Personalized Activity Recognition Using Partially Available Target Data
Recent years have witnessed a growing body of research on autonomous activity recognition models for use in deployment of mobile systems in new settings such as when a wearable system is adopted by a new user. Current research, however, lacks comprehensive frameworks for transfer learning. Specifica...
Saved in:
| Published in | IEEE transactions on mobile computing Vol. 22; no. 1; pp. 374 - 388 |
|---|---|
| Main Authors | , , , |
| Format | Magazine Article |
| Language | English |
| Published |
Los Alamitos
IEEE
01.01.2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Subjects | |
| Online Access | Get full text |
| ISSN | 1536-1233 1558-0660 |
| DOI | 10.1109/TMC.2021.3071434 |
Cover
| Abstract | Recent years have witnessed a growing body of research on autonomous activity recognition models for use in deployment of mobile systems in new settings such as when a wearable system is adopted by a new user. Current research, however, lacks comprehensive frameworks for transfer learning. Specifically, it lacks the ability to deal with partially available data in new settings. To address these limitations, we propose OptiMapper , a novel uninformed cross-subject transfer learning framework for activity recognition. OptiMapper is a combinatorial optimization framework that extracts abstract knowledge across subjects and utilizes this knowledge for developing a personalized and accurate activity recognition model in new subjects. To this end, a novel community-detection-based clustering of unlabeled data is proposed that uses the target user data to construct a network of unannotated sensor observations. The clusters of these target observations are then mapped onto the source clusters using a complete bipartite graph model. In the next step, the mapped labels are conditionally fused with the prediction of a base learner to create a personalized and labeled training dataset for the target user. We present two instantiations of OptiMapper. The first instantiation, which is applicable for transfer learning across domains with identical activity labels, performs a one-to-one bipartite mapping between clusters of the source and target users. The second instantiation performs optimal many-to-one mapping between the source clusters and those of the target. The many-to-one mapping allows us to find an optimal mapping even when the target dataset does not contain sufficient instances of all activity classes. We show that this type of cross-domain mapping can be formulated as a transportation problem and solved optimally. We evaluate our transfer learning techniques on several activity recognition datasets. Our results show that the proposed community detection approach can achieve, on average, 69 percent utilization of the datasets for clustering with an overall clustering accuracy of 87.5 percent. Our results also suggest that the proposed transfer learning algorithms can achieve up to 22.5 percent improvement in the activity recognition accuracy, compared to the state-of-the-art techniques. The experimental results also demonstrate high and sustained performance even in presence of partial data. |
|---|---|
