Study of a Palladium (Pd)/Aluminum-Doped Zinc Oxide (AZO) Hydrogen Sensor and the Kalman Algorithm for Internet-of-Things (IoT) Application

A palladium (Pd) thin film is decorated on a radio frequency (RF) sputtered aluminum-doped zinc oxide (AZO) thin film to produce a hydrogen sensor. Due to the catalytic activity of the Pd metal, the studied thin film-based device shows remarkably enhanced hydrogen-sensing characteristics. Experiment...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on electron devices Vol. 67; no. 10; pp. 4405 - 4412
Main Authors Chen, Wei-Cheng, Niu, Jing-Shiuan, Liu, I-Ping, Chi, Cheng-Yu, Cheng, Shiou-Ying, Lin, Kun-Wei, Liu, Wen-Chau
Format Journal Article
LanguageEnglish
Published New York IEEE 01.10.2020
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN0018-9383
1557-9646
DOI10.1109/TED.2020.3018084

Cover

Abstract A palladium (Pd) thin film is decorated on a radio frequency (RF) sputtered aluminum-doped zinc oxide (AZO) thin film to produce a hydrogen sensor. Due to the catalytic activity of the Pd metal, the studied thin film-based device shows remarkably enhanced hydrogen-sensing characteristics. Experimentally, a very high sensing response of <inline-formula> <tex-math notation="LaTeX">1.12\times 10 ^{4} </tex-math></inline-formula> with a response time of 23 s is obtained under 1% H 2 /air gas at 300 °C. Furthermore, even under an extremely low concentration of 40-ppb H 2 /air, a sensing response of 0.17 is acquired. The optimal operating temperature of the studied device is 300 °C. A hypothesis is used to interpret the related hydrogen-sensing mechanism of the studied device. A thermodynamic analysis is employed to study the surface coverage of hydrogen molecules on the device's surface. Furthermore, for the application in wireless transmission of the Internet of Things (IoT), an interesting Kalman algorithm is used to reduce redundant data, save hardware costs, and reduce network congestion. The simulated results show that 93.9% of the redundant data can be removed. The studied device exhibits advantages of a simple structure, easy fabrication, low cost, a widespread sensing range of hydrogen concentration, a very high sensing response, and an extremely low detecting limit, as well as being suitable for IoT application.
AbstractList A palladium (Pd) thin film is decorated on a radio frequency (RF) sputtered aluminum-doped zinc oxide (AZO) thin film to produce a hydrogen sensor. Due to the catalytic activity of the Pd metal, the studied thin film-based device shows remarkably enhanced hydrogen-sensing characteristics. Experimentally, a very high sensing response of <inline-formula> <tex-math notation="LaTeX">1.12\times 10 ^{4} </tex-math></inline-formula> with a response time of 23 s is obtained under 1% H 2 /air gas at 300 °C. Furthermore, even under an extremely low concentration of 40-ppb H 2 /air, a sensing response of 0.17 is acquired. The optimal operating temperature of the studied device is 300 °C. A hypothesis is used to interpret the related hydrogen-sensing mechanism of the studied device. A thermodynamic analysis is employed to study the surface coverage of hydrogen molecules on the device's surface. Furthermore, for the application in wireless transmission of the Internet of Things (IoT), an interesting Kalman algorithm is used to reduce redundant data, save hardware costs, and reduce network congestion. The simulated results show that 93.9% of the redundant data can be removed. The studied device exhibits advantages of a simple structure, easy fabrication, low cost, a widespread sensing range of hydrogen concentration, a very high sensing response, and an extremely low detecting limit, as well as being suitable for IoT application.
