An SMDP-Based Resource Allocation in Vehicular Cloud Computing Systems
Vehicular ad hoc networks are expected to significantly improve traffic safety and transportation efficiency while providing a comfortable driving experience. However, available communication, storage, and computation resources of the connected vehicles are not well utilized to meet the service requ...
        Saved in:
      
    
          | Published in | IEEE transactions on industrial electronics (1982) Vol. 62; no. 12; pp. 7920 - 7928 | 
|---|---|
| Main Authors | , , , , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
        New York
          IEEE
    
        01.12.2015
     The Institute of Electrical and Electronics Engineers, Inc. (IEEE)  | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 0278-0046 1557-9948  | 
| DOI | 10.1109/TIE.2015.2482119 | 
Cover
| Abstract | Vehicular ad hoc networks are expected to significantly improve traffic safety and transportation efficiency while providing a comfortable driving experience. However, available communication, storage, and computation resources of the connected vehicles are not well utilized to meet the service requirements of intelligent transportation systems. Vehicular cloud computing (VCC) is a promising approach that makes use of the advantages of cloud computing and applies them to vehicular networks. In this paper, we propose an optimal computation resource allocation scheme to maximize the total long-term expected reward of the VCC system. The system reward is derived by taking into account both the income and cost of the VCC system as well as the variability feature of available resources. Then, the optimization problem is formulated as an infinite horizon semi-Markov decision process (SMDP) with the defined state space, action space, reward model, and transition probability distribution of the VCC system. We utilize the iteration algorithm to develop the optimal scheme that describes which action has to be taken under a certain state. Numerical results demonstrate that the significant performance gain can be obtained by the SMDP-based scheme within the acceptable complexity. | 
    
|---|---|
| AbstractList | Vehicular ad hoc networks are expected to significantly improve traffic safety and transportation efficiency while providing a comfortable driving experience. However, available communication, storage, and computation resources of the connected vehicles are not well utilized to meet the service requirements of intelligent transportation systems. Vehicular cloud computing (VCC) is a promising approach that makes use of the advantages of cloud computing and applies them to vehicular networks. In this paper, we propose an optimal computation resource allocation scheme to maximize the total long-term expected reward of the VCC system. The system reward is derived by taking into account both the income and cost of the VCC system as well as the variability feature of available resources. Then, the optimization problem is formulated as an infinite horizon semi-Markov decision process (SMDP) with the defined state space, action space, reward model, and transition probability distribution of the VCC system. We utilize the iteration algorithm to develop the optimal scheme that describes which action has to be taken under a certain state. Numerical results demonstrate that the significant performance gain can be obtained by the SMDP-based scheme within the acceptable complexity. | 
    
| Author | Meng, Hanlin Chatzimisios, Periklis Lei, Lei Shen, Xuemin Zheng, Kan  | 
    
| Author_xml | – sequence: 1 givenname: Kan surname: Zheng fullname: Zheng, Kan email: kzheng@ieee.org organization: Key Lab. of Universal Wireless Commun., Beijing Univ. of Posts & Telecommun., Beijing, China – sequence: 2 givenname: Hanlin surname: Meng fullname: Meng, Hanlin email: mhl_ml@163.com organization: Key Lab. of Universal Wireless Commun., Beijing Univ. of Posts & Telecommun., Beijing, China – sequence: 3 givenname: Periklis surname: Chatzimisios fullname: Chatzimisios, Periklis email: peris@it.teithe.gr organization: Dept. of Inf., Alexander TEI of Thessaloniki, Thessaloniki, Greece – sequence: 4 givenname: Lei surname: Lei fullname: Lei, Lei email: leil@bjtu.edu.cn organization: State Key Lab. of Rail Traffic Control & Safety, Beijing Jiaotong Univ., Beijing, China – sequence: 5 givenname: Xuemin surname: Shen fullname: Shen, Xuemin email: xshen@bbcr.uwaterloo.ca organization: Dept. of Electr. & Comput. Eng., Univ. of Waterloo, Waterloo, ON, Canada  | 
    
