Underwater Image Enhancement Using a Multiscale Dense Generative Adversarial Network

Underwater image enhancement has received much attention in underwater vision research. However, raw underwater images easily suffer from color distortion, underexposure, and fuzz caused by the underwater scene. To address the above-mentioned problems, we propose a new multiscale dense generative ad...

Full description

Saved in:
Bibliographic Details
Published inIEEE journal of oceanic engineering Vol. 45; no. 3; pp. 862 - 870
Main Authors Guo, Yecai, Li, Hanyu, Zhuang, Peixian
Format Journal Article
LanguageEnglish
Published New York IEEE 01.07.2020
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN0364-9059
1558-1691
DOI10.1109/JOE.2019.2911447

Cover

Abstract Underwater image enhancement has received much attention in underwater vision research. However, raw underwater images easily suffer from color distortion, underexposure, and fuzz caused by the underwater scene. To address the above-mentioned problems, we propose a new multiscale dense generative adversarial network (GAN) for enhancing underwater images. The residual multiscale dense block is presented in the generator, where the multiscale, dense concatenation, and residual learning can boost the performance, render more details, and utilize previous features, respectively. And the discriminator employs computationally light spectral normalization to stabilize the training of the discriminator. Meanwhile, nonsaturating GAN loss function combining <inline-formula><tex-math notation="LaTeX">L_1</tex-math></inline-formula> loss and gradient loss is presented to focus on image features of ground truth. Final enhanced results on synthetic and real underwater images demonstrate the superiority of the proposed method, which outperforms nondeep and deep learning methods in both qualitative and quantitative evaluations. Furthermore, we perform an ablation study to show the contributions of each component and carry out application tests to further demonstrate the effectiveness of the proposed method.
AbstractList Underwater image enhancement has received much attention in underwater vision research. However, raw underwater images easily suffer from color distortion, underexposure, and fuzz caused by the underwater scene. To address the above-mentioned problems, we propose a new multiscale dense generative adversarial network (GAN) for enhancing underwater images. The residual multiscale dense block is presented in the generator, where the multiscale, dense concatenation, and residual learning can boost the performance, render more details, and utilize previous features, respectively. And the discriminator employs computationally light spectral normalization to stabilize the training of the discriminator. Meanwhile, nonsaturating GAN loss function combining [Formula Omitted] loss and gradient loss is presented to focus on image features of ground truth. Final enhanced results on synthetic and real underwater images demonstrate the superiority of the proposed method, which outperforms nondeep and deep learning methods in both qualitative and quantitative evaluations. Furthermore, we perform an ablation study to show the contributions of each component and carry out application tests to further demonstrate the effectiveness of the proposed method.
Underwater image enhancement has received much attention in underwater vision research. However, raw underwater images easily suffer from color distortion, underexposure, and fuzz caused by the underwater scene. To address the above-mentioned problems, we propose a new multiscale dense generative adversarial network (GAN) for enhancing underwater images. The residual multiscale dense block is presented in the generator, where the multiscale, dense concatenation, and residual learning can boost the performance, render more details, and utilize previous features, respectively. And the discriminator employs computationally light spectral normalization to stabilize the training of the discriminator. Meanwhile, nonsaturating GAN loss function combining <inline-formula><tex-math notation="LaTeX">L_1</tex-math></inline-formula> loss and gradient loss is presented to focus on image features of ground truth. Final enhanced results on synthetic and real underwater images demonstrate the superiority of the proposed method, which outperforms nondeep and deep learning methods in both qualitative and quantitative evaluations. Furthermore, we perform an ablation study to show the contributions of each component and carry out application tests to further demonstrate the effectiveness of the proposed method.
