Machine Learning-Inspired Algorithmic Framework for Intelligent Reflecting Surface-Assisted Wireless Systems
This study considers the simultaneous optimization problem of the transmit beamforming at the access point and the reflecting beamforming at the intelligent reflecting surface (IRS) in an IRS-assisted multiuser downlink system. This joint optimization problem is nonconvex and challenging due to the...
Saved in:
| Published in | IEEE transactions on vehicular technology Vol. 70; no. 10; pp. 10671 - 10685 |
|---|---|
| Main Author | |
| Format | Journal Article |
| Language | English |
| Published |
New York
IEEE
01.10.2021
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Subjects | |
| Online Access | Get full text |
| ISSN | 0018-9545 1939-9359 |
| DOI | 10.1109/TVT.2021.3110970 |
Cover
| Abstract | This study considers the simultaneous optimization problem of the transmit beamforming at the access point and the reflecting beamforming at the intelligent reflecting surface (IRS) in an IRS-assisted multiuser downlink system. This joint optimization problem is nonconvex and challenging due to the intricate coupling of transmit and reflecting beamforming variables and the highly nonconvex constant modulus constraints. All the known solutions apply the alternating optimization framework to decouple the joint optimization problem into two problems. Then, these problems are optimized individually with different optimization methods in an alternating manner. However, such an alternative procedure may cause performance degradation. On the basis of the cross-entropy (CE) framework, which was developed initially for machine learning applications, we propose a machine learning-inspired algorithmic framework for simultaneously optimizing transmit and reflecting beamforming in an IRS-assisted wireless system. Extensive simulation results reveal that the proposed CE-based algorithms significantly perform better than the state-of-the-art test algorithms for various system configurations. |
|---|---|
| AbstractList | This study considers the simultaneous optimization problem of the transmit beamforming at the access point and the reflecting beamforming at the intelligent reflecting surface (IRS) in an IRS-assisted multiuser downlink system. This joint optimization problem is nonconvex and challenging due to the intricate coupling of transmit and reflecting beamforming variables and the highly nonconvex constant modulus constraints. All the known solutions apply the alternating optimization framework to decouple the joint optimization problem into two problems. Then, these problems are optimized individually with different optimization methods in an alternating manner. However, such an alternative procedure may cause performance degradation. On the basis of the cross-entropy (CE) framework, which was developed initially for machine learning applications, we propose a machine learning-inspired algorithmic framework for simultaneously optimizing transmit and reflecting beamforming in an IRS-assisted wireless system. Extensive simulation results reveal that the proposed CE-based algorithms significantly perform better than the state-of-the-art test algorithms for various system configurations. |