| BookMark | eNp9kEFPwjAUgBuDiYDeTbw08Tx87dp1PSKCkmA0Qrw2o-20ZKzYbgf-vUOIBw-eevm-916_AerVvrYIXRMYEQLybjWfjigQPqIsp4TIM9QnnItESpb3UB-oyBMAll2gQYwbAMI44X00G9d4-fzwmtwX0Rr8ZqNvg7Z4XFVeF43zNXY1frefTrdVEfCk8q3BE7_dtY2rP_ByHxu7jZfovCyqaK9O7xCtZtPV5ClZvDzOJ-NFoqkkTcLWlEjBC7LWLAWa0rXMJGWcc6szCrI0uSmNtKk12lDgWgABQ6nkHUlZOkS3x7G74L9aGxu16c6tu42KiDQXgnCQHZUdKR18jMGWSrvm5y9NKFylCKhDMtUlU4dk6pSsE-GPuAtuW4T9f8rNUXHW2l9cUCEgg_Qb-it2aQ | 
    
| CODEN | ITIED6 | 
    
| CitedBy_id | crossref_primary_10_1109_JIOT_2019_2953047 crossref_primary_10_1109_TVT_2020_3007025 crossref_primary_10_1109_TMC_2021_3089338 crossref_primary_10_1109_JIOT_2018_2876417 crossref_primary_10_1109_TVT_2019_2902561 crossref_primary_10_1109_JIOT_2018_2872456 crossref_primary_10_1109_ACCESS_2020_3027637 crossref_primary_10_1109_TWC_2016_2558146 crossref_primary_10_1016_j_mechatronics_2017_10_010 crossref_primary_10_1109_JIOT_2023_3277463 crossref_primary_10_1109_TWC_2020_3030889 crossref_primary_10_1109_MCOM_2016_7402271 crossref_primary_10_1155_2020_8816090 crossref_primary_10_1109_COMST_2020_2988367 crossref_primary_10_1109_LWC_2020_2973985 crossref_primary_10_1109_ACCESS_2018_2888929 crossref_primary_10_1109_JPROC_2019_2947490 crossref_primary_10_7717_peerj_cs_486 crossref_primary_10_1109_ACCESS_2022_3174554 crossref_primary_10_1016_j_adhoc_2025_103754 crossref_primary_10_1007_s41870_018_0148_6 crossref_primary_10_1007_s12652_022_04320_y crossref_primary_10_1109_TWC_2020_3010522 crossref_primary_10_32604_cmc_2021_017509 crossref_primary_10_1109_JIOT_2018_2872439 crossref_primary_10_1109_TNSM_2023_3322881 crossref_primary_10_1109_TVT_2019_2937842 crossref_primary_10_1049_iet_its_2020_0390 crossref_primary_10_1109_MNET_2018_1700324 crossref_primary_10_1109_TVT_2019_2954462 crossref_primary_10_3390_electronics12153254 crossref_primary_10_1049_iet_com_2018_6137 crossref_primary_10_1007_s11036_018_1032_0 crossref_primary_10_1109_TITS_2020_2980422 crossref_primary_10_1109_TITS_2018_2850311 crossref_primary_10_1109_TVT_2018_2886348 crossref_primary_10_1145_3485129 crossref_primary_10_1109_ACCESS_2020_3033828 crossref_primary_10_1109_TITS_2020_3033577 crossref_primary_10_3390_s19040937 crossref_primary_10_1109_ACCESS_2016_2560902 crossref_primary_10_1109_TVT_2020_2967882 crossref_primary_10_1109_TVT_2018_2890686 crossref_primary_10_1007_s12083_021_01084_8 crossref_primary_10_1109_JSAC_2022_3227081 crossref_primary_10_3390_electronics10121477 crossref_primary_10_1007_s40998_020_00381_x crossref_primary_10_1109_JSEN_2016_2561969 crossref_primary_10_1109_ACCESS_2021_3065968 crossref_primary_10_1109_JIOT_2020_2990449 crossref_primary_10_1016_j_suscom_2022_100806 crossref_primary_10_1109_JIOT_2021_3119866 crossref_primary_10_1109_ACCESS_2019_2950435 crossref_primary_10_1109_TSMC_2022_3200452 crossref_primary_10_1016_j_comcom_2017_05_013 crossref_primary_10_1080_02564602_2017_1342572 crossref_primary_10_1109_ACCESS_2016_2630708 crossref_primary_10_1016_j_vehcom_2025_100898 crossref_primary_10_1109_TVT_2018_2868013 crossref_primary_10_1177_1550147717726509 crossref_primary_10_1109_ACCESS_2021_3138219 crossref_primary_10_1109_TASE_2020_3042409 crossref_primary_10_1142_S1793351X22400141 