Author Guo, Yecai
Li, Hanyu
Zhuang, Peixian
Author_xml – sequence: 1
  givenname: Yecai
  orcidid: 0000-0002-4395-7553
  surname: Guo
  fullname: Guo, Yecai
  email: guo-yecai@163.com
  organization: School of Electronic and Information Engineering, Nanjing University of Information Science and Technology, Nanjing, China
– sequence: 2
  givenname: Hanyu
  surname: Li
  fullname: Li, Hanyu
  email: lihanyu1204@163.com
  organization: School of Electronic and Information Engineering, Nanjing University of Information Science and Technology, Nanjing, China
– sequence: 3
  givenname: Peixian
  orcidid: 0000-0002-7143-9569
  surname: Zhuang
  fullname: Zhuang, Peixian
  email: zhuangpeixian0624@163.com
  organization: School of Electronic and Information Engineering, Nanjing University of Information Science and Technology, Nanjing, China
BookMark eNp9kLFPAjEYRxuDiYDuJi5NnA_ba--OjgQRMSoLzE2v_Q6LRw_bAvG_9wjEwcGpy3tff3k91HGNA4RuKRlQSsTDy3wySAkVg1RQynlxgbo0y4YJzQXtoC5hOU8EycQV6oWwJuTIiC5aLJ0Bf1ARPJ5t1ArwxH0op2EDLuJlsG6FFX7b1dEGrWrAj-AC4Ck48CraPeCR2YMPyltV43eIh8Z_XqPLStUBbs5vHy2fJovxc_I6n87Go9dEtyNjwgXhQ12WRhuieWWqNCMEgDBW0FwNBRdFVUJleFGkvKy4roxWJVN5mSnFDWN9dH-6u_XN1w5ClOtm5137pUx5muU0ZRltqfxEad-E4KGS2sZ2e-OiV7aWlMhjQdkWlMeC8lywFckfcevtRvnv_5S7k2IB4BcfFoy0e9gPKjd-qw
CODEN IJOEDY
CitedBy_id crossref_primary_10_1016_j_sigpro_2022_108902
crossref_primary_10_1002_rob_22378
crossref_primary_10_3390_jmse12071210
crossref_primary_10_1016_j_engstruct_2024_119037
crossref_primary_10_1016_j_oceaneng_2022_113202
crossref_primary_10_1109_LGRS_2023_3299613
crossref_primary_10_3390_electronics11162537
crossref_primary_10_1007_s13042_023_01984_6
crossref_primary_10_1080_09500340_2024_2362893
crossref_primary_10_26748_KSOE_2020_030
crossref_primary_10_3390_jmse11020447
crossref_primary_10_1109_TIP_2021_3076367
crossref_primary_10_1177_14759217241228780
crossref_primary_10_1016_j_engappai_2023_107462
crossref_primary_10_1109_TIP_2022_3190209
crossref_primary_10_1049_ipr2_12845
crossref_primary_10_1109_TCSVT_2022_3174817
crossref_primary_10_1109_TIM_2024_3366583
crossref_primary_10_1109_TIP_2022_3177129
crossref_primary_10_3390_jmse12071216
crossref_primary_10_1007_s11042_024_20091_4
crossref_primary_10_1016_j_eswa_2024_125350
crossref_primary_10_1109_JOE_2023_3252760
crossref_primary_10_1109_TCSVT_2022_3208100
crossref_primary_10_3390_electronics14061203
crossref_primary_10_3389_fmars_2023_1226024
crossref_primary_10_1016_j_jvcir_2024_104240
crossref_primary_10_1016_j_prime_2024_100634
crossref_primary_10_1631_FITEE_2000190
crossref_primary_10_1016_j_dt_2023_12_007
crossref_primary_10_1007_s11431_024_2824_x
crossref_primary_10_1109_JOE_2024_3463840
crossref_primary_10_1364_OE_427839
crossref_primary_10_1007_s10489_021_02835_z
crossref_primary_10_1109_TCSVT_2021_3093890
crossref_primary_10_1016_j_heliyon_2023_e14442
crossref_primary_10_1016_j_optlaseng_2024_108575
crossref_primary_10_3390_rs15051195
crossref_primary_10_3390_jmse10020241
crossref_primary_10_1038_s41598_022_11422_2
crossref_primary_10_1016_j_jvcir_2024_104131
crossref_primary_10_1109_ACCESS_2024_3370597
crossref_primary_10_1364_OE_483632
crossref_primary_10_3389_fmars_2022_964600
crossref_primary_10_1007_s11042_022_12135_4
crossref_primary_10_1109_ACCESS_2021_3060947
