/j.conengprac.2013.11.005
10.1214/074921708000000228
10.1137/S0363012993256617
10.1214/17-AAP1317
10.1109/CDC.2018.8618878
10.1137/16M1087497
10.1049/ip-f-2.1993.0015
10.1029/94JC00572
10.1088/0951-7715/27/10/2579
10.1109/CDC40024.2019.9029897
10.1175/1520-0493(2002)130<1913:EDAWPO>2.0.CO;2
10.1127/0941-2948/2012/0307
10.1007/978-0-387-76896-0
10.1109/CDC.2017.8264109
10.1137/13094743X
10.1007/s10957-015-0803-z
10.1137/S0036141096303359
10.1016/j.jcp.2012.07.022
10.1137/17M1125340
10.1175/2008MWR2529.1
10.23919/ACC.2018.8431003
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
7SP
7TB
8FD
FR3
JQ2
L7M
L~C
L~D
DOI 10.1109/TAC.2020.3015410
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList Technology Research Database

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1558-2523
EndPage 3067
ExternalDocumentID 10_1109_TAC_2020_3015410
9163273
Genre orig-research
GrantInformation_xml – fundername: NSF CMMI
  grantid: 1462773; 1761622
GroupedDBID -~X
.DC
0R~
29I
3EH
4.4
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ACNCT
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
F5P
HZ~
H~9
IAAWW
IBMZZ
ICLAB
IDIHD
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
MS~
O9-
OCL
P2P
RIA
RIE
RNS
TAE
TN5
VH1
VJK
~02
AAYXX
CITATION
7SC
7SP
7TB
8FD
FR3
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c291t-54e17420b239aef7daf0fec001a21510376c55c85f2634b28e0f2c2acc49bb53
IEDL.DBID RIE
ISSN 0018-9286
IngestDate Mon Jun 30 10:09:36 EDT 2025
Thu Apr 24 22:51:27 EDT 2025
Wed Oct 01 04:15:52 EDT 2025
Wed Aug 27 02:26:42 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 7
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c291t-54e17420b239aef7daf0fec001a21510376c55c85f2634b28e0f2c2acc49bb53
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-1536-892X
0000-0003-1265-7942
PQID 2546741919
PQPubID 85475
PageCount 16
ParticipantIDs proquest_journals_2546741919
crossref_primary_10_1109_TAC_2020_3015410
crossref_citationtrail_10_1109_TAC_2020_3015410
ieee_primary_9163273
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-07-01
PublicationDateYYYYMMDD 2021-07-01
PublicationDate_xml – month: 07
  year: 2021
  text: 2021-07-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on automatic control
PublicationTitleAbbrev TAC
PublicationYear 2021
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref56
ref12
ref15
ref58
ref14
ref53
ref52
ref55
ref11
ref54
ref10
evensen (ref16) 2006
ref17
ref19
ref18
gland (ref32) 2009
ref51
ref50
ref46
ref48
bishop (ref39) 2018
ref47
ref41
ref44
ref49
ref7
ref9
heng (ref26) 2016
ref3
ref5
berntorp (ref43) 0
ref40
ref35
ref34
ref37
ref36
ref31
ref30
ref33
stano (ref42) 2013
ref1
ref38
doucet (ref4) 2009; 12
xiong (ref57) 2008; 18
villani (ref8) 2003; 58
tilton (ref45) 0
kwakernaak (ref59) 1972; 1
ref24
ref23
moral (ref6) 0
ref25
ref22
taghvaei (ref2) 0
ref28
ref27
ref29
ref60
daum (ref20) 0; 6969
daum (ref21) 0
References_xml – ident: ref19
  doi: 10.1007/s10543-010-0302-4
– ident: ref33
  doi: 10.1007/s10492-011-0031-2
– year: 2018
  ident: ref39
  article-title: On the stability of matrix-valued Riccati diffusions
  publication-title: arXiv 1808 00235
– ident: ref17
  doi: 10.1115/1.4037780
– ident: ref49
  doi: 10.1307/mmj/1029003026
– ident: ref46
  doi: 10.1115/1.3658902
