Personalized Activity Recognition Using Partially Available Target Data

Recent years have witnessed a growing body of research on autonomous activity recognition models for use in deployment of mobile systems in new settings such as when a wearable system is adopted by a new user. Current research, however, lacks comprehensive frameworks for transfer learning. Specifica...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on mobile computing Vol. 22; no. 1; pp. 374 - 388
Main Authors Fallahzadeh, Ramin, Ashari, Zhila Esna, Alinia, Parastoo, Ghasemzadeh, Hassan
Format Magazine Article
LanguageEnglish
Published Los Alamitos IEEE 01.01.2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN1536-1233
1558-0660
DOI10.1109/TMC.2021.3071434

Cover

Abstract Recent years have witnessed a growing body of research on autonomous activity recognition models for use in deployment of mobile systems in new settings such as when a wearable system is adopted by a new user. Current research, however, lacks comprehensive frameworks for transfer learning. Specifically, it lacks the ability to deal with partially available data in new settings. To address these limitations, we propose OptiMapper , a novel uninformed cross-subject transfer learning framework for activity recognition. OptiMapper is a combinatorial optimization framework that extracts abstract knowledge across subjects and utilizes this knowledge for developing a personalized and accurate activity recognition model in new subjects. To this end, a novel community-detection-based clustering of unlabeled data is proposed that uses the target user data to construct a network of unannotated sensor observations. The clusters of these target observations are then mapped onto the source clusters using a complete bipartite graph model. In the next step, the mapped labels are conditionally fused with the prediction of a base learner to create a personalized and labeled training dataset for the target user. We present two instantiations of OptiMapper. The first instantiation, which is applicable for transfer learning across domains with identical activity labels, performs a one-to-one bipartite mapping between clusters of the source and target users. The second instantiation performs optimal many-to-one mapping between the source clusters and those of the target. The many-to-one mapping allows us to find an optimal mapping even when the target dataset does not contain sufficient instances of all activity classes. We show that this type of cross-domain mapping can be formulated as a transportation problem and solved optimally. We evaluate our transfer learning techniques on several activity recognition datasets. Our results show that the proposed community detection approach can achieve, on average, 69 percent utilization of the datasets for clustering with an overall clustering accuracy of 87.5 percent. Our results also suggest that the proposed transfer learning algorithms can achieve up to 22.5 percent improvement in the activity recognition accuracy, compared to the state-of-the-art techniques. The experimental results also demonstrate high and sustained performance even in presence of partial data.
AbstractList Recent years have witnessed a growing body of research on autonomous activity recognition models for use in deployment of mobile systems in new settings such as when a wearable system is adopted by a new user. Current research, however, lacks comprehensive frameworks for transfer learning. Specifically, it lacks the ability to deal with partially available data in new settings. To address these limitations, we propose OptiMapper , a novel uninformed cross-subject transfer learning framework for activity recognition. OptiMapper is a combinatorial optimization framework that extracts abstract knowledge across subjects and utilizes this knowledge for developing a personalized and accurate activity recognition model in new subjects. To this end, a novel community-detection-based clustering of unlabeled data is proposed that uses the target user data to construct a network of unannotated sensor observations. The clusters of these target observations are then mapped onto the source clusters using a complete bipartite graph model. In the next step, the mapped labels are conditionally fused with the prediction of a base learner to create a personalized and labeled training dataset for the target user. We present two instantiations of OptiMapper. The first instantiation, which is applicable for transfer learning across domains with identical activity labels, performs a one-to-one bipartite mapping between clusters of the source and target users. The second instantiation performs optimal many-to-one mapping between the source clusters and those of the target. The many-to-one mapping allows us to find an optimal mapping even when the target dataset does not contain sufficient instances of all activity classes. We show that this type of cross-domain mapping can be formulated as a transportation problem and solved optimally. We evaluate our transfer learning techniques on several activity recognition datasets. Our results show that the proposed community detection approach can achieve, on average, 69 percent utilization of the datasets for clustering with an overall clustering accuracy of 87.5 percent. Our results also suggest that the proposed transfer learning algorithms can achieve up to 22.5 percent improvement in the activity recognition accuracy, compared to the state-of-the-art techniques. The experimental results also demonstrate high and sustained performance even in presence of partial data.
