Machine Learning-Inspired Algorithmic Framework for Intelligent Reflecting Surface-Assisted Wireless Systems

This study considers the simultaneous optimization problem of the transmit beamforming at the access point and the reflecting beamforming at the intelligent reflecting surface (IRS) in an IRS-assisted multiuser downlink system. This joint optimization problem is nonconvex and challenging due to the...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on vehicular technology Vol. 70; no. 10; pp. 10671 - 10685
Main Author Chen, Jung-Chieh
Format Journal Article
LanguageEnglish
Published New York IEEE 01.10.2021
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN0018-9545
1939-9359
DOI10.1109/TVT.2021.3110970

Cover

Abstract This study considers the simultaneous optimization problem of the transmit beamforming at the access point and the reflecting beamforming at the intelligent reflecting surface (IRS) in an IRS-assisted multiuser downlink system. This joint optimization problem is nonconvex and challenging due to the intricate coupling of transmit and reflecting beamforming variables and the highly nonconvex constant modulus constraints. All the known solutions apply the alternating optimization framework to decouple the joint optimization problem into two problems. Then, these problems are optimized individually with different optimization methods in an alternating manner. However, such an alternative procedure may cause performance degradation. On the basis of the cross-entropy (CE) framework, which was developed initially for machine learning applications, we propose a machine learning-inspired algorithmic framework for simultaneously optimizing transmit and reflecting beamforming in an IRS-assisted wireless system. Extensive simulation results reveal that the proposed CE-based algorithms significantly perform better than the state-of-the-art test algorithms for various system configurations.
AbstractList This study considers the simultaneous optimization problem of the transmit beamforming at the access point and the reflecting beamforming at the intelligent reflecting surface (IRS) in an IRS-assisted multiuser downlink system. This joint optimization problem is nonconvex and challenging due to the intricate coupling of transmit and reflecting beamforming variables and the highly nonconvex constant modulus constraints. All the known solutions apply the alternating optimization framework to decouple the joint optimization problem into two problems. Then, these problems are optimized individually with different optimization methods in an alternating manner. However, such an alternative procedure may cause performance degradation. On the basis of the cross-entropy (CE) framework, which was developed initially for machine learning applications, we propose a machine learning-inspired algorithmic framework for simultaneously optimizing transmit and reflecting beamforming in an IRS-assisted wireless system. Extensive simulation results reveal that the proposed CE-based algorithms significantly perform better than the state-of-the-art test algorithms for various system configurations.
