A Fuzzy PID-Controlled Iterative Calderon's Method for Binary Distribution in Electrical Capacitance Tomography

Electrical capacitance tomography (ECT) utilizes measured mutual capacitances across a region of interest to visualize distributions inside. As typical two-phase flows can be roughly treated as binary-valued material distributions, in this article, a fuzzy PID-controlled iterative algorithm is propo...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on instrumentation and measurement Vol. 70; pp. 1 - 11
Main Authors Tian, Yu, Cao, Zhang, Hu, Die, Gao, Xin, Xu, Lijun, Yang, Wuqiang
Format Journal Article
LanguageEnglish
Published New York IEEE 2021
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN0018-9456
1557-9662
DOI10.1109/TIM.2021.3052249

Cover

Abstract Electrical capacitance tomography (ECT) utilizes measured mutual capacitances across a region of interest to visualize distributions inside. As typical two-phase flows can be roughly treated as binary-valued material distributions, in this article, a fuzzy PID-controlled iterative algorithm is proposed for image reconstruction in cases of binary distributions. A closed-loop control system includes a fuzzy PID controller, Calderon's method, and fast calculation of the Dirichlet-to-Neumann map. Capacitances measured in an electrode array of the ECT sensor are compared with the feedback, and the difference is input to the controller. Fuzzy rules are used to automatically adjust the three parameters of the controller, i.e., <inline-formula> <tex-math notation="LaTeX">K_{P} </tex-math></inline-formula>, <inline-formula> <tex-math notation="LaTeX">K_{I} </tex-math></inline-formula>, and <inline-formula> <tex-math notation="LaTeX">K_{D} </tex-math></inline-formula>. The controller passes the difference to Calderon's method for reconstructing permittivity distribution. Reconstructed distribution is used to calculate a boundary map for feedback, by fast calculation of the Dirichlet-to-Neumann map, and serves as an updated reference for measured capacitances. A smooth segmentation method is also introduced to deal with the binary distribution and release the fluctuation in the tuning of the PID controller. Numerical simulations were done to verify the performance of the proposed iterative Calderon's method for binary distributions. Experiments on real phantoms were also carried out using an ECT system to evaluate the proposed method. Several distributions were set up with solid particles and air. The results show that the proposed method can produce images with clear edges and shapes of binary distributions.
AbstractList Electrical capacitance tomography (ECT) utilizes measured mutual capacitances across a region of interest to visualize distributions inside. As typical two-phase flows can be roughly treated as binary-valued material distributions, in this article, a fuzzy PID-controlled iterative algorithm is proposed for image reconstruction in cases of binary distributions. A closed-loop control system includes a fuzzy PID controller, Calderon's method, and fast calculation of the Dirichlet-to-Neumann map. Capacitances measured in an electrode array of the ECT sensor are compared with the feedback, and the difference is input to the controller. Fuzzy rules are used to automatically adjust the three parameters of the controller, i.e., <inline-formula> <tex-math notation="LaTeX">K_{P} </tex-math></inline-formula>, <inline-formula> <tex-math notation="LaTeX">K_{I} </tex-math></inline-formula>, and <inline-formula> <tex-math notation="LaTeX">K_{D} </tex-math></inline-formula>. The controller passes the difference to Calderon's method for reconstructing permittivity distribution. Reconstructed distribution is used to calculate a boundary map for feedback, by fast calculation of the Dirichlet-to-Neumann map, and serves as an updated reference for measured capacitances. A smooth segmentation method is also introduced to deal with the binary distribution and release the fluctuation in the tuning of the PID controller. Numerical simulations were done to verify the performance of the proposed iterative Calderon's method for binary distributions. Experiments on real phantoms were also carried out using an ECT system to evaluate the proposed method. Several distributions were set up with solid particles and air. The results show that the proposed method can produce images with clear edges and shapes of binary distributions.