| AbstractList | Recent years have witnessed a growing body of research on autonomous activity recognition models for use in deployment of mobile systems in new settings such as when a wearable system is adopted by a new user. Current research, however, lacks comprehensive frameworks for transfer learning. Specifically, it lacks the ability to deal with partially available data in new settings. To address these limitations, we propose OptiMapper , a novel uninformed cross-subject transfer learning framework for activity recognition. OptiMapper is a combinatorial optimization framework that extracts abstract knowledge across subjects and utilizes this knowledge for developing a personalized and accurate activity recognition model in new subjects. To this end, a novel community-detection-based clustering of unlabeled data is proposed that uses the target user data to construct a network of unannotated sensor observations. The clusters of these target observations are then mapped onto the source clusters using a complete bipartite graph model. In the next step, the mapped labels are conditionally fused with the prediction of a base learner to create a personalized and labeled training dataset for the target user. We present two instantiations of OptiMapper. The first instantiation, which is applicable for transfer learning across domains with identical activity labels, performs a one-to-one bipartite mapping between clusters of the source and target users. The second instantiation performs optimal many-to-one mapping between the source clusters and those of the target. The many-to-one mapping allows us to find an optimal mapping even when the target dataset does not contain sufficient instances of all activity classes. We show that this type of cross-domain mapping can be formulated as a transportation problem and solved optimally. We evaluate our transfer learning techniques on several activity recognition datasets. Our results show that the proposed community detection approach can achieve, on average, 69 percent utilization of the datasets for clustering with an overall clustering accuracy of 87.5 percent. Our results also suggest that the proposed transfer learning algorithms can achieve up to 22.5 percent improvement in the activity recognition accuracy, compared to the state-of-the-art techniques. The experimental results also demonstrate high and sustained performance even in presence of partial data. |
| Author | Fallahzadeh, Ramin Ashari, Zhila Esna Ghasemzadeh, Hassan Alinia, Parastoo |
| Author_xml | – sequence: 1 givenname: Ramin surname: Fallahzadeh fullname: Fallahzadeh, Ramin email: raminf@stanford.edu organization: School of Medicine, Stanford University, Stanford, CA, USA – sequence: 2 givenname: Zhila Esna orcidid: 0000-0003-0454-7794 surname: Ashari fullname: Ashari, Zhila Esna email: z.esnaashariesfahan@wsu.edu organization: School of Electrical Engineering and Computer Science, Washington State University, Pullman, WA, USA – sequence: 3 givenname: Parastoo orcidid: 0000-0001-8201-3005 surname: Alinia fullname: Alinia, Parastoo email: parastoo.alinia@wsu.edu organization: School of Electrical Engineering and Computer Science, Washington State University, Pullman, WA, USA – sequence: 4 givenname: Hassan orcidid: 0000-0002-1844-1416 surname: Ghasemzadeh fullname: Ghasemzadeh, Hassan email: hassan.ghasemzadeh@wsu.edu organization: School of Electrical Engineering and Computer Science, Washington State University, Pullman, WA, USA |