Author Chen, Jung-Chieh
Author_xml – sequence: 1
  givenname: Jung-Chieh
  orcidid: 0000-0001-6130-8621
  surname: Chen
  fullname: Chen, Jung-Chieh
  email: jcchen@nknucc.nknu.edu.tw
  organization: Department of Electrical Engineering, National Kaohsiung Normal University, Kaohsiung, Taiwan
BookMark eNp9kEFLAzEQhYMo2FbvgpcFz1uTbOJujqVYLVQEW_W4ZNOZmrrN1iRF_PemVDx48DQ8mO89-Prk2HUOCLlgdMgYVdeLl8WQU86GxT6W9Ij0mCpUrgqpjkmPUlblSgp5SvohrFMUQrEeaR-0ebMOshlo76xb5VMXttbDMhu1q87b-LaxJpt4vYHPzr9n2Pls6iK0rV2Bi9kTYAsmJjKb7zxqA_koBBtianhNPS2EkM2_Ut6EM3KCug1w_nMH5Hlyuxjf57PHu-l4NMsNVyzmQpvqpihRLLHkTCkUCCBkw0ssTEmRMo4gGiyRYSWBYtUYzhrQS9SoS1oMyNWhd-u7jx2EWK-7nXdpsuay4lxSqkT6oocv47sQPGC99Xaj_VfNaL2XWCen9d5p_eM0ITd_EGOjjrZz0Wvb_gdeHkALAL87ShZMyKr4BonqiJ0
CODEN ITVTAB
CitedBy_id crossref_primary_10_1109_JIOT_2023_3279196
crossref_primary_10_1109_TWC_2023_3233970
crossref_primary_10_1109_TVT_2023_3277581
crossref_primary_10_3390_s22145405
crossref_primary_10_1109_TWC_2023_3255406
crossref_primary_10_1109_JSTSP_2022_3176479
crossref_primary_10_1049_cmu2_12414
Cites_doi 10.1109/GLOBECOM38437.2019.9013288
10.1109/TVT.2020.3038946
10.1109/TAP.1976.1141405
10.1109/TWC.2020.2970061
10.1109/TWC.2019.2900038
10.1109/TWC.2019.2936025
10.1109/ICASSP.2019.8683663
10.1109/TAP.1976.1141415
10.1109/TEVC.2017.2667713
10.1109/ICC40277.2020.9148892
10.1109/LCOMM.2017.2650218
10.1109/TCOMM.2013.012913.110827
10.1109/LWC.2019.2961656
10.1109/TWC.2020.3004330
10.1109/JSAC.2020.3000807
10.1109/JSAC.2017.2719924
10.1109/MCOM.001.1900107
10.1109/78.771033
10.1109/TWC.2016.2592899
10.1109/TEVC.2014.2336882
10.1109/TSP.2017.2666774
10.1109/TWC.2020.3012721
10.1109/JSAC.2020.3000835
10.1109/LWC.2019.2919685
10.1109/TSP.2021.3056906
10.1109/TAP.2020.2977732
10.1109/LWC.2019.2948632
10.1109/LWC.2021.3054004
10.1109/JSAC.2020.3007211
10.1109/TWC.2020.2990766
10.1016/j.orl.2006.11.005
10.1109/GLOBECOM38437.2019.9014322
10.1109/AEMC.2007.4638009
10.1109/TWC.2019.2922609
10.1109/OJCOMS.2021.3063171
10.1109/ACCESS.2019.2923202
10.1109/TVT.2020.3046271
10.1109/JSAC.2020.3007043
10.1002/9781118612323
10.1109/LWC.2016.2603185
10.1109/ARRAY.2013.6731901
10.1109/TWC.2018.2873386
10.1109/TAP.2010.2046853
10.1109/JSAC.2020.3000802
10.1109/LWC.2020.3045884
10.1109/TSP.2019.2914884
10.1109/GLOCOM.2018.8647620
10.1109/JSAC.2020.3007057
10.1109/TVT.2018.2877450
10.1109/LWC.2020.2969664
10.1109/LWC.2020.3037750
10.1109/TWC.2016.2626279
10.1109/TVT.2018.2836335
10.1109/TVT.2019.2898902
10.1109/TSP.2006.872578
10.1109/COMST.2020.3004197
10.1109/LSP.2020.2998357
10.1109/SPAWC48557.2020.9154337
10.1109/LWC.2020.3003400
10.1109/TCOMM.2021.3051897
10.1109/ICCChinaW.2019.8849960
10.1109/MWC.001.2000256
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021
DBID 97E
RIA
RIE
AAYXX
CITATION
7SP
8FD
FR3
KR7
L7M
DOI 10.1109/TVT.2021.3110970