Author Fallahzadeh, Ramin
Ashari, Zhila Esna
Ghasemzadeh, Hassan
Alinia, Parastoo
Author_xml – sequence: 1
  givenname: Ramin
  surname: Fallahzadeh
  fullname: Fallahzadeh, Ramin
  email: raminf@stanford.edu
  organization: School of Medicine, Stanford University, Stanford, CA, USA
– sequence: 2
  givenname: Zhila Esna
  orcidid: 0000-0003-0454-7794
  surname: Ashari
  fullname: Ashari, Zhila Esna
  email: z.esnaashariesfahan@wsu.edu
  organization: School of Electrical Engineering and Computer Science, Washington State University, Pullman, WA, USA
– sequence: 3
  givenname: Parastoo
  orcidid: 0000-0001-8201-3005
  surname: Alinia
  fullname: Alinia, Parastoo
  email: parastoo.alinia@wsu.edu
  organization: School of Electrical Engineering and Computer Science, Washington State University, Pullman, WA, USA
– sequence: 4
  givenname: Hassan
  orcidid: 0000-0002-1844-1416
  surname: Ghasemzadeh
  fullname: Ghasemzadeh, Hassan
  email: hassan.ghasemzadeh@wsu.edu
  organization: School of Electrical Engineering and Computer Science, Washington State University, Pullman, WA, USA
BookMark eNp9kMFLwzAUh4MouE3vgpeC586Xpm2S45g6hYlD5jkk2evIqO1MssH8623Z8ODB03uH3_f4vW9Izpu2QUJuKIwpBXm_fJ2OM8jomAGnOcvPyIAWhUihLOG831mZ0oyxSzIMYQNAhZR8QGYL9KFtdO2-cZVMbHR7Fw_JO9p23bjo2ib5CK5ZJwvto9N1fUgme-1qbWpMltqvMSYPOuorclHpOuD1aY7I8ulxOX1O52-zl-lkntpM0pjmq8yaMqeWV2ALtELwkgtAbowQQvKqNAxMvjIgTUWF1lgYrrXVhbEIgo3I3fHs1rdfOwxRbdqd7-oHlfGclyBB9KnymLK-DcFjpayLun8m-q67oqB6Z6pzpnpn6uSsA-EPuPXuU_vDf8jtEXGI-BuXTHKWFewHSgV5fg
CODEN ITMCCJ
CitedBy_id crossref_primary_10_1109_JIOT_2023_3314150
crossref_primary_10_3390_s23146337
crossref_primary_10_1109_ACCESS_2024_3412653
crossref_primary_10_1109_JIOT_2023_3256324
crossref_primary_10_1145_3717608
crossref_primary_10_1109_TII_2022_3182780
Cites_doi 10.1109/ICIIC.2010.42
10.1145/3055004.3055015
10.1109/IoTDI.2018.00014
10.1145/3055031.3055087
10.1109/JSEN.2019.2893225
10.1109/TMC.2014.2331969
10.1093/comjnl/bxt075
10.1016/j.pmcj.2016.08.017
10.1016/j.pmcj.2019.04.004
10.1016/j.artmed.2012.09.003
10.1145/2462456.2464438
10.1109/ISWC.2012.13
10.1145/331499.331504
10.1287/mnsc.1.1.49
10.1109/EMBC.2016.7592169
10.1109/ICTAI.2012.169
10.1016/j.comnet.2016.01.009
10.1109/ICME.2019.00211
10.24963/ijcai.2019/314
10.1145/2966986.2967008
10.1145/2897937.2898066
10.1109/SYNASC.2012.24
10.1016/j.patrec.2018.02.010
10.1109/TMC.2020.3003936
10.1145/2638728.2641674
10.1002/9780470382776
10.3390/s17040737
10.1111/j.1540-5915.1970.tb00792.x
10.1109/BigData.2016.7840648
10.1007/978-3-319-26401-1_25
10.1145/2971648.2971701
10.1287/opre.20.1.94
10.1109/TMC.2018.2789890
10.1016/j.neunet.2014.01.008
10.1007/s10115-013-0665-3
10.1109/TKDE.2009.191
10.1016/j.tips.2014.11.002
10.1109/WoWMoM.2019.8793019
10.1023/A:1007421302149
ContentType Magazine Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
DOI 10.1109/TMC.2021.3071434
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Technology Research Database
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1558-0660
EndPage 388
ExternalDocumentID 10_1109_TMC_2021_3071434
9397325
Genre orig-research
GrantInformation_xml – fundername: National Science Foundation
  grantid: CNS–1750679; CNS–1932346
  funderid: 10.13039/501100008982
GroupedDBID -~X
.DC
0R~
29I
4.4
5GY
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
AENEX
AGQYO
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
HZ~
IEDLZ
IFIPE
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
PQQKQ
RIA
RIE
RNS
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c291t-4d2cb641c7f0c5ec8876780e7bb88897f6b30b4db09bf18aae5b7aaca5bce083
IEDL.DBID RIE
ISSN 1536-1233