– ident: ref40
  doi: 10.1137/17M1119056
– ident: ref13
  doi: 10.1109/TAC.2013.2258825
– ident: ref51
  doi: 10.1214/193940307000000518
– ident: ref31
  doi: 10.1109/CDC40024.2019.9030018
– ident: ref22
  doi: 10.1137/130907367
– ident: ref55
  doi: 10.1017/S0962492919000011
– ident: ref23
  doi: 10.1007/978-3-319-18347-3_2
– ident: ref25
  doi: 10.1162/neco_a_01172
– ident: ref56
  doi: 10.1007/978-3-319-68445-1_16
– ident: ref58
  doi: 10.1137/16M1102707
– year: 2009
  ident: ref32
  article-title: Large sample asymptotics for the ensemble Kalman filter
– ident: ref14
  doi: 10.1016/j.automatica.2016.04.019
– volume: 18
  year: 2008
  ident: ref57
  publication-title: An Introduction to Stochastic Filtering Theory
  doi: 10.1093/oso/9780199219704.001.0001
– ident: ref7
  doi: 10.4310/CDM.1997.v1997.n1.a2
– ident: ref53
  doi: 10.1214/14-AAP1061
– ident: ref18
  doi: 10.1080/17442500902723575
– ident: ref36
  doi: 10.1137/140965363
– ident: ref34
  doi: 10.1088/0951-7715/29/2/657
– ident: ref15
  doi: 10.1175/1520-0493(2001)129<0123:ASEKFF>2.0.CO;2
– ident: ref1
  doi: 10.1109/ACC.2016.7525474
– ident: ref10
  doi: 10.1007/s10236-003-0036-9
– start-page: 1633
  year: 0
  ident: ref43
  article-title: Feedback particle filter: Application and evaluation
  publication-title: Proc 18th Int Conf Inf Fusion
– ident: ref41
  doi: 10.1016/j.conengprac.2013.11.005
– ident: ref50
  doi: 10.1214/074921708000000228
– year: 2006
  ident: ref16
  publication-title: Data Assimilation The Ensemble Kalman Filter
– ident: ref60
  doi: 10.1137/S0363012993256617
– ident: ref37
  doi: 10.1214/17-AAP1317
– ident: ref47
  doi: 10.1109/CDC.2018.8618878
– year: 2013
  ident: ref42
  article-title: Nonlinear state and parameter estimation for hopper dredgers
– ident: ref38
  doi: 10.1137/16M1087497
– year: 2016
  ident: ref26
  article-title: On the use of transport and optimal control methods for Monte Carlo simulation
– ident: ref3
  doi: 10.1049/ip-f-2.1993.0015
– ident: ref9
  doi: 10.1029/94JC00572
– start-page: 1827
  year: 0
  ident: ref45
  article-title: A comparative study of nonlinear filtering techniques
– ident: ref35
  doi: 10.1088/0951-7715/27/10/2579
– ident: ref48
  doi: 10.1109/CDC40024.2019.9029897
– ident: ref11
  doi: 10.1175/1520-0493(2002)130<1913:EDAWPO>2.0.CO;2
– ident: ref12
  doi: 10.1127/0941-2948/2012/0307
– ident: ref5
  doi: 10.1007/978-0-387-76896-0
– start-page: 4261
  year: 0
  ident: ref2
  article-title: Error analysis for the linear feedback particle filter
  publication-title: Proc IEEE Annu Amer Control Conf
– ident: ref29
  doi: 10.1109/CDC.2017.8264109
– volume: 12
  start-page: 656
  year: 2009
  ident: ref4
  article-title: A tutorial on particle filtering and smoothing: Fifteen years later
  publication-title: The Oxford Handbook of Nonlinear Filtering
– ident: ref28
  doi: 10.1137/13094743X
– ident: ref54
  doi: 10.1007/s10957-015-0803-z
– ident: ref27
  doi: 10.1137/S0036141096303359
– volume: 6969
  year: 0
  ident: ref20
  article-title: Particle flow for nonlinear filters with log-homotopy
  publication-title: Proc SPIE
– year: 0
  ident: ref21
  article-title: Generalized Gromov method for stochastic particle flow filters
  publication-title: Proc SPIE
– ident: ref24
  doi: 10.1016/j.jcp.2012.07.022