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Electronics & Communications Abstracts
Technology Research Database
Engineering Research Database
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Civil Engineering Abstracts
Engineering Research Database
Technology Research Database
Advanced Technologies Database with Aerospace
Electronics & Communications Abstracts
DatabaseTitleList Civil Engineering Abstracts

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1939-9359
EndPage 10685
ExternalDocumentID 10_1109_TVT_2021_3110970
9531458
Genre orig-research
GrantInformation_xml – fundername: Ministry of Science and Technology, Taiwan
  grantid: MOST 110-2221-E-017-004-MY2
  funderid: 10.13039/501100004663
GroupedDBID -~X
.DC
0R~
29I
3EH
4.4
5GY
5VS
6IK
97E
AAIKC
AAJGR
AAMNW
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ACNCT
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
HZ~
H~9
IAAWW
IBMZZ
ICLAB
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
MS~
O9-
OCL
P2P
RIA
RIE
RNS
RXW
TAE
TN5
VH1
AAYXX
CITATION
7SP
8FD
FR3
KR7
L7M
ID FETCH-LOGICAL-c291t-4ac8637f4df72199f4fee45b27f3c70f012fe4bf7f1f85e0f8bc21beadfafa703
IEDL.DBID RIE
ISSN 0018-9545
IngestDate Mon Jun 30 10:15:30 EDT 2025
Wed Oct 01 02:27:03 EDT 2025
Thu Apr 24 22:51:51 EDT 2025
Wed Aug 27 02:26:48 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 10
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c291t-4ac8637f4df72199f4fee45b27f3c70f012fe4bf7f1f85e0f8bc21beadfafa703
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-6130-8621
PQID 2582250094
PQPubID 85454
PageCount 15
ParticipantIDs ieee_primary_9531458
crossref_citationtrail_10_1109_TVT_2021_3110970
crossref_primary_10_1109_TVT_2021_3110970
proquest_journals_2582250094
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-10-01
PublicationDateYYYYMMDD 2021-10-01
PublicationDate_xml – month: 10
  year: 2021
  text: 2021-10-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on vehicular technology
PublicationTitleAbbrev TVT
PublicationYear 2021
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref57
ref13
ref56
ref12
ref59
ref15
ref58
ref14
ref52
ref55
ref11
ref54
ref10
ref17
ref16
ref19
ref18
ref51
ref50
ref46
ref45
ref48
ref47
ref42
ref41
yu (ref8) 2019
ref44
ref43
ref49
ref7
ref9
ref4
ref3
ref6
ref5
ref40
ref35
ref34
ref37
ref36
ref31
ref30
ref33
ref32
ref2
ref1
ref38
rubinstein (ref39) 2004
ref24
ref23
ref26
ref25
ref64
ref20
ref63
ref22
ref21
ref28
rubinstein (ref53) 2013
ref27
ref29
ref60
ref62
ref61
References_xml – ident: ref10
  doi: 10.1109/GLOBECOM38437.2019.9013288
– ident: ref51
  doi: 10.1109/TVT.2020.3038946
– ident: ref26
  doi: 10.1109/TAP.1976.1141405
– ident: ref11
  doi: 10.1109/TWC.2020.2970061
– ident: ref50
  doi: 10.1109/TWC.2019.2900038
– ident: ref7
  doi: 10.1109/TWC.2019.2936025
– ident: ref40
  doi: 10.1109/ICASSP.2019.8683663
– ident: ref25
  doi: 10.1109/TAP.1976.1141415
– ident: ref55
  doi: 10.1109/TEVC.2017.2667713
– ident: ref17
  doi: 10.1109/ICC40277.2020.9148892
