Study of a Palladium (Pd)/Aluminum-Doped Zinc Oxide (AZO) Hydrogen Sensor and the Kalman Algorithm for Internet-of-Things (IoT) Application
A palladium (Pd) thin film is decorated on a radio frequency (RF) sputtered aluminum-doped zinc oxide (AZO) thin film to produce a hydrogen sensor. Due to the catalytic activity of the Pd metal, the studied thin film-based device shows remarkably enhanced hydrogen-sensing characteristics. Experiment...
Saved in:
| Published in | IEEE transactions on electron devices Vol. 67; no. 10; pp. 4405 - 4412 |
|---|---|
| Main Authors | , , , , , , |
| Format | Journal Article |
| Language | English |
| Published |
New York
IEEE
01.10.2020
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Subjects | |
| Online Access | Get full text |
| ISSN | 0018-9383 1557-9646 |
| DOI | 10.1109/TED.2020.3018084 |
Cover
| Abstract | A palladium (Pd) thin film is decorated on a radio frequency (RF) sputtered aluminum-doped zinc oxide (AZO) thin film to produce a hydrogen sensor. Due to the catalytic activity of the Pd metal, the studied thin film-based device shows remarkably enhanced hydrogen-sensing characteristics. Experimentally, a very high sensing response of <inline-formula> <tex-math notation="LaTeX">1.12\times 10 ^{4} </tex-math></inline-formula> with a response time of 23 s is obtained under 1% H 2 /air gas at 300 °C. Furthermore, even under an extremely low concentration of 40-ppb H 2 /air, a sensing response of 0.17 is acquired. The optimal operating temperature of the studied device is 300 °C. A hypothesis is used to interpret the related hydrogen-sensing mechanism of the studied device. A thermodynamic analysis is employed to study the surface coverage of hydrogen molecules on the device's surface. Furthermore, for the application in wireless transmission of the Internet of Things (IoT), an interesting Kalman algorithm is used to reduce redundant data, save hardware costs, and reduce network congestion. The simulated results show that 93.9% of the redundant data can be removed. The studied device exhibits advantages of a simple structure, easy fabrication, low cost, a widespread sensing range of hydrogen concentration, a very high sensing response, and an extremely low detecting limit, as well as being suitable for IoT application. |
|---|---|
| AbstractList | A palladium (Pd) thin film is decorated on a radio frequency (RF) sputtered aluminum-doped zinc oxide (AZO) thin film to produce a hydrogen sensor. Due to the catalytic activity of the Pd metal, the studied thin film-based device shows remarkably enhanced hydrogen-sensing characteristics. Experimentally, a very high sensing response of <inline-formula> <tex-math notation="LaTeX">1.12\times 10 ^{4} </tex-math></inline-formula> with a response time of 23 s is obtained under 1% H 2 /air gas at 300 °C. Furthermore, even under an extremely low concentration of 40-ppb H 2 /air, a sensing response of 0.17 is acquired. The optimal operating temperature of the studied device is 300 °C. A hypothesis is used to interpret the related hydrogen-sensing mechanism of the studied device. A thermodynamic analysis is employed to study the surface coverage of hydrogen molecules on the device's surface. Furthermore, for the