| Author | Chen, Jung-Chieh |
| Author_xml | – sequence: 1 givenname: Jung-Chieh orcidid: 0000-0001-6130-8621 surname: Chen fullname: Chen, Jung-Chieh email: jcchen@nknucc.nknu.edu.tw organization: Department of Electrical Engineering, National Kaohsiung Normal University, Kaohsiung, Taiwan |
| BookMark | eNp9kEFLAzEQhYMo2FbvgpcFz1uTbOJujqVYLVQEW_W4ZNOZmrrN1iRF_PemVDx48DQ8mO89-Prk2HUOCLlgdMgYVdeLl8WQU86GxT6W9Ij0mCpUrgqpjkmPUlblSgp5SvohrFMUQrEeaR-0ebMOshlo76xb5VMXttbDMhu1q87b-LaxJpt4vYHPzr9n2Pls6iK0rV2Bi9kTYAsmJjKb7zxqA_koBBtianhNPS2EkM2_Ut6EM3KCug1w_nMH5Hlyuxjf57PHu-l4NMsNVyzmQpvqpihRLLHkTCkUCCBkw0ssTEmRMo4gGiyRYSWBYtUYzhrQS9SoS1oMyNWhd-u7jx2EWK-7nXdpsuay4lxSqkT6oocv47sQPGC99Xaj_VfNaL2XWCen9d5p_eM0ITd_EGOjjrZz0Wvb_gdeHkALAL87ShZMyKr4BonqiJ0 |
| CODEN | ITVTAB |
| CitedBy_id | crossref_primary_10_1109_JIOT_2023_3279196 crossref_primary_10_1109_TWC_2023_3233970 crossref_primary_10_1109_TVT_2023_3277581 crossref_primary_10_3390_s22145405 crossref_primary_10_1109_TWC_2023_3255406 crossref_primary_10_1109_JSTSP_2022_3176479 crossref_primary_10_1049_cmu2_12414 |
| Cites_doi | 10.1109/GLOBECOM38437.2019.9013288 10.1109/TVT.2020.3038946 10.1109/TAP.1976.1141405 10.1109/TWC.2020.2970061 10.1109/TWC.2019.2900038 10.1109/TWC.2019.2936025 10.1109/ICASSP.2019.8683663 10.1109/TAP.1976.1141415 10.1109/TEVC.2017.2667713 10.1109/ICC40277.2020.9148892 10.1109/LCOMM.2017.2650218 10.1109/TCOMM.2013.012913.110827 10.1109/LWC.2019.2961656 10.1109/TWC.2020.3004330 10.1109/JSAC.2020.3000807 10.1109/JSAC.2017.2719924 10.1109/MCOM.001.1900107 10.1109/78.771033 10.1109/TWC.2016.2592899 10.1109/TEVC.2014.2336882 10.1109/TSP.2017.2666774 10.1109/TWC.2020.3012721 10.1109/JSAC.2020.3000835 10.1109/LWC.2019.2919685 10.1109/TSP.2021.3056906 10.1109/TAP.2020.2977732 10.1109/LWC.2019.2948632 10.1109/LWC.2021.3054004 10.1109/JSAC.2020.3007211 10.1109/TWC.2020.2990766 10.1016/j.orl.2006.11.005 10.1109/GLOBECOM38437.2019.9014322 10.1109/AEMC.2007.4638009 10.1109/TWC.2019.2922609 10.1109/OJCOMS.2021.3063171 10.1109/ACCESS.2019.2923202 10.1109/TVT.2020.3046271 10.1109/JSAC.2020.3007043 10.1002/9781118612323 10.1109/LWC.2016.2603185 10.1109/ARRAY.2013.6731901 10.1109/TWC.2018.2873386 10.1109/TAP.2010.2046853 10.1109/JSAC.2020.3000802 10.1109/LWC.2020.3045884 10.1109/TSP.2019.2914884 10.1109/GLOCOM.2018.8647620 10.1109/JSAC.2020.3007057 10.1109/TVT.2018.2877450 10.1109/LWC.2020.2969664 10.1109/LWC.2020.3037750 10.1109/TWC.2016.2626279 10.1109/TVT.2018.2836335 10.1109/TVT.2019.2898902 10.1109/TSP.2006.872578 10.1109/COMST.2020.3004197 10.1109/LSP.2020.2998357 10.1109/SPAWC48557.2020.9154337 10.1109/LWC.2020.3003400 10.1109/TCOMM.2021.3051897 10.1109/ICCChinaW.2019.8849960 10.1109/MWC.001.2000256 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021 |
| DBID | 97E RIA RIE AAYXX CITATION 7SP 8FD FR3 KR7 L7M |
| DOI | 10.1109/TVT.2021.3110970 |