– ident: ref36
  doi: 10.1109/LCOMM.2017.2650218
– ident: ref33
  doi: 10.1109/TCOMM.2013.012913.110827
– ident: ref13
  doi: 10.1109/LWC.2019.2961656
– ident: ref42
  doi: 10.1109/TWC.2020.3004330
– ident: ref14
  doi: 10.1109/JSAC.2020.3000807
– ident: ref49
  doi: 10.1109/JSAC.2017.2719924
– ident: ref2
  doi: 10.1109/MCOM.001.1900107
– ident: ref27
  doi: 10.1109/78.771033
– ident: ref34
  doi: 10.1109/TWC.2016.2592899
– ident: ref54
  doi: 10.1109/TEVC.2014.2336882
– ident: ref31
  doi: 10.1109/TSP.2017.2666774
– ident: ref23
  doi: 10.1109/TWC.2020.3012721
– ident: ref24
  doi: 10.1109/JSAC.2020.3000835
– ident: ref18
  doi: 10.1109/LWC.2019.2919685
– ident: ref48
  doi: 10.1109/TSP.2021.3056906
– ident: ref32
  doi: 10.1109/TAP.2020.2977732
– ident: ref41
  doi: 10.1109/LWC.2019.2948632
– ident: ref45
  doi: 10.1109/LWC.2021.3054004
– ident: ref3
  doi: 10.1109/JSAC.2020.3007211
– ident: ref12
  doi: 10.1109/TWC.2020.2990766
– ident: ref52
  doi: 10.1016/j.orl.2006.11.005
– ident: ref19
  doi: 10.1109/GLOBECOM38437.2019.9014322
– ident: ref28
  doi: 10.1109/AEMC.2007.4638009
– ident: ref1
  doi: 10.1109/TWC.2019.2922609
– ident: ref46
  doi: 10.1109/OJCOMS.2021.3063171
– ident: ref64
  doi: 10.1109/ACCESS.2019.2923202
– ident: ref58
  doi: 10.1109/TVT.2020.3046271
– ident: ref20
  doi: 10.1109/JSAC.2020.3007043
– year: 2013
  ident: ref53
  publication-title: Fast Sequential Monte Carlo Methods for Counting and Optimization
  doi: 10.1002/9781118612323
– year: 2004
  ident: ref39
  publication-title: The Cross-Entropy Method A Unified Approach to Combinatorial Optimization Monte-Carlo Simulation and Machine Learning
– ident: ref60
  doi: 10.1109/LWC.2016.2603185
– ident: ref30
  doi: 10.1109/ARRAY.2013.6731901
– ident: ref63
  doi: 10.1109/TWC.2018.2873386
– ident: ref29
  doi: 10.1109/TAP.2010.2046853
– ident: ref15
  doi: 10.1109/JSAC.2020.3000802
– ident: ref62
  doi: 10.1109/LWC.2020.3045884
– ident: ref56
  doi: 10.1109/TSP.2019.2914884
– ident: ref6
  doi: 10.1109/GLOCOM.2018.8647620
– ident: ref44
  doi: 10.1109/JSAC.2020.3007057
– ident: ref61
  doi: 10.1109/TVT.2018.2877450
– ident: ref22
  doi: 10.1109/LWC.2020.2969664
– ident: ref16
  doi: 10.1109/LWC.2020.3037750
– ident: ref35
  doi: 10.1109/TWC.2016.2626279
– ident: ref37
  doi: 10.1109/TVT.2018.2836335
– ident: ref38
  doi: 10.1109/TVT.2019.2898902
– ident: ref59
  doi: 10.1109/TSP.2006.872578
– ident: ref4
  doi: 10.1109/COMST.2020.3004197
– ident: ref43
  doi: 10.1109/LSP.2020.2998357
– ident: ref9
  doi: 10.1109/SPAWC48557.2020.9154337
– ident: ref21
  doi: 10.1109/LWC.2020.3003400
– ident: ref5
  doi: 10.1109/TCOMM.2021.3051897
– start-page: 735
  year: 2019
  ident: ref8
  article-title: MISO wireless communication systems via intelligent reflecting surfaces
  publication-title: Proc IEEE Int Conf Commun China
– ident: ref57
  doi: 10.1109/ICCChinaW.2019.8849960
– ident: ref47
  doi: 10.1109/MWC.001.2000256
SSID ssj0014491
Score 2.3996782