Electrical capacitance tomography (ECT) utilizes measured mutual capacitances across a region of interest to visualize distributions inside. As typical two-phase flows can be roughly treated as binary-valued material distributions, in this article, a fuzzy PID-controlled iterative algorithm is proposed for image reconstruction in cases of binary distributions. A closed-loop control system includes a fuzzy PID controller, Calderon’s method, and fast calculation of the Dirichlet-to-Neumann map. Capacitances measured in an electrode array of the ECT sensor are compared with the feedback, and the difference is input to the controller. Fuzzy rules are used to automatically adjust the three parameters of the controller, i.e., [Formula Omitted], [Formula Omitted], and [Formula Omitted]. The controller passes the difference to Calderon’s method for reconstructing permittivity distribution. Reconstructed distribution is used to calculate a boundary map for feedback, by fast calculation of the Dirichlet-to-Neumann map, and serves as an updated reference for measured capacitances. A smooth segmentation method is also introduced to deal with the binary distribution and release the fluctuation in the tuning of the PID controller. Numerical simulations were done to verify the performance of the proposed iterative Calderon’s method for binary distributions. Experiments on real phantoms were also carried out using an ECT system to evaluate the proposed method. Several distributions were set up with solid particles and air. The results show that the proposed method can produce images with clear edges and shapes of binary distributions.
Author Xu, Lijun
Gao, Xin
Yang, Wuqiang
Tian, Yu
Cao, Zhang
Hu, Die
Author_xml – sequence: 1
  givenname: Yu
  orcidid: 0000-0001-6732-5924
  surname: Tian
  fullname: Tian, Yu
  organization: School of Instrumentation and Opto-Electronic Engineering, Beihang University, Beijing, China
– sequence: 2
  givenname: Zhang
  orcidid: 0000-0003-3649-9512
  surname: Cao
  fullname: Cao, Zhang
  email: zh_cao@buaa.edu.cn
  organization: Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, Beijing, China
– sequence: 3
  givenname: Die
  orcidid: 0000-0001-6870-1522
  surname: Hu
  fullname: Hu, Die
  organization: School of Instrumentation and Opto-Electronic Engineering, Beihang University, Beijing, China
– sequence: 4
  givenname: Xin
  orcidid: 0000-0001-6221-9794
  surname: Gao
  fullname: Gao, Xin
  organization: School of Instrumentation and Opto-Electronic Engineering, Beihang University, Beijing, China
– sequence: 5
  givenname: Lijun
  orcidid: 0000-0003-0488-9604
  surname: Xu
  fullname: Xu, Lijun
  organization: School of Instrumentation and Opto-Electronic Engineering, Beihang University, Beijing, China
– sequence: 6
  givenname: Wuqiang
  orcidid: 0000-0002-7201-1011
  surname: Yang
  fullname: Yang, Wuqiang
  organization: School of Electrical and Electronic Engineering, The University of Manchester, Manchester, U.K