crossref_primary_10_1186_s40494_023_01015_1
crossref_primary_10_1016_j_ecoinf_2024_102631
crossref_primary_10_1109_TGRS_2023_3293912
crossref_primary_10_1109_ACCESS_2020_3002883
crossref_primary_10_1109_JOE_2023_3245686
crossref_primary_10_1109_JOE_2022_3152519
crossref_primary_10_1109_JOE_2024_3458351
crossref_primary_10_1016_j_inffus_2022_12_012
crossref_primary_10_1109_TGRS_2024_3425539
crossref_primary_10_1007_s00371_021_02305_0
crossref_primary_10_1007_s11042_022_12267_7
crossref_primary_10_1109_JOE_2022_3227393
crossref_primary_10_1109_TIM_2024_3480228
crossref_primary_10_3390_jmse10040500
crossref_primary_10_1109_ACCESS_2020_3009161
crossref_primary_10_1049_ipr2_12745
crossref_primary_10_1109_LSP_2021_3072563
crossref_primary_10_46932_sfjdv5n9_053
crossref_primary_10_1007_s11042_023_15419_5
crossref_primary_10_1016_j_knosys_2022_109997
crossref_primary_10_1109_TIM_2022_3189630
crossref_primary_10_1109_TMM_2024_3387760
crossref_primary_10_1007_s11042_020_09429_w
crossref_primary_10_1016_j_image_2022_116684
crossref_primary_10_1109_TGRS_2021_3134762
crossref_primary_10_1016_j_engappai_2023_105946
crossref_primary_10_57120_yalvac_1388877
crossref_primary_10_1155_2022_8229580
crossref_primary_10_1007_s11042_021_11269_1
crossref_primary_10_1016_j_eswa_2023_120856
crossref_primary_10_1016_j_fmre_2021_03_002
crossref_primary_10_1007_s11042_022_14228_6
crossref_primary_10_1016_j_imavis_2024_104995
crossref_primary_10_1016_j_dib_2021_106823
crossref_primary_10_1109_TCSVT_2023_3305777
crossref_primary_10_1364_OE_494638
crossref_primary_10_1016_j_imavis_2024_105285
crossref_primary_10_1016_j_neucom_2023_02_018
crossref_primary_10_11834_jig_230323
crossref_primary_10_1109_ACCESS_2023_3323360
crossref_primary_10_1016_j_neucom_2024_129270
crossref_primary_10_1364_OE_523951
crossref_primary_10_3390_biomimetics8030275
crossref_primary_10_1016_j_imavis_2023_104813
crossref_primary_10_1016_j_compeleceng_2022_107898
crossref_primary_10_3390_info13040187
crossref_primary_10_1109_LSP_2024_3384940
crossref_primary_10_1364_OE_482489
crossref_primary_10_3788_LOP223047
crossref_primary_10_1088_1755_1315_809_1_012012
crossref_primary_10_3389_fmars_2024_1366815
crossref_primary_10_3390_jmse11071285
crossref_primary_10_1016_j_displa_2022_102174
crossref_primary_10_3390_electronics13010199
crossref_primary_10_1109_TGRS_2023_3338611
crossref_primary_10_1016_j_eswa_2023_122844
crossref_primary_10_1109_TCI_2025_3544065
crossref_primary_10_3390_math11061382
crossref_primary_10_1007_s42979_024_02847_9
crossref_primary_10_3390_math12131933
crossref_primary_10_1038_s41598_025_89109_7
crossref_primary_10_1007_s11042_022_12721_6
crossref_primary_10_1007_s13042_022_01659_8
crossref_primary_10_1088_1361_6501_abaa1d
crossref_primary_10_1109_JOE_2021_3086907
crossref_primary_10_1109_JOE_2022_3190517
crossref_primary_10_1049_ipr2_12781
crossref_primary_10_3390_sym13091597
crossref_primary_10_1007_s11760_022_02392_z
crossref_primary_10_12677_CSA_2021_1110254
crossref_primary_10_3390_app12115420
crossref_primary_10_1109_ACCESS_2023_3240648
crossref_primary_10_1145_3511021
crossref_primary_10_1007_s42484_024_00206_8
crossref_primary_10_3389_fmars_2022_1058019
crossref_primary_10_1007_s11760_023_02864_w
crossref_primary_10_1093_icesjms_fsae004
crossref_primary_10_1016_j_jvcir_2024_104051