A palladium (Pd) thin film is decorated on a radio frequency (RF) sputtered aluminum-doped zinc oxide (AZO) thin film to produce a hydrogen sensor. Due to the catalytic activity of the Pd metal, the studied thin film-based device shows remarkably enhanced hydrogen-sensing characteristics. Experimentally, a very high sensing response of [Formula Omitted] with a response time of 23 s is obtained under 1% H2/air gas at 300 °C. Furthermore, even under an extremely low concentration of 40-ppb H2/air, a sensing response of 0.17 is acquired. The optimal operating temperature of the studied device is 300 °C. A hypothesis is used to interpret the related hydrogen-sensing mechanism of the studied device. A thermodynamic analysis is employed to study the surface coverage of hydrogen molecules on the device’s surface. Furthermore, for the application in wireless transmission of the Internet of Things (IoT), an interesting Kalman algorithm is used to reduce redundant data, save hardware costs, and reduce network congestion. The simulated results show that 93.9% of the redundant data can be removed. The studied device exhibits advantages of a simple structure, easy fabrication, low cost, a widespread sensing range of hydrogen concentration, a very high sensing response, and an extremely low detecting limit, as well as being suitable for IoT application.
Author Lin, Kun-Wei
Liu, Wen-Chau
Chi, Cheng-Yu
Liu, I-Ping
Cheng, Shiou-Ying
Niu, Jing-Shiuan
Chen, Wei-Cheng
Author_xml – sequence: 1
  givenname: Wei-Cheng
  surname: Chen
  fullname: Chen, Wei-Cheng
  organization: Department of Electrical Engineering, Institute of Microelectronics, National Cheng Kung University, Tainan, Taiwan
– sequence: 2
  givenname: Jing-Shiuan
  surname: Niu
  fullname: Niu, Jing-Shiuan
  organization: Department of Electrical Engineering, Institute of Microelectronics, National Cheng Kung University, Tainan, Taiwan
– sequence: 3
  givenname: I-Ping
  orcidid: 0000-0002-7380-4777
  surname: Liu
  fullname: Liu, I-Ping
  organization: Department of Material Technology, Green Technology Research Institute, CPC Corporation, Kaohsiung City, Taiwan
– sequence: 4
  givenname: Cheng-Yu
  surname: Chi
  fullname: Chi, Cheng-Yu
  organization: Department of Electrical Engineering, Institute of Microelectronics, National Cheng Kung University, Tainan, Taiwan
– sequence: 5
  givenname: Shiou-Ying
  surname: Cheng
  fullname: Cheng, Shiou-Ying
  organization: Department of Electrical Engineering, National Ilan University, Yilan City, Taiwan
– sequence: 6
  givenname: Kun-Wei
  surname: Lin
  fullname: Lin, Kun-Wei
  email: kwlin@cyut.edu.tw
  organization: Department of Computer Science and Information Engineering, Chaoyang University of Technology, Taichung, Taiwan
– sequence: 7
  givenname: Wen-Chau
  orcidid: 0000-0002-8037-3290
  surname: Liu
  fullname: Liu, Wen-Chau
  email: wcliu@mail.ncku.edu.tw
  organization: Department of Electrical Engineering, Institute of Microelectronics, National Cheng Kung University, Tainan, Taiwan