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Electronics & Communications Abstracts Technology Research Database Engineering Research Database Civil Engineering Abstracts Advanced Technologies Database with Aerospace |
| DatabaseTitle | CrossRef Civil Engineering Abstracts Engineering Research Database Technology Research Database Advanced Technologies Database with Aerospace Electronics & Communications Abstracts |
| DatabaseTitleList | Civil Engineering Abstracts |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1939-9359 |
| EndPage | 10685 |
| ExternalDocumentID | 10_1109_TVT_2021_3110970 9531458 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: Ministry of Science and Technology, Taiwan grantid: MOST 110-2221-E-017-004-MY2 funderid: 10.13039/501100004663 |
| GroupedDBID | -~X .DC 0R~ 29I 3EH 4.4 5GY 5VS 6IK 97E AAIKC AAJGR AAMNW AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACGFS ACIWK ACNCT AENEX AETIX AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD HZ~ H~9 IAAWW IBMZZ ICLAB IFIPE IFJZH IPLJI JAVBF LAI M43 MS~ O9- OCL P2P RIA RIE RNS RXW TAE TN5 VH1 AAYXX CITATION 7SP 8FD FR3 KR7 L7M |
| ID | FETCH-LOGICAL-c291t-4ac8637f4df72199f4fee45b27f3c70f012fe4bf7f1f85e0f8bc21beadfafa703 |
| IEDL.DBID | RIE |
| ISSN | 0018-9545 |
| IngestDate | Mon Jun 30 10:15:30 EDT 2025 Wed Oct 01 02:27:03 EDT 2025 Thu Apr 24 22:51:51 EDT 2025 Wed Aug 27 02:26:48 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 10 |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c291t-4ac8637f4df72199f4fee45b27f3c70f012fe4bf7f1f85e0f8bc21beadfafa703 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0001-6130-8621 |
| PQID | 2582250094 |
| PQPubID | 85454 |
| PageCount | 15 |
| ParticipantIDs | ieee_primary_9531458 crossref_citationtrail_10_1109_TVT_2021_3110970 crossref_primary_10_1109_TVT_2021_3110970 proquest_journals_2582250094 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2021-10-01 |
| PublicationDateYYYYMMDD | 2021-10-01 |
| PublicationDate_xml | – month: 10 year: 2021 text: 2021-10-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York |
| PublicationTitle | IEEE transactions on vehicular technology |
| PublicationTitleAbbrev | TVT |
| PublicationYear | 2021 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref57 ref13 ref56 ref12 ref59 ref15 ref58 ref14 ref52 ref55 ref11 ref54 ref10 ref17 ref16 ref19 ref18 ref51 ref50 ref46 ref45 ref48 ref47 ref42 ref41 yu (ref8) 2019 ref44 ref43 ref49 ref7 ref9 ref4 ref3 ref6 ref5 ref40 ref35 ref34 ref37 ref36 ref31 ref30 ref33 ref32 ref2 ref1 ref38 rubinstein (ref39) 2004 ref24 ref23 ref26 ref25 ref64 ref20 ref63 ref22 ref21 ref28 rubinstein (ref53) 2013 ref27 ref29 ref60 ref62 ref61 |