crossref_primary_10_1109_TITS_2019_2902529 crossref_primary_10_1109_TVT_2019_2947080 crossref_primary_10_1109_ACCESS_2016_2615323 crossref_primary_10_3390_s22155535 crossref_primary_10_3233_JIFS_223522 crossref_primary_10_1002_nem_1936 crossref_primary_10_1109_TNET_2023_3286709 crossref_primary_10_1109_TVT_2016_2630300 crossref_primary_10_1109_JIOT_2020_3023000 crossref_primary_10_3390_fi14120368 crossref_primary_10_3390_s16070974 crossref_primary_10_1109_ACCESS_2018_2877252 crossref_primary_10_1007_s10586_021_03268_6 crossref_primary_10_1109_JSAC_2020_2986615 crossref_primary_10_1109_TIE_2015_2483490 crossref_primary_10_1109_JIOT_2019_2900550 crossref_primary_10_1007_s10586_018_1976_7 crossref_primary_10_1109_JIOT_2018_2869892 crossref_primary_10_1109_TSMC_2021_3097005 crossref_primary_10_1109_TVT_2018_2870392 crossref_primary_10_1109_ACCESS_2017_2761551 crossref_primary_10_1109_TITS_2021_3115155 crossref_primary_10_1109_TVT_2020_3043296 crossref_primary_10_1155_2021_5051328 crossref_primary_10_1109_TDSC_2018_2797190 crossref_primary_10_1109_MCOM_2019_1800230 crossref_primary_10_1109_TITS_2018_2880298 crossref_primary_10_1007_s11276_023_03268_x crossref_primary_10_1080_00207179_2019_1661521 crossref_primary_10_1109_ACCESS_2019_2909123 crossref_primary_10_1109_TIV_2021_3060626 crossref_primary_10_1109_ACCESS_2024_3354272 crossref_primary_10_1109_TVT_2022_3168017 crossref_primary_10_1016_j_jnca_2020_102652 crossref_primary_10_3390_sym11010058 crossref_primary_10_1109_ACCESS_2018_2877919 crossref_primary_10_1109_JSEN_2016_2580677 crossref_primary_10_3390_s21155028 crossref_primary_10_1109_TVT_2021_3115899 crossref_primary_10_2174_0126659980278013231127103015 crossref_primary_10_1186_s13677_020_00182_x crossref_primary_10_1109_TITS_2021_3091321 crossref_primary_10_1109_TIV_2022_3225147 crossref_primary_10_1016_j_phycom_2022_101926 crossref_primary_10_1109_ACCESS_2019_2961802 crossref_primary_10_3390_electronics9111794 crossref_primary_10_3390_app13095514 crossref_primary_10_1109_MWC_2019_1800539 crossref_primary_10_23919_IEN_2022_0040 crossref_primary_10_1007_s12083_016_0494_8 crossref_primary_10_1109_TVT_2019_2895593 crossref_primary_10_1109_TGCN_2021_3110822 crossref_primary_10_1002_ett_4036 crossref_primary_10_1109_MNET_001_1800528 crossref_primary_10_1109_COMST_2020_3029723 crossref_primary_10_1016_j_comcom_2020_04_021 crossref_primary_10_1109_JIOT_2021_3086910 crossref_primary_10_1109_TGCN_2022_3187674 crossref_primary_10_1109_TVT_2023_3275120 crossref_primary_10_1142_S1793962321500380 crossref_primary_10_1016_j_dcan_2023_03_006 crossref_primary_10_1016_j_comcom_2020_01_073 crossref_primary_10_1109_ACCESS_2019_2930243 crossref_primary_10_1109_TVT_2022_3151806 crossref_primary_10_1155_2021_5530612 crossref_primary_10_1109_TVT_2017_2676462 crossref_primary_10_1109_JIOT_2017_2771473 crossref_primary_10_3390_e23091146 crossref_primary_10_1016_j_comcom_2017_10_011 crossref_primary_10_1049_iet_com_2017_0001 crossref_primary_10_1109_TWC_2018_2816942 crossref_primary_10_1007_s12083_018_0677_6 crossref_primary_10_1007_s11042_023_15311_2 crossref_primary_10_1109_JIOT_2017_2690961 crossref_primary_10_1109_JIOT_2018_2883762 crossref_primary_10_1109_TVT_2018_2874722  | 
    