application in wireless transmission of the Internet of Things (IoT), an interesting Kalman algorithm is used to reduce redundant data, save hardware costs, and reduce network congestion. The simulated results show that 93.9% of the redundant data can be removed. The studied device exhibits advantages of a simple structure, easy fabrication, low cost, a widespread sensing range of hydrogen concentration, a very high sensing response, and an extremely low detecting limit, as well as being suitable for IoT application. A palladium (Pd) thin film is decorated on a radio frequency (RF) sputtered aluminum-doped zinc oxide (AZO) thin film to produce a hydrogen sensor. Due to the catalytic activity of the Pd metal, the studied thin film-based device shows remarkably enhanced hydrogen-sensing characteristics. Experimentally, a very high sensing response of [Formula Omitted] with a response time of 23 s is obtained under 1% H2/air gas at 300 °C. Furthermore, even under an extremely low concentration of 40-ppb H2/air, a sensing response of 0.17 is acquired. The optimal operating temperature of the studied device is 300 °C. A hypothesis is used to interpret the related hydrogen-sensing mechanism of the studied device. A thermodynamic analysis is employed to study the surface coverage of hydrogen molecules on the device’s surface. Furthermore, for the application in wireless transmission of the Internet of Things (IoT), an interesting Kalman algorithm is used to reduce redundant data, save hardware costs, and reduce network congestion. The simulated results show that 93.9% of the redundant data can be removed. The studied device exhibits advantages of a simple structure, easy fabrication, low cost, a widespread sensing range of hydrogen concentration, a very high sensing response, and an extremely low detecting limit, as well as being suitable for IoT application. |
| Author | Lin, Kun-Wei Liu, Wen-Chau Chi, Cheng-Yu Liu, I-Ping Cheng, Shiou-Ying Niu, Jing-Shiuan Chen, Wei-Cheng |
| Author_xml | – sequence: 1 givenname: Wei-Cheng surname: Chen fullname: Chen, Wei-Cheng organization: Department of Electrical Engineering, Institute of Microelectronics, National Cheng Kung University, Tainan, Taiwan – sequence: 2 givenname: Jing-Shiuan surname: Niu fullname: Niu, Jing-Shiuan organization: Department of Electrical Engineering, Institute of Microelectronics, National Cheng Kung University, Tainan, Taiwan – sequence: 3 givenname: I-Ping orcidid: 0000-0002-7380-4777 surname: Liu fullname: Liu, I-Ping organization: Department of Material Technology, Green Technology Research Institute, CPC Corporation, Kaohsiung City, Taiwan – sequence: 4 givenname: Cheng-Yu surname: Chi fullname: Chi, Cheng-Yu organization: Department of Electrical Engineering, Institute of Microelectronics, National Cheng Kung University, Tainan, Taiwan – sequence: 5 givenname: Shiou-Ying surname: Cheng fullname: Cheng, Shiou-Ying organization: Department of Electrical Engineering, National Ilan University, Yilan City, Taiwan – sequence: 6 givenname: Kun-Wei surname: Lin fullname: Lin, Kun-Wei email: kwlin@cyut.edu.tw organization: Department of Computer Science and Information Engineering, Chaoyang University of Technology, Taichung, Taiwan – sequence: 7 givenname: Wen-Chau orcidid: 0000-0002-8037-3290 surname: Liu fullname: Liu, Wen-Chau email: wcliu@mail.ncku.edu.tw organization: Department of Electrical Engineering, Institute of Microelectronics, National Cheng Kung University, Tainan, Taiwan |