| References_xml | – ident: ref10 doi: 10.1109/GLOBECOM38437.2019.9013288 – ident: ref51 doi: 10.1109/TVT.2020.3038946 – ident: ref26 doi: 10.1109/TAP.1976.1141405 – ident: ref11 doi: 10.1109/TWC.2020.2970061 – ident: ref50 doi: 10.1109/TWC.2019.2900038 – ident: ref7 doi: 10.1109/TWC.2019.2936025 – ident: ref40 doi: 10.1109/ICASSP.2019.8683663 – ident: ref25 doi: 10.1109/TAP.1976.1141415 – ident: ref55 doi: 10.1109/TEVC.2017.2667713 – ident: ref17 doi: 10.1109/ICC40277.2020.9148892 – ident: ref36 doi: 10.1109/LCOMM.2017.2650218 – ident: ref33 doi: 10.1109/TCOMM.2013.012913.110827 – ident: ref13 doi: 10.1109/LWC.2019.2961656 – ident: ref42 doi: 10.1109/TWC.2020.3004330 – ident: ref14 doi: 10.1109/JSAC.2020.3000807 – ident: ref49 doi: 10.1109/JSAC.2017.2719924 – ident: ref2 doi: 10.1109/MCOM.001.1900107 – ident: ref27 doi: 10.1109/78.771033 – ident: ref34 doi: 10.1109/TWC.2016.2592899 – ident: ref54 doi: 10.1109/TEVC.2014.2336882 – ident: ref31 doi: 10.1109/TSP.2017.2666774 – ident: ref23 doi: 10.1109/TWC.2020.3012721 – ident: ref24 doi: 10.1109/JSAC.2020.3000835 – ident: ref18 doi: 10.1109/LWC.2019.2919685 – ident: ref48 doi: 10.1109/TSP.2021.3056906 – ident: ref32 doi: 10.1109/TAP.2020.2977732 – ident: ref41 doi: 10.1109/LWC.2019.2948632 – ident: ref45 doi: 10.1109/LWC.2021.3054004 – ident: ref3 doi: 10.1109/JSAC.2020.3007211 – ident: ref12 doi: 10.1109/TWC.2020.2990766 – ident: ref52 doi: 10.1016/j.orl.2006.11.005 – ident: ref19 doi: 10.1109/GLOBECOM38437.2019.9014322 – ident: ref28 doi: 10.1109/AEMC.2007.4638009 – ident: ref1 doi: 10.1109/TWC.2019.2922609 – ident: ref46 doi: 10.1109/OJCOMS.2021.3063171 – ident: ref64 doi: 10.1109/ACCESS.2019.2923202 – ident: ref58 doi: 10.1109/TVT.2020.3046271 – ident: ref20 doi: 10.1109/JSAC.2020.3007043 – year: 2013 ident: ref53 publication-title: Fast Sequential Monte Carlo Methods for Counting and Optimization doi: 10.1002/9781118612323 – year: 2004 ident: ref39 publication-title: The Cross-Entropy Method A Unified Approach to Combinatorial Optimization Monte-Carlo Simulation and Machine Learning – ident: ref60 doi: 10.1109/LWC.2016.2603185 – ident: ref30 doi: 10.1109/ARRAY.2013.6731901 – ident: ref63 doi: 10.1109/TWC.2018.2873386 – ident: ref29 doi: 10.1109/TAP.2010.2046853 – ident: ref15 doi: 10.1109/JSAC.2020.3000802 – ident: ref62 doi: 10.1109/LWC.2020.3045884 – ident: ref56 doi: 10.1109/TSP.2019.2914884 – ident: ref6 doi: 10.1109/GLOCOM.2018.8647620 – ident: ref44 doi: 10.1109/JSAC.2020.3007057 – ident: ref61 doi: 10.1109/TVT.2018.2877450 – ident: ref22 doi: 10.1109/LWC.2020.2969664 – ident: ref16 doi: 10.1109/LWC.2020.3037750 – ident: ref35 doi: 10.1109/TWC.2016.2626279 – ident: ref37 doi: 10.1109/TVT.2018.2836335 – ident: ref38 doi: 10.1109/TVT.2019.2898902 – ident: ref59 doi: 10.1109/TSP.2006.872578 – ident: ref4 doi: 10.1109/COMST.2020.3004197 – ident: ref43 doi: 10.1109/LSP.2020.2998357 – ident: ref9 doi: 10.1109/SPAWC48557.2020.9154337 – ident: ref21 doi: 10.1109/LWC.2020.3003400 – ident: ref5 doi: 10.1109/TCOMM.2021.3051897 – start-page: 735 year: 2019 ident: ref8 article-title: MISO wireless communication systems via intelligent reflecting surfaces publication-title: Proc IEEE Int Conf Commun China – ident: ref57 doi: 10.1109/ICCChinaW.2019.8849960 – ident: ref47 doi: 10.1109/MWC.001.2000256 |
| SSID | ssj0014491 |
| Score | 2.3996782 |