Snippet This study considers the simultaneous optimization problem of the transmit beamforming at the access point and the reflecting beamforming at the intelligent...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 10671
SubjectTerms Algorithms
Alternating optimization
Array signal processing
Beamforming
beamforming optimization
cross-entropy
Downlink
Entropy (Information theory)
intelligent reflecting surface
Machine learning
Machine learning algorithms
machine learning-inspired algorithmic framework
MISO communication
Optimization
Performance degradation
Phase shifters
Reconfigurable intelligent surfaces
Wireless communication
Title Machine Learning-Inspired Algorithmic Framework for Intelligent Reflecting Surface-Assisted Wireless Systems
URI https://ieeexplore.ieee.org/document/9531458
https://www.proquest.com/docview/2582250094
Volume 70
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1939-9359
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014491
  issn: 0018-9545
  databaseCode: RIE
  dateStart: 19670101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PT9swFH4qnLYDbGMTZd3kwy5IpE1SO4mPaFoFk7rDKIhb5NjvAaK0U5de9tfvOXEi2Ca0W6TYlqXv-f3we_4ewKfYUOwybaIE8yqSiWU9iOQiwqxg-2c46vIPnOffsrNL-fVaXQ_gpH8Lg4hN8RmO_WeTy3dru_VXZRPNAiNVsQM7eZG1b7X6jIGUoTtewgeY3YIuJRnryeJqwYFgmnB86vOt8RMT1PRU-UsRN9Zltg_zbl9tUcn9eFtXY_vrD8rG_934K9gLbqY4beXiNQxw9QZePiIfPIDlvKmjRBEoVm-i85VPu6MTp8ub9eauvn24s2LWVW8Jdm_Fec_gWYvvSP7On2eKi-2GjMWIwfZi44Qvql2yEhWBEf0tXM6-LD6fRaH3QmRTndSRNLbIpjlJRxwjak2SEKWq0pymNo-J7RqhrCinhAqFMRWVTZOK5ZIMGVYj72B3tV7hIQht3NRow_-VkzpWZuoKz0Kn2K9n98kNYdLBUdpATO77YyzLJkCJdckAlh7AMgA4hON-xo-WlOOZsQcej35cgGIIow7xMpzan2Wq2F1Svtjy6N-z3sMLv3ZbzDeC3XqzxQ_slNTVx0YafwNxm-B_
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3Nb9MwFH8a2wE4wGAgysbwYRck0iap3cTHaaJqx7oDdGi3yLHfG9O6FpX0wl_Pc-JE40PTbpFiy5Z-z-_D7_n3AI5iQ7EbaRMlmJWRTCzrQSQXEY5ytn-Goy7_wHl2PppcyNNLdbkFH7u3MIhYF59h33_WuXy3sht_VTbQLDBS5Y9gR0kpVfNaq8sZSBn64yV8hNkxaJOSsR7Mv805FEwTjlB9xjX-wwjVXVX-UcW1fRk_h1m7s6as5Ka_qcq-_fUXaeNDt74Lz4KjKY4byXgBW7h8CU_v0A_uwWJWV1KiCCSrV9F06RPv6MTx4mq1vq6-315bMW7rtwQ7uGLacXhW4guSv_XnmeLrZk3GYsRwe8FxwpfVLliNisCJ_gouxp_mJ5ModF-IbKqTKpLG5qNhRtIRR4lakyREqco0o6HNYmLLRihLyiihXGFMeWnTpGTJJEOGFclr2F6ulvgGhDZuaLTh_8pJHSszdLnnoVPs2bMD5XowaOEobKAm9x0yFkUdosS6YAALD2ARAOzBh27Gj4aW456xex6PblyAogcHLeJFOLc_i1Sxw6R8ueXb_896D48n89lZcTY9_7wPT_w6TWnfAWxX6w2-YxelKg9ryfwNWBbjzA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Machine+Learning-Inspired+Algorithmic+Framework+for+Intelligent+Reflecting+Surface-Assisted+Wireless+Systems&rft.jtitle=IEEE+transactions+on+vehicular+technology&rft.au=Jung-Chieh%2C+Chen&rft.date=2021-10-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=0018-9545&rft.eissn=1939-9359&rft.volume=70&rft.issue=10&rft.spage=10671&rft_id=info:doi/10.1109%2FTVT.2021.3110970&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0018-9545&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0018-9545&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0018-9545&client=summon