| BookMark | eNp9kE1r4zAQhsXSwqYf94W9CHpJDk4lWZato2n6EVpIoemlF6NYo0TFllxZhs1v2D9dtyl72ENPYjTvMzM8J-jIeQcI_aJkTimRl-vrxZwRRuYpoQUp-A80oVmWJ1JwcYQmZPxNZFqkP9FJ37-OpeCcTdDfpzjoPfYGK_yomkZpO7R4-qhnl2UztNYNbbLwHWj8Yl2NV3-sBjwtX1YzfLfXwW_B4SdwvQ9YOY3jDvC9alrlcNlsfbBx12IzNpcuQnAQE2-S9c66bY-nS7-e4bLrGluraL07Q8dGNT2cf72n6Pnmen11lzysbpdX5UNSM0ljwqXkUgiiaqkppVkhOKuzHKjSapMakZNNzrRWOalTU4AxCjIpWMrNJmNMmvQUXRzmdsG_DdDH6tUPwY0rK8a5IIJwno8pcUjVwfd9AFPVNn7eGYOyTUVJ9SG-GsVXH-KrL_EjSP4Du2BbFfbfIb8PiAWAf3FJC1Fwnr4DF3eOxg |
| CODEN | IETDAI |
| CitedBy_id | crossref_primary_10_1149_2162_8777_ac4eda crossref_primary_10_1155_2021_9032769 crossref_primary_10_1002_asia_202400127 crossref_primary_10_1016_j_ijhydene_2023_11_171 crossref_primary_10_1155_2021_5560652 crossref_primary_10_1109_ACCESS_2021_3089367 crossref_primary_10_1007_s11664_024_11604_w crossref_primary_10_1109_TED_2021_3093842 crossref_primary_10_1166_jno_2024_3545 crossref_primary_10_1016_j_ijhydene_2024_12_039 crossref_primary_10_1021_acsanm_4c04060 crossref_primary_10_1109_LED_2021_3138904 |
| Cites_doi | 10.1016/j.snb.2019.05.076 10.1016/j.cap.2016.07.005 10.1039/C4TA05229C 10.1016/j.snb.2015.06.122 10.1016/j.snb.2011.04.070 10.1016/j.matlet.2015.05.007 10.1016/j.snb.2018.04.019 10.1016/j.snb.2010.09.027 10.1063/1.1949707 10.1111/j.1151-2916.1976.tb09374.x 10.1016/j.ceramint.2014.02.090 10.1016/j.snb.2014.01.068 10.1016/S0925-4005(01)01042-5 10.1021/am302294v 10.1016/j.jallcom.2016.08.042 10.1016/j.snb.2019.04.046 10.1587/transcom.E93.B.305 10.1016/j.scriptamat.2015.10.015 10.1016/j.snb.2018.01.212 10.1007/s10854-016-6112-y 10.1016/j.jhazmat.2015.09.013 10.1063/1.1878333 10.1016/j.snb.2015.08.054 10.1016/S0925-4005(01)01040-1 10.1016/j.snb.2011.03.065 10.1016/j.ijhydene.2012.08.011 10.1016/j.snb.2015.06.076 10.1007/s10854-015-3804-7 10.1016/j.ijhydene.2015.12.109 10.1016/j.compag.2018.02.027 10.1109/JSEN.2016.2620185 10.1016/j.snb.2016.06.087 10.1016/j.ijhydene.2012.12.017 10.1016/j.procs.2014.07.052 10.1109/LED.2019.2915537 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020 |
| DBID | 97E RIA RIE AAYXX CITATION 7SP 8FD L7M |
| DOI | 10.1109/TED.2020.3018084 |
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Electronics & Communications Abstracts Technology Research Database Advanced Technologies Database with Aerospace |
| DatabaseTitle | CrossRef Technology Research Database Advanced Technologies Database with Aerospace Electronics & Communications Abstracts |
| DatabaseTitleList | Technology Research Database |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1557-9646 |
| EndPage | 4412 |
| ExternalDocumentID | 10_1109_TED_2020_3018084 9186844 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: Ministry of Science and Technology grantid: MOST 109-2221-E-006-083-MY2 funderid: 10.13039/501100003711 |
| GroupedDBID | -~X .DC 0R~ 29I 3EH 4.4 5GY 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACGFS ACIWK ACKIV ACNCT AENEX AETIX AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD F5P HZ~ H~9 IAAWW IBMZZ ICLAB IDIHD IFIPE IFJZH IPLJI JAVBF LAI M43 MS~ O9- OCL P2P RIA RIE RNS TAE TN5 VH1 VJK VOH AAYXX CITATION 7SP 8FD L7M |