| Cites_doi | 10.1109/TITS.2012.2211870 10.1109/MCOM.2014.6736756 10.1109/TVT.2012.2194748 10.1109/CloudCom.2012.6427481 10.1109/CloudNet.2013.6710566 10.1109/CCGRID.2007.41 10.1109/MCOM.2013.6515060 10.1109/JPROC.2011.2132790 10.1109/MNET.2013.6616115 10.1109/TIE.2012.2213556 10.1109/GLOCOM.2011.6134402 10.1016/j.vehcom.2014.08.004 10.1109/INFCOM.2011.5935198 10.1109/TIE.2008.922768 10.1109/TIE.2015.2438774 10.1109/TIE.2015.2418314 10.1109/MWC.2013.6549281 10.1109/MC.2010.98 10.1109/CISIS.2012.96 10.1109/MCOM.2014.6829960 10.1109/CCGRID.2007.73 10.1109/TIE.2015.2425357  | 
    
| ContentType | Journal Article | 
    
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Dec 2015 | 
    
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Dec 2015 | 
    
| DBID | 97E RIA RIE AAYXX CITATION 7SP 8FD L7M  | 
    
| DOI | 10.1109/TIE.2015.2482119 | 
    
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE/IET Electronic Library CrossRef Electronics & Communications Abstracts Technology Research Database Advanced Technologies Database with Aerospace  | 
    
| DatabaseTitle | CrossRef Technology Research Database Advanced Technologies Database with Aerospace Electronics & Communications Abstracts  | 
    
| DatabaseTitleList | Technology Research Database | 
    
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher  | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Engineering | 
    
| EISSN | 1557-9948 | 
    
| EndPage | 7928 | 
    
| ExternalDocumentID | 3883116721 10_1109_TIE_2015_2482119 7277060  | 
    
| Genre | orig-research | 
    
| GrantInformation_xml | – fundername: Fundamental Research Funds for the Central Universities grantid: 2014ZD03-02 – fundername: National Natural Science Foundation of China; National Science Foundation of China grantid: 61331009 funderid: 10.13039/501100001809 – fundername: National High-Tech R&D Program grantid: 2015AA01A705 – fundername: National Key Technology R&D Program of China grantid: 2015ZX03002009-004  | 
    
| GroupedDBID | -~X .DC 0R~ 29I 4.4 5GY 5VS 6IK 97E 9M8 AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACGFS ACIWK ACKIV ACNCT AENEX AETIX AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD HZ~ H~9 IBMZZ ICLAB IFIPE IFJZH IPLJI JAVBF LAI M43 MS~ O9- OCL P2P RIA RIE RNS TAE TN5 TWZ VH1 VJK AAYXX CITATION 7SP 8FD L7M RIG  | 
    
| ID | FETCH-LOGICAL-c291t-4b21975a1bc430232b96924555ec6209fd8dfd9e3edcd205c7010d22952b9243 | 
    
| IEDL.DBID | RIE | 
    
| ISSN | 0278-0046 | 
    
| IngestDate | Mon Jun 30 10:16:00 EDT 2025 Thu Apr 24 23:10:59 EDT 2025 Wed Oct 01 00:26:45 EDT 2025 Wed Aug 27 08:36:57 EDT 2025  | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Issue | 12 | 
    
| Keywords | vehicular cloud computing (VCC) semi-Markov decision process (SMDP) Resource allocation  | 
    
| Language | English | 
    
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-c291t-4b21975a1bc430232b96924555ec6209fd8dfd9e3edcd205c7010d22952b9243 | 
    