crossref_primary_10_3390_jmse11061183
crossref_primary_10_1016_j_image_2020_115921
crossref_primary_10_1049_ipr2_12433
crossref_primary_10_1007_s10489_022_03275_z
crossref_primary_10_3390_s23198297
crossref_primary_10_1109_LRA_2021_3070253
crossref_primary_10_1109_JOE_2021_3104055
crossref_primary_10_1016_j_jvcir_2022_103638
crossref_primary_10_1016_j_jvcir_2023_103926
crossref_primary_10_1016_j_isprsjprs_2022_12_007
crossref_primary_10_1109_JOE_2023_3297731
crossref_primary_10_1016_j_inffus_2024_102809
crossref_primary_10_1109_JOE_2023_3245760
crossref_primary_10_3390_s23031741
crossref_primary_10_1016_j_image_2024_117154
crossref_primary_10_1016_j_anucene_2021_108207
crossref_primary_10_1364_OE_462861
crossref_primary_10_1007_s00371_024_03630_w
crossref_primary_10_1364_OE_512397
crossref_primary_10_1016_j_engappai_2022_104759
crossref_primary_10_1016_j_image_2021_116622
crossref_primary_10_1364_OE_428626
crossref_primary_10_1109_TCSVT_2023_3328272
crossref_primary_10_1007_s00371_024_03785_6
crossref_primary_10_1007_s11704_022_1205_7
crossref_primary_10_1016_j_optlaseng_2024_108154
crossref_primary_10_1049_ipr2_12210
crossref_primary_10_3390_jmse12030506
crossref_primary_10_3390_s20164425
crossref_primary_10_3390_jmse13020231
crossref_primary_10_1109_TMM_2023_3291823
crossref_primary_10_1002_admt_202500072
crossref_primary_10_1007_s11465_021_0669_8
crossref_primary_10_1016_j_oceaneng_2024_116794
crossref_primary_10_1109_TIP_2023_3276332
crossref_primary_10_1016_j_neunet_2024_106809
crossref_primary_10_1109_TCSVT_2023_3290363
crossref_primary_10_1109_JOE_2021_3064093
crossref_primary_10_1016_j_ijleo_2022_170168
crossref_primary_10_1016_j_isprsjprs_2023_01_007
crossref_primary_10_1109_JOE_2022_3226202
crossref_primary_10_1016_j_jvcir_2022_103656
crossref_primary_10_1109_JOE_2024_3429653
crossref_primary_10_1109_TIP_2023_3334556
crossref_primary_10_1109_ACCESS_2024_3474031
crossref_primary_10_1016_j_engappai_2023_106532
crossref_primary_10_1016_j_dsp_2022_103900
crossref_primary_10_1007_s00371_025_03866_0
crossref_primary_10_1016_j_image_2020_115892
crossref_primary_10_3390_app14020529
crossref_primary_10_1007_s00371_022_02665_1
crossref_primary_10_1016_j_image_2021_116248
crossref_primary_10_1109_JSEN_2023_3251326
crossref_primary_10_3390_w13233470
crossref_primary_10_1016_j_oceaneng_2025_120896
crossref_primary_10_1016_j_patcog_2021_108324
crossref_primary_10_1364_AO_452318
crossref_primary_10_1364_OE_453387
crossref_primary_10_3390_electronics11182894
crossref_primary_10_1016_j_engappai_2023_106866
crossref_primary_10_1364_OE_463865
crossref_primary_10_1117_1_JEI_33_2_023024
crossref_primary_10_1007_s11042_024_18550_z
crossref_primary_10_1109_TETCI_2024_3369321
crossref_primary_10_1007_s11760_024_03047_x
crossref_primary_10_1109_TCSVT_2023_3314767
crossref_primary_10_1016_j_displa_2024_102797
crossref_primary_10_1007_s11042_023_17180_1
crossref_primary_10_1109_TIP_2025_3539477
crossref_primary_10_1002_int_22806
crossref_primary_10_1007_s00371_023_03215_z
crossref_primary_10_1016_j_engappai_2022_105489
crossref_primary_10_1007_s11042_023_15708_z
crossref_primary_10_1145_3709003
crossref_primary_10_1016_j_dsp_2025_105048
crossref_primary_10_1016_j_jvcir_2024_104308
crossref_primary_10_1364_OE_492293