BookMark eNp9kLtPwzAQhy1UJFpgR2KxxMCUcnaeHqHlEYkKhjJHjn0Bo2AHx0Vq_3oSFTEwMJ10-n33-GZkYp1FQs4YzBkDcbUuV3MOnM1jSDlPxAGZsjTNI5FlfEKmAKyIRJJmR2TW9-8AkGdJPiXumt5tdrstfS6X0cLZ4F3boqZlQC-D-UK6kK1G7-xlT1cY3pymjfP0xljpt3Rp-uBNvQnGWWosvW1RDQ0l24HrpDJBWoV07T7cq5fd2_aEHDay7fH0px6Tl7vb9eIheny6LxfXj5HigoUoZZAI1jAhUWlZq0YXBdOxlk2dYp3IAmoGRa7qWAsuMIY8l0pjrgElSC7iY3Kxn9t597nBPlTvbuPtsLLiSZGlgucchlS2Tynv-t5jU40Xj88EL01bMahGudUgtxrlVj9yBxD-gJ03H4OR_5DzPWIQ8TcuYl4wIeJvxReIVA
CODEN IEIMAO
CitedBy_id crossref_primary_10_1109_TIM_2022_3229726
crossref_primary_10_1021_acs_iecr_3c01772
crossref_primary_10_1109_TIM_2023_3240989
crossref_primary_10_1109_TPAMI_2024_3354928
crossref_primary_10_1109_JSEN_2023_3297993
crossref_primary_10_1088_1361_6501_acddd8
crossref_primary_10_1088_1361_6501_ad0867
crossref_primary_10_1088_1361_6501_ad3182
crossref_primary_10_1109_TIM_2021_3132829
crossref_primary_10_1016_j_ress_2022_108509
crossref_primary_10_1063_5_0144464
crossref_primary_10_1109_JSEN_2021_3099241
Cites_doi 10.1016/j.partic.2018.05.009
10.1108/SR-01-2016-0027
10.1016/j.ces.2018.01.032
10.1109/JSEN.2020.2965731
10.1109/TIM.2019.2921441
10.1088/0957-0233/19/9/094014
10.1088/0957-0233/22/10/104001
10.1109/TIM.2014.2329738
10.1109/TIM.2018.2851839
10.1016/j.apm.2020.01.063
10.1109/JSEN.2017.2750741
10.1002/aic.15879
10.1109/TIM.2015.2450351
10.1002/aic.11406
10.1016/j.applthermaleng.2020.115311
10.1016/j.ces.2019.01.020
10.1109/TIM.2011.2113010
10.1109/JSEN.2019.2919923
10.1016/j.ijmultiphaseflow.2019.103085
10.1109/TIM.2012.2236731
10.1109/TIM.2012.2232475
10.1007/s40815-017-0401-3
10.1109/TIM.2018.2811228
10.1088/0957-0233/26/12/125402
10.1109/JSEN.2018.2880999
10.1088/0957-0233/20/10/104027
10.1109/JSEN.2018.2866524
10.1109/TMI.2019.2900031
10.1088/0957-0233/21/1/015502
10.1109/JSEN.2015.2446982
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021
DBID 97E
RIA
RIE
AAYXX
CITATION
7SP
7U5
8FD
L7M
DOI 10.1109/TIM.2021.3052249
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005-present
IEEE All-Society Periodicals Package (ASPP) 1998-Present
IEEE Xplore digital library
CrossRef
Electronics & Communications Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
Electronics & Communications Abstracts
DatabaseTitleList
Solid State and Superconductivity Abstracts
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Xplore
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Physics
EISSN 1557-9662
EndPage 11
ExternalDocumentID 10_1109_TIM_2021_3052249
9328199
Genre orig-research
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 61871017; 61961130393; 61620106004; 61827802
  funderid: 10.13039/501100001809
– fundername: Newton Advanced Fellowship
  grantid: NAF191193
GroupedDBID -~X
0R~
29I
4.4
5GY
5VS
6IK
85S
8WZ
97E
A6W
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACIWK
ACNCT
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
F5P
HZ~
H~9
IAAWW
IBMZZ
ICLAB
IDIHD
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
RIA
RIE
RNS
TN5
TWZ
VH1
VJK
AAYXX
CITATION
7SP
7U5
8FD
L7M
ID FETCH-LOGICAL-c291t-510491f19aecdabcfd881d3dafb5eb4a80b1087cb3d929e3077acde7d0ea0a293