| BookMark | eNp9kMFLwzAUh4MouE3vgpeC586Xpm2S45g6hYlD5jkk2evIqO1MssH8623Z8ODB03uH3_f4vW9Izpu2QUJuKIwpBXm_fJ2OM8jomAGnOcvPyIAWhUihLOG831mZ0oyxSzIMYQNAhZR8QGYL9KFtdO2-cZVMbHR7Fw_JO9p23bjo2ib5CK5ZJwvto9N1fUgme-1qbWpMltqvMSYPOuorclHpOuD1aY7I8ulxOX1O52-zl-lkntpM0pjmq8yaMqeWV2ALtELwkgtAbowQQvKqNAxMvjIgTUWF1lgYrrXVhbEIgo3I3fHs1rdfOwxRbdqd7-oHlfGclyBB9KnymLK-DcFjpayLun8m-q67oqB6Z6pzpnpn6uSsA-EPuPXuU_vDf8jtEXGI-BuXTHKWFewHSgV5fg |
| CODEN | ITMCCJ |
| CitedBy_id | crossref_primary_10_1109_JIOT_2023_3314150 crossref_primary_10_3390_s23146337 crossref_primary_10_1109_ACCESS_2024_3412653 crossref_primary_10_1109_JIOT_2023_3256324 crossref_primary_10_1145_3717608 crossref_primary_10_1109_TII_2022_3182780 |
| Cites_doi | 10.1109/ICIIC.2010.42 10.1145/3055004.3055015 10.1109/IoTDI.2018.00014 10.1145/3055031.3055087 10.1109/JSEN.2019.2893225 10.1109/TMC.2014.2331969 10.1093/comjnl/bxt075 10.1016/j.pmcj.2016.08.017 10.1016/j.pmcj.2019.04.004 10.1016/j.artmed.2012.09.003 10.1145/2462456.2464438 10.1109/ISWC.2012.13 10.1145/331499.331504 10.1287/mnsc.1.1.49 10.1109/EMBC.2016.7592169 10.1109/ICTAI.2012.169 10.1016/j.comnet.2016.01.009 10.1109/ICME.2019.00211 10.24963/ijcai.2019/314 10.1145/2966986.2967008 10.1145/2897937.2898066 10.1109/SYNASC.2012.24 10.1016/j.patrec.2018.02.010 10.1109/TMC.2020.3003936 10.1145/2638728.2641674 10.1002/9780470382776 10.3390/s17040737 10.1111/j.1540-5915.1970.tb00792.x 10.1109/BigData.2016.7840648 10.1007/978-3-319-26401-1_25 10.1145/2971648.2971701 10.1287/opre.20.1.94 10.1109/TMC.2018.2789890 10.1016/j.neunet.2014.01.008 10.1007/s10115-013-0665-3 10.1109/TKDE.2009.191 10.1016/j.tips.2014.11.002 10.1109/WoWMoM.2019.8793019 10.1023/A:1007421302149 |
| ContentType | Magazine Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023 |
| DBID | 97E RIA RIE AAYXX CITATION 7SC 7SP 8FD JQ2 L7M L~C L~D |
| DOI | 10.1109/TMC.2021.3071434 |
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
| DatabaseTitle | CrossRef Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Technology Research Database |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISSN | 1558-0660 |
| EndPage | 388 |
| ExternalDocumentID | 10_1109_TMC_2021_3071434 9397325 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: National Science Foundation grantid: CNS–1750679; CNS–1932346 funderid: 10.13039/501100008982 |
| GroupedDBID | -~X .DC 0R~ 29I 4.4 5GY 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACGFS ACIWK AENEX AGQYO AHBIQ AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD HZ~ IEDLZ IFIPE IPLJI JAVBF LAI M43 O9- OCL P2P PQQKQ RIA RIE RNS AAYXX CITATION 7SC 7SP 8FD JQ2 L7M L~C L~D |
| ID | FETCH-LOGICAL-c291t-4d2cb641c7f0c5ec8876780e7bb88897f6b30b4db09bf18aae5b7aaca5bce083 |
| IEDL.DBID | RIE |
| ISSN | 1536-1233 |
| IngestDate | Sun Jun 29 16:04:26 EDT 2025 Thu Apr 24 23:02:13 EDT 2025 Wed Oct 01 01:54:01 EDT 2025 Wed Aug 27 02:15:00 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c291t-4d2cb641c7f0c5ec8876780e7bb88897f6b30b4db09bf18aae5b7aaca5bce083 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0003-0454-7794 0000-0001-8201-3005 0000-0002-1844-1416 |
| PQID | 2747609088 |
| PQPubID | 75730 |
| PageCount | 15 |
| ParticipantIDs | crossref_primary_10_1109_TMC_2021_3071434 ieee_primary_9397325 crossref_citationtrail_10_1109_TMC_2021_3071434 proquest_journals_2747609088 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2023-Jan.-1 2023-1-1 20230101 |