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14  | 
    
| PQID | 1738771509 | 
    
| PQPubID | 85464 | 
    
| PageCount | 9 | 
    
| ParticipantIDs | ieee_primary_7277060 crossref_citationtrail_10_1109_TIE_2015_2482119 crossref_primary_10_1109_TIE_2015_2482119 proquest_journals_1738771509  | 
    
| ProviderPackageCode | CITATION AAYXX  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 2015-Dec. 2015-12-00 20151201  | 
    
| PublicationDateYYYYMMDD | 2015-12-01 | 
    
| PublicationDate_xml | – month: 12 year: 2015 text: 2015-Dec.  | 
    
| PublicationDecade | 2010 | 
    
| PublicationPlace | New York | 
    
| PublicationPlace_xml | – name: New York | 
    
| PublicationTitle | IEEE transactions on industrial electronics (1982) | 
    
| PublicationTitleAbbrev | TIE | 
    
| PublicationYear | 2015 | 
    
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE)  | 
    
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)  | 
    
| References | ref13 puterman (ref30) 2005 ref12 mine (ref29) 1970 cordeschi (ref19) 2014; 64 ref14 thomas (ref25) 2009 ref11 baguena albaladejo (ref3) 0 ref2 gu (ref15) 0 ref17 ghazizadeh (ref21) 2014 ref16 ref18 lee (ref1) 2008; 55 ref24 ref23 ref26 ref20 ref22 hansen (ref31) 1992 gu (ref10) 0 ref28 ref27 cormen (ref32) 2001 ref8 ref7 ref9 ref4 ref6 ref5  | 
    
| References_xml | – ident: ref18 doi: 10.1109/TITS.2012.2211870 – year: 2001 ident: ref32 publication-title: Introduction to Algorithms – ident: ref12 doi: 10.1109/MCOM.2014.6736756 – year: 2009 ident: ref25 publication-title: Introduction to Algorithms – start-page: 4665 year: 0 ident: ref15 article-title: Leverage parking cars in a two-tier data center publication-title: Proc IEEE WCNC – ident: ref22 doi: 10.1109/TVT.2012.2194748 – volume: 64 start-page: 1 year: 2014 ident: ref19 article-title: Reliable adaptive resource management for cognitive cloud vehicular networks publication-title: IEEE Trans Veh Technol – ident: ref11 doi: 10.1109/CloudCom.2012.6427481 – ident: ref27 doi: 10.1109/CloudNet.2013.6710566 – ident: ref24 doi: 10.1109/CCGRID.2007.41 – ident: ref5 doi: 10.1109/MCOM.2013.6515060 – ident: ref4 doi: 10.1109/JPROC.2011.2132790 – year: 1992 ident: ref31 article-title: Simulated annealing – year: 1970 ident: ref29 publication-title: Markov Decision Process – ident: ref16 doi: 10.1109/MNET.2013.6616115 – year: 2005 ident: ref30 publication-title: Markov Decision Processes Discrete Stochastic Dynamic Programming – ident: ref2 doi: 10.1109/TIE.2012.2213556 – ident: ref14 doi: 10.1109/GLOCOM.2011.6134402 – year: 0 ident: ref3 article-title: An adaptive anycasting solution for crowd sensing in vehicular environments publication-title: IEEE Trans Ind Electron – ident: ref20 doi: 10.1016/j.vehcom.2014.08.004 – ident: ref13 doi: 10.1109/INFCOM.2011.5935198 – volume: 55 start-page: 2237 year: 2008 ident: ref1 article-title: Power electronics and motor drives in electric, hybrid electric, and plug-in hybrid electric vehicles publication-title: IEEE Trans Ind Electron doi: 10.1109/TIE.2008.922768 – ident: ref6 doi: 10.1109/TIE.2015.2438774 – ident: ref9 doi: 10.1109/TIE.2015.2418314 – ident: ref26 doi: 10.1109/MWC.2013.6549281 – ident: ref28 doi: 10.1109/MC.2010.98 – ident: ref17 doi: 10.1109/CISIS.2012.96 – ident: ref7 doi: 10.1109/MCOM.2014.6829960 – ident: ref23 doi: 10.1109/CCGRID.2007.73 – year: 2014 ident: ref21 article-title: Resource Allocation in Vehicular Cloud Computing – start-page: 403 year: 0 ident: ref10 article-title: Vehicular cloud computing: A survey publication-title: Proc IEEE GLOBECOM Workshops – ident: ref8 doi: 10.1109/TIE.2015.2425357  | 
    
| SSID | ssj0014515 | 
    
| Score | 2.5726297 | 
    
| Snippet | Vehicular ad hoc networks are expected to significantly improve traffic safety and transportation efficiency while providing a comfortable driving experience.... | 
    