| ID | FETCH-LOGICAL-c291t-49949660ac9d11158642c57e1adab3f670b72dda70c3f8effae596234fb5229f3 |
| IEDL.DBID | RIE |
| ISSN | 0018-9383 |
| IngestDate | Mon Jun 30 10:20:04 EDT 2025 Thu Apr 24 23:00:02 EDT 2025 Wed Oct 01 02:28:47 EDT 2025 Wed Aug 27 02:31:57 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 10 |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c291t-49949660ac9d11158642c57e1adab3f670b72dda70c3f8effae596234fb5229f3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-7380-4777 0000-0002-8037-3290 |
| PQID | 2446060447 |
| PQPubID | 85466 |
| PageCount | 8 |
| ParticipantIDs | crossref_citationtrail_10_1109_TED_2020_3018084 proquest_journals_2446060447 ieee_primary_9186844 crossref_primary_10_1109_TED_2020_3018084 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2020-10-01 |
| PublicationDateYYYYMMDD | 2020-10-01 |
| PublicationDate_xml | – month: 10 year: 2020 text: 2020-10-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York |
| PublicationTitle | IEEE transactions on electron devices |
| PublicationTitleAbbrev | TED |
| PublicationYear | 2020 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref35 ref13 ref34 ref12 ref15 ref14 ref31 ref30 ref33 ref11 ref32 ref10 ref2 ref1 ref17 ref16 ref19 ref18 ref24 ref23 ref26 ref25 ref20 ref22 ref21 ref28 ref27 ref29 ref8 ref7 ref9 ref4 ref3 ref6 ref5 |
| References_xml | – ident: ref33 doi: 10.1016/j.snb.2019.05.076 – ident: ref29 doi: 10.1016/j.cap.2016.07.005 – ident: ref20 doi: 10.1039/C4TA05229C – ident: ref24 doi: 10.1016/j.snb.2015.06.122 – ident: ref1 doi: 10.1016/j.snb.2011.04.070 – ident: ref21 doi: 10.1016/j.matlet.2015.05.007 – ident: ref25 doi: 10.1016/j.snb.2018.04.019 – ident: ref9 doi: 10.1016/j.snb.2010.09.027 – ident: ref5 doi: 10.1063/1.1949707 – ident: ref32 doi: 10.1111/j.1151-2916.1976.tb09374.x – ident: ref16 doi: 10.1016/j.ceramint.2014.02.090 – ident: ref17 doi: 10.1016/j.snb.2014.01.068 – ident: ref7 doi: 10.1016/S0925-4005(01)01042-5 – ident: ref19 doi: 10.1021/am302294v – ident: ref28 doi: 10.1016/j.jallcom.2016.08.042 – ident: ref31 doi: 10.1016/j.snb.2019.04.046 – ident: ref23 doi: 10.1587/transcom.E93.B.305 – ident: ref30 doi: 10.1016/j.scriptamat.2015.10.015 – ident: ref3 doi: 10.1016/j.snb.2018.01.212 – ident: ref14 doi: 10.1007/s10854-016-6112-y – ident: ref8 doi: 10.1016/j.jhazmat.2015.09.013 – ident: ref2 doi: 10.1063/1.1878333 – ident: ref4 doi: 10.1016/j.snb.2015.08.054 – ident: ref6 doi: 10.1016/S0925-4005(01)01040-1 – ident: ref11 doi: 10.1016/j.snb.2011.03.065 – ident: ref35 doi: 10.1016/j.ijhydene.2012.08.011 – ident: ref15 doi: 10.1016/j.snb.2015.06.076 – ident: ref13 doi: 10.1007/s10854-015-3804-7 – ident: ref10 doi: 10.1016/j.ijhydene.2015.12.109 – ident: ref34 doi: 10.1016/j.compag.2018.02.027 – ident: ref27 doi: 10.1109/JSEN.2016.2620185 – ident: ref18 doi: 10.1016/j.snb.2016.06.087 – ident: ref12 doi: 10.1016/j.ijhydene.2012.12.017 – ident: ref22 doi: 10.1016/j.procs.2014.07.052 – ident: ref26 doi: 10.1109/LED.2019.2915537 |
| SSID | ssj0016442 |
| Score | 2.4167147 |