| PublicationDateYYYYMMDD | 2023-01-01 |
| PublicationDate_xml | – month: 01 year: 2023 text: 2023-Jan.-1 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Los Alamitos |
| PublicationPlace_xml | – name: Los Alamitos |
| PublicationTitle | IEEE transactions on mobile computing |
| PublicationTitleAbbrev | TMC |
| PublicationYear | 2023 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref35 ref13 ref34 ref37 ref15 ref36 ref14 ref31 ref30 ref33 ref11 ref32 ref10 ref2 ref1 koruko?lu (ref39) 2011; 16 ref17 ref38 ref19 ref18 hezarjaribi (ref4) 2020 pedram (ref3) 2019 koskimäki (ref16) 2016 ding (ref12) 2019; 19 ref24 zhao (ref29) 2011 ref45 ref23 ref26 ref47 ref25 ref20 alinia (ref21) 2020 ref42 ref41 ref22 ref44 ref43 ref28 ref27 lopez (ref46) 0 ref8 ref7 ref9 ref6 ref5 ref40 |
| References_xml | – ident: ref33 doi: 10.1109/ICIIC.2010.42 – ident: ref9 doi: 10.1145/3055004.3055015 – year: 0 ident: ref46 article-title: Multi-objective optimization of dynamic memory managers using grammatical evolution – year: 2020 ident: ref4 article-title: Personality assessment from text for machine commonsense reasoning – ident: ref36 doi: 10.1109/IoTDI.2018.00014 – ident: ref14 doi: 10.1145/3055031.3055087 – ident: ref28 doi: 10.1109/JSEN.2019.2893225 – ident: ref44 doi: 10.1109/TMC.2014.2331969 – ident: ref42 doi: 10.1093/comjnl/bxt075 – ident: ref25 doi: 10.1016/j.pmcj.2016.08.017 – ident: ref10 doi: 10.1016/j.pmcj.2019.04.004 – ident: ref1 doi: 10.1016/j.artmed.2012.09.003 – year: 2020 ident: ref21 article-title: ActiLabel: A combinatorial transfer learning framework for activity recognition – ident: ref37 doi: 10.1145/2462456.2464438 – ident: ref43 doi: 10.1109/ISWC.2012.13 – ident: ref32 doi: 10.1145/331499.331504 – ident: ref41 doi: 10.1287/mnsc.1.1.49 – ident: ref45 doi: 10.1109/EMBC.2016.7592169 – ident: ref23 doi: 10.1109/ICTAI.2012.169 – ident: ref2 doi: 10.1016/j.comnet.2016.01.009 – ident: ref20 doi: 10.1109/ICME.2019.00211 – ident: ref26 doi: 10.24963/ijcai.2019/314 – volume: 16 start-page: 370 year: 2011 ident: ref39 article-title: A improved Vogel's approximation method for the transportation problem publication-title: Comput Math Appl – ident: ref19 doi: 10.1145/2966986.2967008 – ident: ref17 doi: 10.1145/2897937.2898066 – ident: ref34 doi: 10.1109/SYNASC.2012.24 – ident: ref11 doi: 10.1016/j.patrec.2018.02.010 – start-page: 1709 year: 2016 ident: ref16 article-title: Adaptive model fusion for wearable sensors based human activity recognition publication-title: Proc 19th Int Conf Inf Fusion – ident: ref27 doi: 10.1109/TMC.2020.3003936 – ident: ref24 doi: 10.1145/2638728.2641674 – ident: ref31 doi: 10.1002/9780470382776 – volume: 19 start-page: 1 year: 2019 ident: ref12 article-title: Empirical study and improvement on deep transfer learning for human activity recognition publication-title: SENSORS – ident: ref35 doi: 10.3390/s17040737 – ident: ref40 doi: 10.1111/j.1540-5915.1970.tb00792.x – ident: ref8 doi: 10.1109/BigData.2016.7840648 – ident: ref22 doi: 10.1007/978-3-319-26401-1_25 – ident: ref6 doi: 10.1145/2971648.2971701 – ident: ref38 doi: 10.1287/opre.20.1.94 – ident: ref15 doi: 10.1109/TMC.2018.2789890 – ident: ref30 doi: 10.1016/j.neunet.2014.01.008 – ident: ref7 doi: 10.1007/s10115-013-0665-3 – start-page: 150 year: 2019 ident: ref3 article-title: Resource-efficient computing in wearable systems publication-title: Proc IEEE Int Conf Smart Comput – ident: ref18 doi: 10.1109/TKDE.2009.191 – ident: ref5 doi: 10.1016/j.tips.2014.11.002 – ident: ref13 doi: 10.1109/WoWMoM.2019.8793019 – ident: ref47 doi: 10.1023/A:1007421302149 – start-page: 2545 year: 2011 ident: ref29 article-title: Cross-people mobile-phone based activity recognition publication-title: Proc 22nd Int Joint Conf Artif Intell |
| SSID | ssj0018997 |
| Score | 1.3640207 |
| Snippet | Recent years have witnessed a growing body of research on autonomous activity recognition models for use in deployment of mobile systems in new settings such... |
| SourceID | proquest crossref ieee |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 374 |
| SubjectTerms | Accuracy Activity recognition Adaptation models Algorithms Clustering Combinatorial analysis cross-subject boosting Customization Datasets Domains Graph theory Labels Machine learning Mapping Mobile computing Optimization Training Transfer learning Transportation problem Wearable computers wearable computing |
| Title | Personalized Activity Recognition Using Partially Available Target Data |
| URI | https://ieeexplore.ieee.org/document/9397325 https://www.proquest.com/docview/2747609088 |
| Volume | 22 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NS8MwFH_MnTxNneJ0Sg5eBNulTdKsxzGdQ5gMqbBbSdIUxNKJdoL76036BX4g3nJIILz3kvf9fgAXgQ0aG1PXkQnnDh1rZlaSO4Lx1E91QDixvcOL-2D-SO9WbNWBq7YXRmtdFp9p1y7LXH6yVhsbKhuFxM6WYTuww8dB1avVZgyM38Cr2agWV4aQJiWJw1G0mBpH0PdcYrt1CP2igkpMlR8fcaldZj1YNPeqikqe3U0hXbX9NrLxvxffg14zNhpNKsHYh47OD6DXYDig-kn34XbZWONbnaCJqsAk0ENTV7TOUVlVgJZWxkSWfaDJu3jKbMcVisoycnQtCnEI0ewmms6dGlzBUX7oFQ5NfCUD6imeYsW0Mp-N0VtYcymNUxzyNJAES5pIHMrUGwuhmeRCKMGk0sZuO4Juvs71MSBj-DIsuC9SLCjjnjBGBOeEBipMpfG2BjBqyB2revC4xb_I4tIBwWFsGBRbBsU1gwZw2Z54qYZu_LG3b-nd7qtJPYBhw9G4fpVvsfXAA2wru05-P3UKuxZOvgqxDKFbvG70mTE6CnleStsnGYrSpA |
| linkProvider | IEEE |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LSwMxEB5qPeipahWrVXPwIrhtdpNsusdSrVXbUmSF3pYkmwWxtKJbwf56k30UfCDeckggzEwy7_kAzn0bNDamriNjzh3a0cysJHcE44mXaJ9wYnuHR2N_8Ejvpmxagct1L4zWOis-0y27zHL58UItbaisHRA7W4ZtwCajlLK8W2udMzCeA8-no1pkGULKpCQO2uGoZ1xBz20R269D6BcllKGq_PiKM_3Sr8GovFleVvLcWqaypVbfhjb-9-o7UCsHR6NuLhq7UNHzPaiVKA6oeNR1uJmU9vhKx6ircjgJ9FBWFi3mKKsrQBMrZWI2-0Ddd_E0sz1XKMwKydGVSMU-hP3rsDdwCngFR3mBmzo09pT0qat4ghXTynw3RnNhzaU0bnHAE18SLGkscSATtyOEZpILoQSTShvL7QCq88VcHwIypi_DgnsiwYIy7gpjRnBOqK-CRBp_qwHtktyRKkaPWwSMWZS5IDiIDIMiy6CoYFADLtYnXvKxG3_srVt6r_cVpG5As-RoVLzLt8j64D62tV1Hv586g61BOBpGw9vx_TFsW3D5PODShGr6utQnxgRJ5WkmeZ9L9NXx |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Personalized+Activity+Recognition+Using+Partially+Available+Target+Data&rft.jtitle=IEEE+transactions+on+mobile+computing&rft.au=Fallahzadeh%2C+Ramin&rft.au=Ashari%2C+Zhila+Esna&rft.au=Alinia%2C+Parastoo&rft.au=Ghasemzadeh%2C+Hassan&rft.date=2023-01-01&rft.issn=1536-1233&rft.eissn=1558-0660&rft.volume=22&rft.issue=1&rft.spage=374&rft.epage=388&rft_id=info:doi/10.1109%2FTMC.2021.3071434&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TMC_2021_3071434 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1536-1233&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1536-1233&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1536-1233&client=summon |