| SourceID | proquest crossref ieee  | 
    
| SourceType | Aggregation Database Enrichment Source Index Database Publisher  | 
    
| StartPage | 7920 | 
    
| SubjectTerms | Cloud computing Computational modeling Delays Markov analysis Mobile communication resource allocation Resource management Safety Semi-Markov Decision Process (SMDP) Stochastic models Vehicles Vehicular Cloud Computing (VCC)  | 
    
| Title | An SMDP-Based Resource Allocation in Vehicular Cloud Computing Systems | 
    
| URI | https://ieeexplore.ieee.org/document/7277060 https://www.proquest.com/docview/1738771509  | 
    
| Volume | 62 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 1557-9948 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0014515 issn: 0278-0046 databaseCode: RIE dateStart: 19820101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT8MwDLa2neDAayAGA-XABYl2XZv0cRxj00AaQmKg3ao2ycTE1CFoL_x67L7ES4hbD0kaxUlsx_b3AZxRNQ-PHGFIdL4Mrn06UgovQw_VOb00-AXa5607eeA3czFvwEVdC6O1zpPPtEmfeSxfrWVGT2U91LUE9tKEpue7Ra1WHTHgomArsAkxFv9bhSStoDe7HlEOlzBt7hOg2RcVlHOq_LiIc-0y3oZpNa8iqeTZzNLYlO_fIBv_O_Ed2CrNTDYo9sUuNHSyB5ufwAfbMB4k7H56dWdcoiJTrHrHZ4MV6TeSF1sm7FE_LfNUVTZcrTPFChYIHICVWOf7MBuPZsOJUbIqGNIO-qnBY7ykPBH1Y8mJMciOAxedMCGElq5tBQvlq4UKtKOVVLYlpIcumyLWb2xpc-cAWsk60YfA0BKQkVgEhIjPY9eKNPcUhYMlWmme43egV61zKEvEcSK-WIW552EFIUomJMmEpWQ6cF73eCnQNv5o26aFrtuVa9yBbiXKsDyOb2EfZ-N5aPsGR7_3OoYNGrvIU-lCK33N9AlaG2l8mm-zD8CtzAc | 
    
| linkProvider | IEEE | 
    
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LTwIxEJ4gHtSDLzSiqD14MXFhWdp9HBEhoEBMRONtw7YlEslidPfir3dmX_EV420P7bbptJ2Zzsz3AZxRNQ-ftoQh0fkyuHbpSCm8DB1U5_TS4KZon2O7f8-vH8VjCS6KWhitdZJ8puv0mcTy1VLG9FTWQF1LYC8rsCo45yKt1ipiBlykfAUWYcbiyHlQ0vQak0GXsrhE3eIuQZp9UUIJq8qPqzjRL70tGOUzS9NKnutxFNTl-zfQxv9OfRs2M0OTtdOdsQMlHe7Cxif4wQr02iG7G13dGpeoyhTLX_JZe0EajiTG5iF70E_zJFmVdRbLWLGUBwJ_wDK08z2Y9LqTTt_IeBUMaXnNyOABXlOOmDYDyYkzyAo8G90wIYSWtmV6M-WqmfJ0SyupLFNIB502Rbzf2NLirX0oh8tQHwBDW0BOxcwjTHwe2OZUc0dRQFiinea03Co08nX2ZYY5TtQXCz_xPUzPR8n4JBk_k0wVzoseLynexh9tK7TQRbtsjatQy0XpZwfyzW_ibBwHrV_v8Pdep7DWn4yG_nAwvjmCdRonzVqpQTl6jfUx2h5RcJJsuQ-ebs9U | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+SMDP-Based+Resource+Allocation+in+Vehicular+Cloud+Computing+Systems&rft.jtitle=IEEE+transactions+on+industrial+electronics+%281982%29&rft.au=Zheng%2C+Kan&rft.au=Meng%2C+Hanlin&rft.au=Chatzimisios%2C+Periklis&rft.au=Lei%2C+Lei&rft.date=2015-12-01&rft.pub=IEEE&rft.issn=0278-0046&rft.volume=62&rft.issue=12&rft.spage=7920&rft.epage=7928&rft_id=info:doi/10.1109%2FTIE.2015.2482119&rft.externalDocID=7277060 | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0278-0046&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0278-0046&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0278-0046&client=summon |