BookMark eNp9kE1r4zAQhsXSwqYf94W9CHpJDk4lWZato2n6EVpIoemlF6NYo0TFllxZhs1v2D9dtyl72ENPYjTvMzM8J-jIeQcI_aJkTimRl-vrxZwRRuYpoQUp-A80oVmWJ1JwcYQmZPxNZFqkP9FJ37-OpeCcTdDfpzjoPfYGK_yomkZpO7R4-qhnl2UztNYNbbLwHWj8Yl2NV3-sBjwtX1YzfLfXwW_B4SdwvQ9YOY3jDvC9alrlcNlsfbBx12IzNpcuQnAQE2-S9c66bY-nS7-e4bLrGluraL07Q8dGNT2cf72n6Pnmen11lzysbpdX5UNSM0ljwqXkUgiiaqkppVkhOKuzHKjSapMakZNNzrRWOalTU4AxCjIpWMrNJmNMmvQUXRzmdsG_DdDH6tUPwY0rK8a5IIJwno8pcUjVwfd9AFPVNn7eGYOyTUVJ9SG-GsVXH-KrL_EjSP4Du2BbFfbfIb8PiAWAf3FJC1Fwnr4DF3eOxg
CODEN IETDAI
CitedBy_id crossref_primary_10_1149_2162_8777_ac4eda
crossref_primary_10_1155_2021_9032769
crossref_primary_10_1002_asia_202400127
crossref_primary_10_1016_j_ijhydene_2023_11_171
crossref_primary_10_1155_2021_5560652
crossref_primary_10_1109_ACCESS_2021_3089367
crossref_primary_10_1007_s11664_024_11604_w
crossref_primary_10_1109_TED_2021_3093842
crossref_primary_10_1166_jno_2024_3545
crossref_primary_10_1016_j_ijhydene_2024_12_039
crossref_primary_10_1021_acsanm_4c04060
crossref_primary_10_1109_LED_2021_3138904
Cites_doi 10.1016/j.snb.2019.05.076
10.1016/j.cap.2016.07.005
10.1039/C4TA05229C
10.1016/j.snb.2015.06.122
10.1016/j.snb.2011.04.070
10.1016/j.matlet.2015.05.007
10.1016/j.snb.2018.04.019
10.1016/j.snb.2010.09.027
10.1063/1.1949707
10.1111/j.1151-2916.1976.tb09374.x
10.1016/j.ceramint.2014.02.090
10.1016/j.snb.2014.01.068
10.1016/S0925-4005(01)01042-5
10.1021/am302294v
10.1016/j.jallcom.2016.08.042
10.1016/j.snb.2019.04.046
10.1587/transcom.E93.B.305
10.1016/j.scriptamat.2015.10.015
10.1016/j.snb.2018.01.212
10.1007/s10854-016-6112-y
10.1016/j.jhazmat.2015.09.013
10.1063/1.1878333
10.1016/j.snb.2015.08.054
10.1016/S0925-4005(01)01040-1
10.1016/j.snb.2011.03.065
10.1016/j.ijhydene.2012.08.011
10.1016/j.snb.2015.06.076
10.1007/s10854-015-3804-7
10.1016/j.ijhydene.2015.12.109
10.1016/j.compag.2018.02.027
10.1109/JSEN.2016.2620185
10.1016/j.snb.2016.06.087
10.1016/j.ijhydene.2012.12.017
10.1016/j.procs.2014.07.052
10.1109/LED.2019.2915537
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020
DBID 97E
RIA
RIE
AAYXX
CITATION
7SP
8FD
L7M
DOI 10.1109/TED.2020.3018084
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Electronics & Communications Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Technology Research Database
Advanced Technologies Database with Aerospace
Electronics & Communications Abstracts
DatabaseTitleList
Technology Research Database
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1557-9646
EndPage 4412
ExternalDocumentID 10_1109_TED_2020_3018084
9186844
Genre orig-research
GrantInformation_xml – fundername: Ministry of Science and Technology
  grantid: MOST 109-2221-E-006-083-MY2
  funderid: 10.13039/501100003711
GroupedDBID -~X
.DC
0R~
29I
3EH
4.4
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ACKIV
ACNCT
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
F5P
HZ~
H~9
IAAWW
IBMZZ
ICLAB
IDIHD
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
MS~
O9-
OCL
P2P
RIA
RIE
RNS
TAE
TN5
VH1
VJK
VOH
AAYXX
CITATION
7SP
8FD
L7M
ID FETCH-LOGICAL-c291t-49949660ac9d11158642c57e1adab3f670b72dda70c3f8effae596234fb5229f3