| Snippet | This study considers the simultaneous optimization problem of the transmit beamforming at the access point and the reflecting beamforming at the intelligent... |
| SourceID | proquest crossref ieee |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 10671 |
| SubjectTerms | Algorithms Alternating optimization Array signal processing Beamforming beamforming optimization cross-entropy Downlink Entropy (Information theory) intelligent reflecting surface Machine learning Machine learning algorithms machine learning-inspired algorithmic framework MISO communication Optimization Performance degradation Phase shifters Reconfigurable intelligent surfaces Wireless communication |
| Title | Machine Learning-Inspired Algorithmic Framework for Intelligent Reflecting Surface-Assisted Wireless Systems |
| URI | https://ieeexplore.ieee.org/document/9531458 https://www.proquest.com/docview/2582250094 |
| Volume | 70 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 1939-9359 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0014491 issn: 0018-9545 databaseCode: RIE dateStart: 19670101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PT9swFH4qnLYDbGMTZd3kwy5IpE1SO4mPaFoFk7rDKIhb5NjvAaK0U5de9tfvOXEi2Ca0W6TYlqXv-f3we_4ewKfYUOwybaIE8yqSiWU9iOQiwqxg-2c46vIPnOffsrNL-fVaXQ_gpH8Lg4hN8RmO_WeTy3dru_VXZRPNAiNVsQM7eZG1b7X6jIGUoTtewgeY3YIuJRnryeJqwYFgmnB86vOt8RMT1PRU-UsRN9Zltg_zbl9tUcn9eFtXY_vrD8rG_934K9gLbqY4beXiNQxw9QZePiIfPIDlvKmjRBEoVm-i85VPu6MTp8ub9eauvn24s2LWVW8Jdm_Fec_gWYvvSP7On2eKi-2GjMWIwfZi44Qvql2yEhWBEf0tXM6-LD6fRaH3QmRTndSRNLbIpjlJRxwjak2SEKWq0pymNo-J7RqhrCinhAqFMRWVTZOK5ZIMGVYj72B3tV7hIQht3NRow_-VkzpWZuoKz0Kn2K9n98kNYdLBUdpATO77YyzLJkCJdckAlh7AMgA4hON-xo-WlOOZsQcej35cgGIIow7xMpzan2Wq2F1Svtjy6N-z3sMLv3ZbzDeC3XqzxQ_slNTVx0YafwNxm-B_ |
| linkProvider | IEEE |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3Nb9MwFH8a2wE4wGAgysbwYRck0iap3cTHaaJqx7oDdGi3yLHfG9O6FpX0wl_Pc-JE40PTbpFiy5Z-z-_D7_n3AI5iQ7EbaRMlmJWRTCzrQSQXEY5ytn-Goy7_wHl2PppcyNNLdbkFH7u3MIhYF59h33_WuXy3sht_VTbQLDBS5Y9gR0kpVfNaq8sZSBn64yV8hNkxaJOSsR7Mv805FEwTjlB9xjX-wwjVXVX-UcW1fRk_h1m7s6as5Ka_qcq-_fUXaeNDt74Lz4KjKY4byXgBW7h8CU_v0A_uwWJWV1KiCCSrV9F06RPv6MTx4mq1vq6-315bMW7rtwQ7uGLacXhW4guSv_XnmeLrZk3GYsRwe8FxwpfVLliNisCJ_gouxp_mJ5ModF-IbKqTKpLG5qNhRtIRR4lakyREqco0o6HNYmLLRihLyiihXGFMeWnTpGTJJEOGFclr2F6ulvgGhDZuaLTh_8pJHSszdLnnoVPs2bMD5XowaOEobKAm9x0yFkUdosS6YAALD2ARAOzBh27Gj4aW456xex6PblyAogcHLeJFOLc_i1Sxw6R8ueXb_896D48n89lZcTY9_7wPT_w6TWnfAWxX6w2-YxelKg9ryfwNWBbjzA |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Machine+Learning-Inspired+Algorithmic+Framework+for+Intelligent+Reflecting+Surface-Assisted+Wireless+Systems&rft.jtitle=IEEE+transactions+on+vehicular+technology&rft.au=Jung-Chieh%2C+Chen&rft.date=2021-10-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=0018-9545&rft.eissn=1939-9359&rft.volume=70&rft.issue=10&rft.spage=10671&rft_id=info:doi/10.1109%2FTVT.2021.3110970&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0018-9545&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0018-9545&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0018-9545&client=summon |