– volume: 1
  year: 1972
  ident: ref59
  publication-title: Linear Optimal Control Systems
– start-page: 47
  year: 0
  ident: ref6
  article-title: Feynman-Kac formulae
  publication-title: Feynman-Kac Formulae
– ident: ref44
  doi: 10.1137/17M1125340
– volume: 58
  year: 2003
  ident: ref8
  publication-title: Topics in Optimal Transportation
– ident: ref52
  doi: 10.1175/2008MWR2529.1
– ident: ref30
  doi: 10.23919/ACC.2018.8431003
SSID ssj0016441
Score 2.5096145
Snippet Controlled interacting particle systems such as the ensemble Kalman filter (EnKF) and the feedback particle filter (FPF) are numerical algorithms to...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 3052
SubjectTerms Algorithms
Approximation algorithms
Control systems
Control theory
Convergence
Empirical equations
Error analysis
Feedback control
Filtering algorithms
Importance sampling
Kalman filter
Kalman filters
Monte Carlo methods
Optimal control
stochastic processes
Symmetric matrices
Transportation problem
Title An Optimal Transport Formulation of the Ensemble Kalman Filter
URI https://ieeexplore.ieee.org/document/9163273
https://www.proquest.com/docview/2546741919
Volume 66
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1558-2523
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0016441
  issn: 0018-9286
  databaseCode: RIE
  dateStart: 19630101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PT8IwFH4BTnrwFxpRND14MXFQuq2sFxNCWIgGvWDCbWlLlxhhGBkX_3pfu7EQNcbbDm3WvNe-972-1-8B3PBAKEUj4aUSY5Mg4r4nApaiQvru2sNXjmJj8sTHL8HDLJzV4K56C2OMccVnpmM_XS5_vtIbe1XWRSjjo7utQ70f8eKtVpUxsH69sLp4gFlUpSSp6E4HQwwEGcanFjDYt7I7Lsj1VPlhiJ13iQ9hsl1XUVTy1tnkqqM_v1E2_nfhR3BQwkwyKPbFMdRMdgL7O-SDTbgfZOQZDcYSx1UU5yRGDFt29CKrlCA8JKNsbZZqYcijXCxlRuJXm2E_hWk8mg7HXtlNwdNM9HIvDAxGH4wq5gtp0v5cpjQ1GgUmrdunaGl0GOooTBn3A8UiQ1OmmdTaqjP0z6CRrTJzDkREHE0kQ_AieTAPqQyF0oriXxTGW5y3oLuVb6JLpnHb8GKRuIiDigQ1kliNJKVGWnBbzXgvWDb-GNu0Aq7GlbJtQXurwqQ8huvEkv0jZBI9cfH7rEvYY7ZIxdXftqGRf2zMFaKMXF277fUFD0fJ6A
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwED4VGICBV0GUpwcWJNK6jp3GC1KFWpVHy1KkbpHtOhKiTRG0C7-es5NGCBBiy2Ar1p19953v_B3ARcSl1jSWQaowNuFxFAaSsxQV0vLXHqH2FBv9QdR74ncjMarAVfkWxlrri89s3X36XP54ZhbuqqyBUCZEd7sCa4JzLvLXWmXOwHn23O7iEWZxmZSksjFs32AoyDBCdZDBvZb94oR8V5Ufptj7l-429Jcry8tKXuqLua6bj2-kjf9d-g5sFUCTtPOdsQsVm-3B5hf6wSpctzPyiCZjiuNKknPSRRRb9PQis5QgQCSd7N1O9cSSezWZqox0n12OfR-G3c7wphcU_RQCw2RzHghuMf5gVLNQKpu2xiqlqTUoMOUcP0VbY4QwsUhZFHLNYktTZpgyxilUhAewms0yewhExhEaSYbwRUV8LKgSUhtN8S8aI64oqkFjKd_EFFzjruXFJPExB5UJaiRxGkkKjdTgspzxmvNs_DG26gRcjitkW4OTpQqT4iC-J47uH0GTbMqj32edw3pv2H9IHm4H98ewwVzJiq_GPYHV-dvCniLmmOszv9U-AdDfzTU
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+Optimal+Transport+Formulation+of+the+Ensemble+Kalman+Filter&rft.jtitle=IEEE+transactions+on+automatic+control&rft.au=Taghvaei%2C+Amirhossein&rft.au=Mehta%2C+Prashant+G.&rft.date=2021-07-01&rft.issn=0018-9286&rft.eissn=1558-2523&rft.volume=66&rft.issue=7&rft.spage=3052&rft.epage=3067&rft_id=info:doi/10.1109%2FTAC.2020.3015410&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TAC_2020_3015410
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0018-9286&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0018-9286&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0018-9286&client=summon