IEDL.DBID RIE
ISSN 0018-9383
IngestDate Mon Jun 30 10:20:04 EDT 2025
Thu Apr 24 23:00:02 EDT 2025
Wed Oct 01 02:28:47 EDT 2025
Wed Aug 27 02:31:57 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 10
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c291t-49949660ac9d11158642c57e1adab3f670b72dda70c3f8effae596234fb5229f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-7380-4777
0000-0002-8037-3290
PQID 2446060447
PQPubID 85466
PageCount 8
ParticipantIDs crossref_citationtrail_10_1109_TED_2020_3018084
proquest_journals_2446060447
ieee_primary_9186844
crossref_primary_10_1109_TED_2020_3018084
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-10-01
PublicationDateYYYYMMDD 2020-10-01
PublicationDate_xml – month: 10
  year: 2020
  text: 2020-10-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on electron devices
PublicationTitleAbbrev TED
PublicationYear 2020
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref35
ref13
ref34
ref12
ref15
ref14
ref31
ref30
ref33
ref11
ref32
ref10
ref2
ref1
ref17
ref16
ref19
ref18
ref24
ref23
ref26
ref25
ref20
ref22
ref21
ref28
ref27
ref29
ref8
ref7
ref9
ref4
ref3
ref6
ref5
References_xml – ident: ref33
  doi: 10.1016/j.snb.2019.05.076
– ident: ref29
  doi: 10.1016/j.cap.2016.07.005
– ident: ref20
  doi: 10.1039/C4TA05229C
– ident: ref24
  doi: 10.1016/j.snb.2015.06.122
– ident: ref1
  doi: 10.1016/j.snb.2011.04.070
– ident: ref21
  doi: 10.1016/j.matlet.2015.05.007
– ident: ref25
  doi: 10.1016/j.snb.2018.04.019
– ident: ref9
  doi: 10.1016/j.snb.2010.09.027
– ident: ref5
  doi: 10.1063/1.1949707
– ident: ref32
  doi: 10.1111/j.1151-2916.1976.tb09374.x
– ident: ref16
  doi: 10.1016/j.ceramint.2014.02.090
– ident: ref17
  doi: 10.1016/j.snb.2014.01.068
– ident: ref7
  doi: 10.1016/S0925-4005(01)01042-5
– ident: ref19
  doi: 10.1021/am302294v
– ident: ref28
  doi: 10.1016/j.jallcom.2016.08.042
– ident: ref31
  doi: 10.1016/j.snb.2019.04.046
– ident: ref23
  doi: 10.1587/transcom.E93.B.305
– ident: ref30
  doi: 10.1016/j.scriptamat.2015.10.015
– ident: ref3
  doi: 10.1016/j.snb.2018.01.212
– ident: ref14
  doi: 10.1007/s10854-016-6112-y
– ident: ref8
  doi: 10.1016/j.jhazmat.2015.09.013
– ident: ref2
  doi: 10.1063/1.1878333
– ident: ref4
  doi: 10.1016/j.snb.2015.08.054
– ident: ref6
  doi: 10.1016/S0925-4005(01)01040-1
– ident: ref11
  doi: 10.1016/j.snb.2011.03.065
– ident: ref35
  doi: 10.1016/j.ijhydene.2012.08.011
– ident: ref15
  doi: 10.1016/j.snb.2015.06.076
– ident: ref13
  doi: 10.1007/s10854-015-3804-7
– ident: ref10
  doi: 10.1016/j.ijhydene.2015.12.109
– ident: ref34
  doi: 10.1016/j.compag.2018.02.027
– ident: ref27
  doi: 10.1109/JSEN.2016.2620185
– ident: ref18
  doi: 10.1016/j.snb.2016.06.087
– ident: ref12
  doi: 10.1016/j.ijhydene.2012.12.017
– ident: ref22
  doi: 10.1016/j.procs.2014.07.052
– ident: ref26
  doi: 10.1109/LED.2019.2915537
SSID ssj0016442
Score 2.4167147
Snippet A palladium (Pd) thin film is decorated on a radio frequency (RF) sputtered aluminum-doped zinc oxide (AZO) thin film to produce a hydrogen sensor. Due to the...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 4405