crossref_primary_10_1016_j_dsp_2025_105170
crossref_primary_10_1016_j_engappai_2024_108561
crossref_primary_10_1109_ACCESS_2024_3465550
crossref_primary_10_3390_jmse11061124
crossref_primary_10_1016_j_inffus_2024_102857
crossref_primary_10_1016_j_optlaseng_2025_108898
crossref_primary_10_1080_13682199_2024_2439731
crossref_primary_10_3390_electronics12244999
crossref_primary_10_1007_s11042_023_14687_5
crossref_primary_10_1364_AO_549613
crossref_primary_10_1016_j_image_2022_116797
crossref_primary_10_1109_LRA_2021_3105144
crossref_primary_10_1016_j_displa_2022_102337
crossref_primary_10_1016_j_physleta_2024_130001
crossref_primary_10_1007_s10043_022_00762_z
crossref_primary_10_1016_j_neucom_2021_07_003
crossref_primary_10_1109_ACCESS_2023_3290903
crossref_primary_10_1016_j_optlaseng_2024_108640
crossref_primary_10_1038_s41598_024_55990_x
crossref_primary_10_1109_TGRS_2023_3281741
crossref_primary_10_1007_s11042_020_10273_1
crossref_primary_10_1142_S0219467823500316
crossref_primary_10_1016_j_engappai_2023_106731
crossref_primary_10_1016_j_engappai_2023_106972
crossref_primary_10_1109_JOE_2024_3458348
crossref_primary_10_1016_j_displa_2025_102980
crossref_primary_10_1109_ACCESS_2024_3449136
crossref_primary_10_1109_TIM_2021_3120130
crossref_primary_10_3390_jmse11040787
crossref_primary_10_1016_j_aei_2024_102723
crossref_primary_10_1016_j_imavis_2024_105101
crossref_primary_10_1109_JOE_2023_3334478
crossref_primary_10_1109_LRA_2020_2974710
crossref_primary_10_1109_TGRS_2024_3358892
crossref_primary_10_1016_j_compeleceng_2023_108990
crossref_primary_10_1007_s11431_023_2614_8
crossref_primary_10_3390_jmse11061221
crossref_primary_10_1016_j_eswa_2024_126075
crossref_primary_10_1007_s00371_022_02580_5
crossref_primary_10_1016_j_eswa_2023_122693
crossref_primary_10_1016_j_image_2023_116939
crossref_primary_10_1109_TGRS_2022_3227548
crossref_primary_10_1109_JOE_2023_3302888
crossref_primary_10_1109_LRA_2022_3156176
crossref_primary_10_1109_TMM_2021_3115442
crossref_primary_10_1117_1_JEI_31_6_063017
crossref_primary_10_1016_j_asoc_2024_112000
crossref_primary_10_1109_TIP_2019_2955241
crossref_primary_10_1016_j_imavis_2024_105256
crossref_primary_10_1109_JOE_2024_3474919
crossref_primary_10_1016_j_eswa_2023_122546
crossref_primary_10_32604_cmes_2022_019447
crossref_primary_10_1007_s11760_024_03598_z
crossref_primary_10_1016_j_inffus_2023_102127
crossref_primary_10_1049_ipr2_12702
crossref_primary_10_53433_yyufbed_1249102
crossref_primary_10_1016_j_engappai_2021_104171
crossref_primary_10_2139_ssrn_4129750
crossref_primary_10_3390_sym17020201
crossref_primary_10_1109_JOE_2023_3317903
crossref_primary_10_3390_math12223553
crossref_primary_10_1109_ACCESS_2024_3435569
crossref_primary_10_1016_j_jvcir_2024_104224
crossref_primary_10_1109_TETCI_2023_3322424
crossref_primary_10_3390_jmse11071476
crossref_primary_10_1016_j_sigpro_2024_109408
crossref_primary_10_1007_s11042_021_11327_8
crossref_primary_10_1016_j_ijleo_2022_169009
crossref_primary_10_1109_JOE_2022_3140563
crossref_primary_10_1038_s41598_024_82803_y
crossref_primary_10_1016_j_image_2025_117281
crossref_primary_10_1109_TIP_2022_3216208
crossref_primary_10_1109_TPAMI_2022_3226276
crossref_primary_10_1109_TCSVT_2022_3225376
crossref_primary_10_1109_JOE_2022_3192089