IEDL.DBID RIE
ISSN 0018-9456
IngestDate Mon Jun 30 10:19:17 EDT 2025
Thu Apr 24 22:52:54 EDT 2025
Wed Oct 01 03:46:26 EDT 2025
Wed Aug 27 02:28:15 EDT 2025
IsPeerReviewed true
IsScholarly true
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c291t-510491f19aecdabcfd881d3dafb5eb4a80b1087cb3d929e3077acde7d0ea0a293
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-3649-9512
0000-0001-6221-9794
0000-0001-6870-1522
0000-0002-7201-1011
0000-0003-0488-9604
0000-0001-6732-5924
PQID 2486592720
PQPubID 85462
PageCount 11
ParticipantIDs crossref_citationtrail_10_1109_TIM_2021_3052249
crossref_primary_10_1109_TIM_2021_3052249
proquest_journals_2486592720
ieee_primary_9328199
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20210000
2021-00-00
20210101
PublicationDateYYYYMMDD 2021-01-01
PublicationDate_xml – year: 2021
  text: 20210000
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on instrumentation and measurement
PublicationTitleAbbrev TIM
PublicationYear 2021
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref12
ref15
ref14
ref30
ref11
ref10
ref2
ye (ref18) 2015; 64
ref1
ref17
ref16
ref19
ref24
ref23
ref26
ref25
ref20
ref22
ref21
ref28
ref27
ref29
ref8
ref7
ref9
ref4
ref3
ref6
ref5
References_xml – ident: ref2
  doi: 10.1016/j.partic.2018.05.009
– ident: ref10
  doi: 10.1108/SR-01-2016-0027
– ident: ref3
  doi: 10.1016/j.ces.2018.01.032
– ident: ref13
  doi: 10.1109/JSEN.2020.2965731
– ident: ref19
  doi: 10.1109/TIM.2019.2921441
– ident: ref21
  doi: 10.1088/0957-0233/19/9/094014
– ident: ref24
  doi: 10.1088/0957-0233/22/10/104001
– volume: 64
  start-page: 89
  year: 2015
  ident: ref18
  article-title: Image reconstruction for electrical capacitance tomography based on sparse representation
  publication-title: IEEE Trans Instrum Meas
  doi: 10.1109/TIM.2014.2329738
– ident: ref26
  doi: 10.1109/TIM.2018.2851839
– ident: ref14
  doi: 10.1016/j.apm.2020.01.063
– ident: ref29
  doi: 10.1109/JSEN.2017.2750741
– ident: ref16
  doi: 10.1002/aic.15879
– ident: ref6
  doi: 10.1109/TIM.2015.2450351
– ident: ref7
  doi: 10.1002/aic.11406
– ident: ref4
  doi: 10.1016/j.applthermaleng.2020.115311
– ident: ref11
  doi: 10.1016/j.ces.2019.01.020
– ident: ref9
  doi: 10.1109/TIM.2011.2113010
– ident: ref17
  doi: 10.1109/JSEN.2019.2919923
– ident: ref1
  doi: 10.1016/j.ijmultiphaseflow.2019.103085
– ident: ref8
  doi: 10.1109/TIM.2012.2236731
– ident: ref23
  doi: 10.1109/TIM.2012.2232475
– ident: ref28
  doi: 10.1007/s40815-017-0401-3
– ident: ref12
  doi: 10.1109/TIM.2018.2811228
– ident: ref15
  doi: 10.1088/0957-0233/26/12/125402
– ident: ref30
  doi: 10.1109/JSEN.2018.2880999
– ident: ref22
  doi: 10.1088/0957-0233/20/10/104027
– ident: ref27
  doi: 10.1109/JSEN.2018.2866524
– ident: ref20
  doi: 10.1109/TMI.2019.2900031
– ident: ref25
  doi: 10.1088/0957-0233/21/1/015502
– ident: ref5
  doi: 10.1109/JSEN.2015.2446982
SSID ssj0007647
Score 2.4313414