SubjectTerms Algorithms
Aluminum
Aluminum-doped zinc oxide (AZO)
Catalytic activity
Chemical sensors
Computer simulation
Hydrogen
hydrogen sensor
Internet of Things
Internet of Things (IoT)
Kalman algorithm
Kalman filters
Metals
Operating temperature
Palladium
Radio frequency
Response time
RF sputtering
Sensors
Sputtering
Thin films
Zinc oxide
Zinc oxides
Title Study of a Palladium (Pd)/Aluminum-Doped Zinc Oxide (AZO) Hydrogen Sensor and the Kalman Algorithm for Internet-of-Things (IoT) Application
URI https://ieeexplore.ieee.org/document/9186844
https://www.proquest.com/docview/2446060447
Volume 67
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library
  customDbUrl:
  eissn: 1557-9646
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0016442
  issn: 0018-9383
  databaseCode: RIE
  dateStart: 19630101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Nb9NAEB21PcGBFgoitEVz6CGRcBLbGzt7tApVKCqtRCtVvVj7CRaJt0ptqe1f4E8zazvhU4jbHtbWSjM7897u7BuAQ6G4iQWRHMlTEVA-TmhkiaxMUjPRxIp47N87n35MZpfs5GpytQFv1m9hjDFN8ZkZ-mFzl6-dqv1R2Yh7bXfGNmEznSbtW631jQHl9VYZPKQNTLRrdSU55iMKAUQEI-KnXq1qyn5JQU1PlT8CcZNdjrfhdLWutqjk67Cu5FA9_CbZ-L8L34EnHczErPWLp7Bhymfw-CfxwV345ksI79FZFHjuj9N1US-wf64Ho4wiVlHWi-CtuzEar4tS4dldoQ32s-uzAc7u9dKR5-EnIsFuiaLUSEASP4j5QpSYzT-7ZVF9WSAhYmzPHE0VOBu0XUKx_95dDDD7cXf-HC6P310czYKuNUOgIh5WAfEk5nU9ydSaouVkSjRGkXlDoYWMbZKOZRppLdKxiu3UWCuMb_MTMysJ8HEbv4Ct0pXmJWAqCXXYWPIwUixpIIoVLDYqlDKSiezBaGWtXHW65b59xjxv-MuY52Tf3Ns37-zbg8H6i5tWs-Mfc3e9udbzOkv1YH_lEHm3qW9zQkKJ1xpi6au_f7UHj_y_21q_fdiqlrU5IMxSydeNs34Hlz3mYg
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9NAEB6VcgAO5VEqUgrMgUMi4SS213b2aAFVSpu2EqlU9WLtEywSuwq2RPkL_GlmbSc8hbjtYS2vNLMz37c7-w3AS6G4CQWRHMkT4VE-jmlkiaxEiYk0sSIeuvfOs9N4esHeXUaXW_Bq8xbGGNMUn5mhGzZ3-bpUtTsqG3Gn7c7YLbgdMcai9rXW5s6AMnurDe7TFibitb6UHPMRBQGiggExVKdXNWG_JKGmq8ofobjJL4f3YbZeWVtW8mlYV3Kovv4m2vi_S38AOx3QxLT1jIewZYpHcO8n-cFd-OaKCG-wtCjw3B2o67xeYv9cD0Ypxay8qJfem_LaaLzKC4VnX3JtsJ9enQ1weqNXJfkevicaXK5QFBoJSuKxWCxFgeniQ7nKq49LJEyM7amjqbzSem2fUOwflfMBpj9uzx_DxeHb-eup1zVn8FTA_cojpsScsicZW1O8jCZEZBQZ2BdayNDGyVgmgdYiGavQToy1wrhGPyGzkiAft-EebBdlYZ4AJpJwhw0l9wPF4gakWMFCo3wpAxnLHozW1spUp1zuGmgssobBjHlG9s2cfbPOvj0YbL64blU7_jF315lrM6-zVA8O1g6Rddv6c0ZYKHZqQyzZ__tXL-DOdD47yU6OTo-fwl33n7by7wC2q1VtnhGCqeTzxnG_A8896a8
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Study+of+a+Palladium+%28Pd%29%2FAluminum-Doped+Zinc+Oxide+%28AZO%29+Hydrogen+Sensor+and+the+Kalman+Algorithm+for+Internet-of-Things+%28IoT%29+Application&rft.jtitle=IEEE+transactions+on+electron+devices&rft.au=Chen%2C+Wei-Cheng&rft.au=Niu%2C+Jing-Shiuan&rft.au=Liu%2C+I-Ping&rft.au=Chi%2C+Cheng-Yu&rft.date=2020-10-01&rft.pub=IEEE&rft.issn=0018-9383&rft.volume=67&rft.issue=10&rft.spage=4405&rft.epage=4412&rft_id=info:doi/10.1109%2FTED.2020.3018084&rft.externalDocID=9186844
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0018-9383&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0018-9383&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0018-9383&client=summon