crossref_primary_10_1371_journal_pone_0299110
Cites_doi 10.1007/978-3-030-01237-3_32
10.1109/ICRA.2018.8460552
10.1109/CVPR.2012.6247661
10.1109/CVPR.2015.7298594
10.1016/j.jvcir.2014.11.006
10.1109/JOE.2015.2469915
10.1109/CVPR.2017.243
10.1109/CVPR.2016.90
10.1109/CVPR.2010.5539970
10.1109/OCEANS.2016.7761342
10.1109/ICCV.2017.244
10.1007/978-3-030-05792-3_7
10.4031/002533208786861209
10.1109/CVPR.2017.632
10.1109/TPAMI.2010.168
10.1007/978-3-319-10593-2_13
10.1109/ICIP.2014.7025927
10.1109/ACCESS.2017.2753796
10.1109/TIP.2017.2662206
10.1109/TIP.2017.2663846
10.1109/TCSI.2017.2751671
10.1109/CVPR.2017.186
10.1016/j.asoc.2014.11.020
10.1109/TIP.2016.2612882
10.1109/MCG.2016.26
10.1109/ICIP.2013.6738704
10.1109/LSP.2018.2792050
10.1023/B:VISI.0000029664.99615.94
10.1007/s11263-015-0816-y
10.1109/TIP.2015.2491020
10.1109/TPAMI.1986.4767851
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
7SP
7TB
7TN
8FD
F1W
FR3
H96
JQ2
KR7
L.G
L7M
L~C
L~D
DOI 10.1109/JOE.2019.2911447
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Mechanical & Transportation Engineering Abstracts
Oceanic Abstracts
Technology Research Database
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
ProQuest Computer Science Collection
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Computer and Information Systems Abstracts Professional
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Oceanic Abstracts
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
DatabaseTitleList Civil Engineering Abstracts

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Oceanography
EISSN 1558-1691
EndPage 870
ExternalDocumentID 10_1109_JOE_2019_2911447
8730425
Genre orig-research
GrantInformation_xml – fundername: Priority Academic Program Development of Jiangsu Higher Education Institutions
  funderid: 10.13039/501100012246
– fundername: National Natural Science Foundation of China
  grantid: 61701245
  funderid: 10.13039/501100001809
– fundername: Startup Foundation for Introducing Talent of Nanjing University of Information Science and Technology
  grantid: 2243141701030
  funderid: 10.13039/501100013156
GroupedDBID -~X
.DC
0R~
29I
4.4
5GY
5VS
66.
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ACNCT
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
HZ~
H~9
IBMZZ
ICLAB
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
RIA
RIE
RNS
TAE
TN5
VH1
~02
AAYXX
CITATION
RIG
7SC
7SP
7TB
7TN
8FD
F1W
FR3
H96
JQ2
KR7
L.G
L7M
L~C
L~D
ID FETCH-LOGICAL-c291t-49048cbbdcd0c4fdf2500ee033716a89497fbefd47724bf4cfdcab3a6b5aa4d33
IEDL.DBID RIE
ISSN 0364-9059
IngestDate Mon Jun 30 07:14:04 EDT 2025
Thu Apr 24 22:52:29 EDT 2025
Tue Jul 01 00:52:44 EDT 2025
Wed Aug 27 02:35:21 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c291t-49048cbbdcd0c4fdf2500ee033716a89497fbefd47724bf4cfdcab3a6b5aa4d33
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-4395-7553
0000-0002-7143-9569
PQID 2425612351
PQPubID 85484
PageCount 9
ParticipantIDs crossref_citationtrail_10_1109_JOE_2019_2911447
crossref_primary_10_1109_JOE_2019_2911447
ieee_primary_8730425
proquest_journals_2425612351
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-July
2020-7-00
20200701
PublicationDateYYYYMMDD 2020-07-01
PublicationDate_xml – month: 07
  year: 2020
  text: 2020-July