Snippet Electrical capacitance tomography (ECT) utilizes measured mutual capacitances across a region of interest to visualize distributions inside. As typical...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1
SubjectTerms Binary distribution
Boundary maps
Calderon’s method
Capacitance
Capacitance measurement
Controllers
Dirichlet problem
electrical capacitance tomography (ECT)
Electrodes
Feedback
Fuzzy control
fuzzy PID controller
Image reconstruction
Image segmentation
Iterative algorithms
Iterative methods
Permittivity
Permittivity measurement
Proportional integral derivative
Sensor arrays
Tomography
Two phase flow
Title A Fuzzy PID-Controlled Iterative Calderon's Method for Binary Distribution in Electrical Capacitance Tomography
URI https://ieeexplore.ieee.org/document/9328199
https://www.proquest.com/docview/2486592720
Volume 70
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Xplore
  customDbUrl:
  eissn: 1557-9662
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0007647
  issn: 0018-9456
  databaseCode: RIE
  dateStart: 19630101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Na9wwEB2SQCE5NM0X3SYNOhRCod61LNuyjukmS7awoYcN5GZkaQQhqV263kP313cke5cmLaU3HyRb8EaaN57RG4APMksKzbWIhOBZlFrrokpiHjkhkcyLY-58Rnd2m9_cpV_us_st-LS5C4OIofgMh_4x5PJtY5b-V9mIuAY5MLUN27LIu7tam1NX5mmnj8lpAxMrWKckYzWaT2cUCCZ8SB8nj6WeuaDQU-WPgzh4l8k-zNbr6opKHofLthqa1QvJxv9d-Bt43dNMdtnZxQFsYX0Ie7-JDx7Cq1D8aRZH0FyyyXK1-sm-Tq-icVe7_oSWTYPiMh2HbKx9M--mvliwWWg5zYjrss_hLi-78tq7fdss9lCz69BZx4NP8ygkf2i9ZbF5862Xxz6Gu8n1fHwT9Y0YIpMo3ka0b1PFHVcajdWVcbYgmiusdlWGVaqLuOJxIU0lLLEtwlhKbSxKG6OONRGKE9ipmxrfAuPGkdmoHIUxaYGZMmmeU4gjnKBISLkBjNbYlKZXKffNMp7KEK3EqiQ0S49m2aM5gI-bGd87hY5_jD3y4GzG9bgM4GwNf9lv4UWZpIVPOcskfvf3Waew69_d_Y85g532xxLfE0Npq_Ngmr8ArzLjGA
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB6VIgQcgD4QC334UAkhkd04duL4WLZd7dKm4rCVeoscP6SKkiA2e2B_PWMnu6KAUG852LKlb-z5JjP-BuBEpEmuqGIRYzSNuDEuqoTNIseERfOiNnM-o1tcZdNr_vkmvdmCj5u3MNbaUHxmh_4z5PJNo5f-V9kIuQY6MPkIHqec87R7rbW5d0XGO4VMikcYecE6KRnL0XxWYCiY0CEujz5L3nNCoavKX1dx8C-Tl1Csd9aVlXwdLttqqFd_iDY-dOuv4EVPNMlpZxk7sGXrXXj-m_zgLjwJ5Z96sQfNKZksV6uf5MvsLBp31et31pBZ0FzGC5GMlW_n3dTvF6QITacJsl3yKbzmJWdefbdvnEVua3Ieeut4-HEeBuW3rbctMm--9QLZ-3A9OZ-Pp1HfiiHSiaRthCeXS-qoVFYbVWlnciS6zChXpbbiKo8rGudCV8wg30KUhVDaWGFiq2KFlOI1bNdNbd8Aodqh4cjMMq15blOpeZZhkMMcw1hIugGM1tiUutcp9-0y7soQr8SyRDRLj2bZozmAD5sZ3zuNjv-M3fPgbMb1uAzgYA1_2R_iRZnw3CedRRK__fesY3g6nReX5eXs6uIdPPPrdH9nDmC7_bG0h8hX2uoomOkvuKjmZQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Fuzzy+PID-Controlled+Iterative+Calderon%27s+Method+for+Binary+Distribution+in+Electrical+Capacitance+Tomography&rft.jtitle=IEEE+transactions+on+instrumentation+and+measurement&rft.au=Tian%2C+Yu&rft.au=Cao%2C+Zhang&rft.au=Hu%2C+Die&rft.au=Gao%2C+Xin&rft.date=2021&rft.pub=IEEE&rft.issn=0018-9456&rft.volume=70&rft.spage=1&rft.epage=11&rft_id=info:doi/10.1109%2FTIM.2021.3052249&rft.externalDocID=9328199
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0018-9456&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0018-9456&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0018-9456&client=summon