IngestDate Sun Jun 29 16:04:26 EDT 2025
Thu Apr 24 23:02:13 EDT 2025
Wed Oct 01 01:54:01 EDT 2025
Wed Aug 27 02:15:00 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c291t-4d2cb641c7f0c5ec8876780e7bb88897f6b30b4db09bf18aae5b7aaca5bce083
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-0454-7794
0000-0001-8201-3005
0000-0002-1844-1416
PQID 2747609088
PQPubID 75730
PageCount 15
ParticipantIDs crossref_primary_10_1109_TMC_2021_3071434
ieee_primary_9397325
crossref_citationtrail_10_1109_TMC_2021_3071434
proquest_journals_2747609088
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-Jan.-1
2023-1-1
20230101
PublicationDateYYYYMMDD 2023-01-01
PublicationDate_xml – month: 01
  year: 2023
  text: 2023-Jan.-1
  day: 01
PublicationDecade 2020
PublicationPlace Los Alamitos
PublicationPlace_xml – name: Los Alamitos
PublicationTitle IEEE transactions on mobile computing
PublicationTitleAbbrev TMC
PublicationYear 2023
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref35
ref13
ref34
ref37
ref15
ref36
ref14
ref31
ref30
ref33
ref11
ref32
ref10
ref2
ref1
koruko?lu (ref39) 2011; 16
ref17
ref38
ref19
ref18
hezarjaribi (ref4) 2020
pedram (ref3) 2019
koskimäki (ref16) 2016
ding (ref12) 2019; 19
ref24
zhao (ref29) 2011
ref45
ref23
ref26
ref47
ref25
ref20
alinia (ref21) 2020
ref42
ref41
ref22
ref44
ref43
ref28
ref27
lopez (ref46) 0
ref8
ref7
ref9
ref6
ref5
ref40
References_xml – ident: ref33
  doi: 10.1109/ICIIC.2010.42
– ident: ref9
  doi: 10.1145/3055004.3055015
– year: 0
  ident: ref46
  article-title: Multi-objective optimization of dynamic memory managers using grammatical evolution
– year: 2020
  ident: ref4
  article-title: Personality assessment from text for machine commonsense reasoning
– ident: ref36
  doi: 10.1109/IoTDI.2018.00014
– ident: ref14
  doi: 10.1145/3055031.3055087
– ident: ref28
  doi: 10.1109/JSEN.2019.2893225
– ident: ref44
  doi: 10.1109/TMC.2014.2331969
– ident: ref42
  doi: 10.1093/comjnl/bxt075
– ident: ref25
  doi: 10.1016/j.pmcj.2016.08.017
– ident: ref10
  doi: 10.1016/j.pmcj.2019.04.004
– ident: ref1
  doi: 10.1016/j.artmed.2012.09.003
– year: 2020
  ident: ref21
  article-title: ActiLabel: A combinatorial transfer learning framework for activity recognition
– ident: ref37
  doi: 10.1145/2462456.2464438
– ident: ref43
  doi: 10.1109/ISWC.2012.13
– ident: ref32
  doi: 10.1145/331499.331504
– ident: ref41
  doi: 10.1287/mnsc.1.1.49
– ident: ref45
  doi: 10.1109/EMBC.2016.7592169
– ident: ref23
  doi: 10.1109/ICTAI.2012.169
– ident: ref2
  doi: 10.1016/j.comnet.2016.01.009
– ident: ref20
  doi: 10.1109/ICME.2019.00211
– ident: ref26
  doi: 10.24963/ijcai.2019/314
– volume: 16
  start-page: 370
  year: 2011
  ident: ref39
  article-title: A improved Vogel's approximation method for the transportation problem
  publication-title: Comput Math Appl
– ident: ref19
  doi: 10.1145/2966986.2967008
– ident: ref17
  doi: 10.1145/2897937.2898066
– ident: ref34
  doi: 10.1109/SYNASC.2012.24
– ident: ref11
  doi: 10.1016/j.patrec.2018.02.010
– start-page: 1709
  year: 2016
  ident: ref16
  article-title: Adaptive model fusion for wearable sensors based human activity recognition
  publication-title: Proc 19th Int Conf Inf Fusion
– ident: ref27
  doi: 10.1109/TMC.2020.3003936
– ident: ref24
  doi: 10.1145/2638728.2641674
– ident: ref31
  doi: 10.1002/9780470382776
– volume: 19
  start-page: 1
  year: 2019
  ident: ref12
  article-title: Empirical study and improvement on deep transfer learning for human activity recognition
  publication-title: SENSORS
– ident: ref35
  doi: 10.3390/s17040737
– ident: ref40
  doi: 10.1111/j.1540-5915.1970.tb00792.x