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE journal of oceanic engineering
PublicationTitleAbbrev JOE
PublicationYear 2020
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref12
ref37
ref36
ref14
ref31
maas (ref33) 0; 30
ref30
ref11
ref32
ref10
ref2
ref1
ref39
ref17
miyato (ref27) 2018
hu (ref20) 0
ref19
ref18
ioffe (ref34) 0; 37
gulrajani (ref26) 0
he (ref23) 2011; 33
li (ref16) 2018; 3
ref24
ref25
ref42
ref41
ref21
kingma (ref38) 2014
ref29
ref8
ref7
ref9
ref4
chen (ref22) 2017
ref3
anwar (ref15) 2018
goodfellow (ref28) 0
ref6
ref5
ref40
kurach (ref35) 2018
References_xml – ident: ref30
  doi: 10.1007/978-3-030-01237-3_32
– ident: ref17
  doi: 10.1109/ICRA.2018.8460552
– ident: ref3
  doi: 10.1109/CVPR.2012.6247661
– ident: ref29
  doi: 10.1109/CVPR.2015.7298594
– ident: ref8
  doi: 10.1016/j.jvcir.2014.11.006
– ident: ref40
  doi: 10.1109/JOE.2015.2469915
– ident: ref32
  doi: 10.1109/CVPR.2017.243
– year: 2018
  ident: ref35
  article-title: The GAN landscape: Losses, architectures, regularization, and normalization
– year: 2017
  ident: ref22
  article-title: Towards quality advancement of underwater machine vision with generative adversarial networks
– ident: ref31
  doi: 10.1109/CVPR.2016.90
– start-page: 2672
  year: 0
  ident: ref28
  article-title: Generative adversarial nets
  publication-title: Proc Adv Neural Inf Process Syst
– ident: ref37
  doi: 10.1109/CVPR.2010.5539970
– volume: 3
  start-page: 387
  year: 2018
  ident: ref16
  article-title: WaterGAN: Unsupervised generative network to enable real-time color correction of monocular underwater images
  publication-title: IEEE Robot Autom Lett
– ident: ref18
  doi: 10.1109/OCEANS.2016.7761342
– ident: ref24
  doi: 10.1109/ICCV.2017.244
– ident: ref19
  doi: 10.1007/978-3-030-05792-3_7
– ident: ref1
  doi: 10.4031/002533208786861209
– ident: ref25
  doi: 10.1109/CVPR.2017.632
– volume: 33
  start-page: 2341
  year: 2011
  ident: ref23
  article-title: Single image haze removal using dark channel prior
  publication-title: IEEE Trans Pattern Anal Mach Intell
  doi: 10.1109/TPAMI.2010.168
– year: 2014
  ident: ref38
  article-title: Adam: A method for stochastic optimization
– ident: ref12
  doi: 10.1007/978-3-319-10593-2_13
– ident: ref5
  doi: 10.1109/ICIP.2014.7025927
– ident: ref9
  doi: 10.1109/ACCESS.2017.2753796
– ident: ref14
  doi: 10.1109/TIP.2017.2662206
– start-page: 5767
  year: 0
  ident: ref26
  article-title: Improved training of Wasserstein GANs
  publication-title: Proc Adv Neural Inf Process Syst
– year: 2018
  ident: ref15
  article-title: Deep underwater image enhancement
– start-page: 296
  year: 0
  ident: ref20
  article-title: Underwater image restoration based on convolutional neural network
  publication-title: Proc Asian Conf Mach Learn
– volume: 30
  start-page: 1
  year: 0
  ident: ref33
  article-title: Rectifier nonlinearities improve neural network acoustic models
  publication-title: Proc Int Conf Mach Learn
– ident: ref11
  doi: 10.1109/TIP.2017.2663846
– ident: ref10
  doi: 10.1109/TCSI.2017.2751671
– ident: ref13
  doi: 10.1109/CVPR.2017.186
– ident: ref4
  doi: 10.1016/j.asoc.2014.11.020
– year: 2018
  ident: ref27
  article-title: Spectral normalization for generative adversarial networks
– ident: ref6
  doi: 10.1109/TIP.2016.2612882