| Snippet | A palladium (Pd) thin film is decorated on a radio frequency (RF) sputtered aluminum-doped zinc oxide (AZO) thin film to produce a hydrogen sensor. Due to the... |
| SourceID | proquest crossref ieee |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 4405 |
| SubjectTerms | Algorithms Aluminum Aluminum-doped zinc oxide (AZO) Catalytic activity Chemical sensors Computer simulation Hydrogen hydrogen sensor Internet of Things Internet of Things (IoT) Kalman algorithm Kalman filters Metals Operating temperature Palladium Radio frequency Response time RF sputtering Sensors Sputtering Thin films Zinc oxide Zinc oxides |
| Title | Study of a Palladium (Pd)/Aluminum-Doped Zinc Oxide (AZO) Hydrogen Sensor and the Kalman Algorithm for Internet-of-Things (IoT) Application |
| URI | https://ieeexplore.ieee.org/document/9186844 https://www.proquest.com/docview/2446060447 |
| Volume | 67 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library customDbUrl: eissn: 1557-9646 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0016442 issn: 0018-9383 databaseCode: RIE dateStart: 19630101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Nb9NAEB21PcGBFgoitEVz6CGRcBLbGzt7tApVKCqtRCtVvVj7CRaJt0ptqe1f4E8zazvhU4jbHtbWSjM7897u7BuAQ6G4iQWRHMlTEVA-TmhkiaxMUjPRxIp47N87n35MZpfs5GpytQFv1m9hjDFN8ZkZ-mFzl6-dqv1R2Yh7bXfGNmEznSbtW631jQHl9VYZPKQNTLRrdSU55iMKAUQEI-KnXq1qyn5JQU1PlT8CcZNdjrfhdLWutqjk67Cu5FA9_CbZ-L8L34EnHczErPWLp7Bhymfw-CfxwV345ksI79FZFHjuj9N1US-wf64Ho4wiVlHWi-CtuzEar4tS4dldoQ32s-uzAc7u9dKR5-EnIsFuiaLUSEASP4j5QpSYzT-7ZVF9WSAhYmzPHE0VOBu0XUKx_95dDDD7cXf-HC6P310czYKuNUOgIh5WAfEk5nU9ydSaouVkSjRGkXlDoYWMbZKOZRppLdKxiu3UWCuMb_MTMysJ8HEbv4Ct0pXmJWAqCXXYWPIwUixpIIoVLDYqlDKSiezBaGWtXHW65b59xjxv-MuY52Tf3Ns37-zbg8H6i5tWs-Mfc3e9udbzOkv1YH_lEHm3qW9zQkKJ1xpi6au_f7UHj_y_21q_fdiqlrU5IMxSydeNs34Hlz3mYg |
| linkProvider | IEEE |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9NAEB6VcgAO5VEqUgrMgUMi4SS213b2aAFVSpu2EqlU9WLtEywSuwq2RPkL_GlmbSc8hbjtYS2vNLMz37c7-w3AS6G4CQWRHMkT4VE-jmlkiaxEiYk0sSIeuvfOs9N4esHeXUaXW_Bq8xbGGNMUn5mhGzZ3-bpUtTsqG3Gn7c7YLbgdMcai9rXW5s6AMnurDe7TFibitb6UHPMRBQGiggExVKdXNWG_JKGmq8ofobjJL4f3YbZeWVtW8mlYV3Kovv4m2vi_S38AOx3QxLT1jIewZYpHcO8n-cFd-OaKCG-wtCjw3B2o67xeYv9cD0Ypxay8qJfem_LaaLzKC4VnX3JtsJ9enQ1weqNXJfkevicaXK5QFBoJSuKxWCxFgeniQ7nKq49LJEyM7amjqbzSem2fUOwflfMBpj9uzx_DxeHb-eup1zVn8FTA_cojpsScsicZW1O8jCZEZBQZ2BdayNDGyVgmgdYiGavQToy1wrhGPyGzkiAft-EebBdlYZ4AJpJwhw0l9wPF4gakWMFCo3wpAxnLHozW1spUp1zuGmgssobBjHlG9s2cfbPOvj0YbL64blU7_jF315lrM6-zVA8O1g6Rddv6c0ZYKHZqQyzZ__tXL-DOdD47yU6OTo-fwl33n7by7wC2q1VtnhGCqeTzxnG_A8896a8 |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Study+of+a+Palladium+%28Pd%29%2FAluminum-Doped+Zinc+Oxide+%28AZO%29+Hydrogen+Sensor+and+the+Kalman+Algorithm+for+Internet-of-Things+%28IoT%29+Application&rft.jtitle=IEEE+transactions+on+electron+devices&rft.au=Chen%2C+Wei-Cheng&rft.au=Niu%2C+Jing-Shiuan&rft.au=Liu%2C+I-Ping&rft.au=Chi%2C+Cheng-Yu&rft.date=2020-10-01&rft.pub=IEEE&rft.issn=0018-9383&rft.volume=67&rft.issue=10&rft.spage=4405&rft.epage=4412&rft_id=info:doi/10.1109%2FTED.2020.3018084&rft.externalDocID=9186844 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0018-9383&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0018-9383&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0018-9383&client=summon |