– ident: ref8
  doi: 10.1109/BigData.2016.7840648
– ident: ref22
  doi: 10.1007/978-3-319-26401-1_25
– ident: ref6
  doi: 10.1145/2971648.2971701
– ident: ref38
  doi: 10.1287/opre.20.1.94
– ident: ref15
  doi: 10.1109/TMC.2018.2789890
– ident: ref30
  doi: 10.1016/j.neunet.2014.01.008
– ident: ref7
  doi: 10.1007/s10115-013-0665-3
– start-page: 150
  year: 2019
  ident: ref3
  article-title: Resource-efficient computing in wearable systems
  publication-title: Proc IEEE Int Conf Smart Comput
– ident: ref18
  doi: 10.1109/TKDE.2009.191
– ident: ref5
  doi: 10.1016/j.tips.2014.11.002
– ident: ref13
  doi: 10.1109/WoWMoM.2019.8793019
– ident: ref47
  doi: 10.1023/A:1007421302149
– start-page: 2545
  year: 2011
  ident: ref29
  article-title: Cross-people mobile-phone based activity recognition
  publication-title: Proc 22nd Int Joint Conf Artif Intell
SSID ssj0018997
Score 1.3640207
Snippet Recent years have witnessed a growing body of research on autonomous activity recognition models for use in deployment of mobile systems in new settings such...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 374
SubjectTerms Accuracy
Activity recognition
Adaptation models
Algorithms
Clustering
Combinatorial analysis
cross-subject boosting
Customization
Datasets
Domains
Graph theory
Labels
Machine learning
Mapping
Mobile computing
Optimization
Training
Transfer learning
Transportation problem
Wearable computers
wearable computing
Title Personalized Activity Recognition Using Partially Available Target Data
URI https://ieeexplore.ieee.org/document/9397325
https://www.proquest.com/docview/2747609088
Volume 22
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NS8MwFH_MnTxNneJ0Sg5eBNulTdKsxzGdQ5gMqbBbSdIUxNKJdoL76036BX4g3nJIILz3kvf9fgAXgQ0aG1PXkQnnDh1rZlaSO4Lx1E91QDixvcOL-2D-SO9WbNWBq7YXRmtdFp9p1y7LXH6yVhsbKhuFxM6WYTuww8dB1avVZgyM38Cr2agWV4aQJiWJw1G0mBpH0PdcYrt1CP2igkpMlR8fcaldZj1YNPeqikqe3U0hXbX9NrLxvxffg14zNhpNKsHYh47OD6DXYDig-kn34XbZWONbnaCJqsAk0ENTV7TOUVlVgJZWxkSWfaDJu3jKbMcVisoycnQtCnEI0ewmms6dGlzBUX7oFQ5NfCUD6imeYsW0Mp-N0VtYcymNUxzyNJAES5pIHMrUGwuhmeRCKMGk0sZuO4Juvs71MSBj-DIsuC9SLCjjnjBGBOeEBipMpfG2BjBqyB2revC4xb_I4tIBwWFsGBRbBsU1gwZw2Z54qYZu_LG3b-nd7qtJPYBhw9G4fpVvsfXAA2wru05-P3UKuxZOvgqxDKFbvG70mTE6CnleStsnGYrSpA
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LSwMxEB5qPeipahWrVXPwIrhtdpNsusdSrVXbUmSF3pYkmwWxtKJbwf56k30UfCDeckggzEwy7_kAzn0bNDamriNjzh3a0cysJHcE44mXaJ9wYnuHR2N_8Ejvpmxagct1L4zWOis-0y27zHL58UItbaisHRA7W4ZtwCajlLK8W2udMzCeA8-no1pkGULKpCQO2uGoZ1xBz20R269D6BcllKGq_PiKM_3Sr8GovFleVvLcWqaypVbfhjb-9-o7UCsHR6NuLhq7UNHzPaiVKA6oeNR1uJmU9vhKx6ircjgJ9FBWFi3mKKsrQBMrZWI2-0Ddd_E0sz1XKMwKydGVSMU-hP3rsDdwCngFR3mBmzo09pT0qat4ghXTynw3RnNhzaU0bnHAE18SLGkscSATtyOEZpILoQSTShvL7QCq88VcHwIypi_DgnsiwYIy7gpjRnBOqK-CRBp_qwHtktyRKkaPWwSMWZS5IDiIDIMiy6CoYFADLtYnXvKxG3_srVt6r_cVpG5As-RoVLzLt8j64D62tV1Hv586g61BOBpGw9vx_TFsW3D5PODShGr6utQnxgRJ5WkmeZ9L9NXx
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Personalized+Activity+Recognition+Using+Partially+Available+Target+Data&rft.jtitle=IEEE+transactions+on+mobile+computing&rft.au=Fallahzadeh%2C+Ramin&rft.au=Ashari%2C+Zhila+Esna&rft.au=Alinia%2C+Parastoo&rft.au=Ghasemzadeh%2C+Hassan&rft.date=2023-01-01&rft.issn=1536-1233&rft.eissn=1558-0660&rft.volume=22&rft.issue=1&rft.spage=374&rft.epage=388&rft_id=info:doi/10.1109%2FTMC.2021.3071434&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TMC_2021_3071434
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1536-1233&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1536-1233&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1536-1233&client=summon