– ident: ref7
  doi: 10.1109/MCG.2016.26
– volume: 37
  start-page: 448
  year: 0
  ident: ref34
  article-title: Batch normalization: Accelerating deep network training by reducing internal covariate shift
  publication-title: Proc 32nd Int Conf Mach Learn
– ident: ref2
  doi: 10.1109/ICIP.2013.6738704
– ident: ref21
  doi: 10.1109/LSP.2018.2792050
– ident: ref41
  doi: 10.1023/B:VISI.0000029664.99615.94
– ident: ref36
  doi: 10.1007/s11263-015-0816-y
– ident: ref39
  doi: 10.1109/TIP.2015.2491020
– ident: ref42
  doi: 10.1109/TPAMI.1986.4767851
SSID ssj0014479
Score 2.6756146
Snippet Underwater image enhancement has received much attention in underwater vision research. However, raw underwater images easily suffer from color distortion,...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 862
SubjectTerms Ablation
Colour
Dense concatenation
Feature extraction
Gallium nitride
generative adversarial network (GAN)
Generative adversarial networks
Generators
Ground truth
Image color analysis
Image enhancement
Image restoration
Machine learning
multiscale
residual learning underwater image enhancement
Training
Underwater
Title Underwater Image Enhancement Using a Multiscale Dense Generative Adversarial Network
URI https://ieeexplore.ieee.org/document/8730425
https://www.proquest.com/docview/2425612351
Volume 45
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8QwEB7Ukwq-xfVFDl4Euxu3k7U5iq6ooF4UvJU8EdQq7i6Cv96ZtLuIinhqD0kI_b4kM83MNwB7GFihJCKRt9AZolJZEYnLng7f2DWHVktOTr667p3f4eW9up-Cg0kuTAghBZ-FNr-mu3z_4kb8q6xTHLHzraZhmmhW52pNbgwQa129vIeZJpthfCUpdefyps8xXLrdpZWNXEjlyxGUaqr82IjT6XK2CFfjedVBJY_t0dC23cc3ycb_TnwJFhozUxzXvFiGqVCtwNwX8cEVmL9xwVSNYvUq3KYKSO9ker6Ji2faZUS_emBK8NAiRRYII1K-7oBwDeKUHOAgatlq3jNFqu08MMxocV1Hl6_B3Vn_9uQ8a0ouZI4-zjBDTSvaWeudlw6jj2QhyRBknpNfZQqN-ijaED2SUY42ooveGZubnlXGoM_zdZipXqqwAaInTVBRGnIxPdKzMASLkkZ1vS6IBi3ojFEoXaNHzmUxnsrkl0hdEm4l41Y2uLVgf9Ljtdbi-KPtKsMwadcg0ILtMdBls1gHJXtdrEKjDjd_77UFs112s1OU7jbMDN9GYYdskaHdTST8BE462rc
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LbxMxEB615dCCxKMtIjSAD1wqdRMnO07XxwpSpaVJLqnU28pPIVE2KA8h8euZ8W6iCirEafdgW9Z-Y3u-9cw3AB8xsEJJRDLeQmeISmVFJFv2dPjGvulZLTk5eTwZjG7x-k7d7cDZNhcmhJCCz0KHX9Ndvp-7Nf8q6xbnTL7VLjxRxCqKOltre2eAWCvr5QPMNHkNm0tJqbvX0yFHcelOn9Y2cimVB4dQqqry11aczpfLFzDezKwOK_nWWa9sx_36Q7Txf6f-Ep43jqa4qC3jFeyE6hCePpAfPIRnUxdM1WhWH8Es1UD6Sc7nQlx9p31GDKuvbBQ8tEixBcKIlLG7JGSD-EwUOIhauJp3TZGqOy8N27SY1PHlx3B7OZx9GmVN0YXM0cdZZahpTTtrvfPSYfSRfCQZgsxzYlam0KjPow3RI7nlaCO66J2xuRlYZQz6PH8Ne9W8Cm9ADKQJKkpDJNMjPQtDsChpVN_rggyhBd0NCqVrFMm5MMZ9mZiJ1CXhVjJuZYNbC063PX7Uahz_aHvEMGzbNQi0oL0BumyW67Jk3sU6NKr39vFeH2B_NBvflDdXky8ncNBn0p1idtuwt1qswzvyTFb2fTLI3_jj3go
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Underwater+Image+Enhancement+Using+a+Multiscale+Dense+Generative+Adversarial+Network&rft.jtitle=IEEE+journal+of+oceanic+engineering&rft.au=Guo%2C+Yecai&rft.au=Hanyu+Li&rft.au=Zhuang%2C+Peixian&rft.date=2020-07-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=0364-9059&rft.eissn=1558-1691&rft.volume=45&rft.issue=3&rft.spage=862&rft_id=info:doi/10.1109%2FJOE.2019.2911447&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0364-9059&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0364-9059&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0364-9059&client=summon