Modified ZNN for Time-Varying Quadratic Programming With Inherent Tolerance to Noises and Its Application to Kinematic Redundancy Resolution of Robot Manipulators
For quadratic programming (QP), it is usually assumed that the solving process is free of measurement noises or that the denoising has been conducted before the computation. However, time is precious for time-varying QP (TVQP) in practice. Preprocessing for denoising may consume extra time, and cons...
Saved in:
Published in | IEEE transactions on industrial electronics (1982) Vol. 63; no. 11; pp. 6978 - 6988 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
New York
IEEE
01.11.2016
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
ISSN | 0278-0046 1557-9948 |
DOI | 10.1109/TIE.2016.2590379 |
Cover
Abstract | For quadratic programming (QP), it is usually assumed that the solving process is free of measurement noises or that the denoising has been conducted before the computation. However, time is precious for time-varying QP (TVQP) in practice. Preprocessing for denoising may consume extra time, and consequently violates real-time requirements. Therefore, a model with inherent noise tolerance is urgently needed to solve TVQP problems in real time. In this paper, we make progress along this direction by proposing a modified Zhang neural network (MZNN) model for the solution of TVQP. The original Zhang neural network model and the gradient neural network model are employed for comparisons with the MZNN model. In addition, theoretical analyses show that, without measurement noise, the proposed MZNN model globally converges to the exact real-time solution of the TVQP problem in an exponential manner and that, in the presence of measurement noises, the proposed MZNN model has a satisfactory performance. Finally, two illustrative simulation examples as well as a physical experiment are provided and analyzed to substantiate the efficacy and superiority of the proposed MZNN model for TVQP problem solving. |
---|---|
AbstractList | For quadratic programming (QP), it is usually assumed that the solving process is free of measurement noises or that the denoising has been conducted before the computation. However, time is precious for time-varying QP (TVQP) in practice. Preprocessing for denoising may consume extra time, and consequently violates real-time requirements. Therefore, a model with inherent noise tolerance is urgently needed to solve TVQP problems in real time. In this paper, we make progress along this direction by proposing a modified Zhang neural network (MZNN) model for the solution of TVQP. The original Zhang neural network model and the gradient neural network model are employed for comparisons with the MZNN model. In addition, theoretical analyses show that, without measurement noise, the proposed MZNN model globally converges to the exact real-time solution of the TVQP problem in an exponential manner and that, in the presence of measurement noises, the proposed MZNN model has a satisfactory performance. Finally, two illustrative simulation examples as well as a physical experiment are provided and analyzed to substantiate the efficacy and superiority of the proposed MZNN model for TVQP problem solving. |
Author | Shuai Li Yinyan Zhang Yunong Zhang Long Jin |
Author_xml | – sequence: 1 givenname: Long surname: Jin fullname: Jin, Long – sequence: 2 givenname: Yunong surname: Zhang fullname: Zhang, Yunong – sequence: 3 givenname: Shuai surname: Li fullname: Li, Shuai – sequence: 4 givenname: Yinyan surname: Zhang fullname: Zhang, Yinyan |
BookMark | eNp9kUFv1DAQhS1UJLaFOxIXS5yzHdtxHB-rqsCKdoFqAYlL5HUmravEDrZz6N_hl5LsVj1w4DSe8fveSPNOyYkPHgl5y2DNGOjz3eZqzYFVay41CKVfkBWTUhVal_UJWQFXdQFQVq_IaUoPAKyUTK7In5vQus5hS39tt7QLke7cgMUPEx-dv6PfJtNGk52lX2O4i2YYlulPl-_pxt9jRJ_pLvQYjbdIc6Db4BImanxLNznRi3HsnZ0Ngl9-PzuPw8HuFtvJtzP1OD9T6KeDJHT0NuxDpjfGu3HqTQ4xvSYvO9MnfPNUz8j3D1e7y0_F9ZePm8uL68JyzXIhFOyFlaVVWArsxNKVIKFsDVfKVqaDvRSmVExWnCFXDCXryk4IXWvQVpyR90ffMYbfE6bcPIQp-nllw2rBgHOoYFbBUWVjSCli14zRDfO5GgbNkkQzJ9EsSTRPScxI9Q9iXT7cJEfj-v-B746gQ8TnPUpCrbUUfwHjw5l2 |
CODEN | ITIED6 |
CitedBy_id | crossref_primary_10_1016_j_neucom_2022_03_026 crossref_primary_10_1016_j_jfranklin_2022_02_028 crossref_primary_10_1109_TCDS_2020_2979340 crossref_primary_10_1016_j_neucom_2022_05_036 crossref_primary_10_1016_j_neucom_2017_05_017 crossref_primary_10_1007_s11071_023_09008_2 crossref_primary_10_3390_math10010050 crossref_primary_10_1016_j_jfranklin_2023_06_044 crossref_primary_10_1007_s10462_024_10804_4 crossref_primary_10_1016_j_jfranklin_2020_02_024 crossref_primary_10_3390_math11020475 crossref_primary_10_1109_TIE_2020_2970669 crossref_primary_10_1109_TSMC_2019_2920778 crossref_primary_10_1016_j_cam_2021_113824 crossref_primary_10_1016_j_neucom_2020_07_040 crossref_primary_10_1002_rob_22250 crossref_primary_10_1016_j_neunet_2023_05_056 crossref_primary_10_3389_fnbot_2017_00050 crossref_primary_10_1016_j_jfranklin_2021_07_006 crossref_primary_10_1109_ACCESS_2020_3035530 crossref_primary_10_1109_TETCI_2024_3352417 crossref_primary_10_1109_TNNLS_2024_3371543 crossref_primary_10_1007_s11063_021_10566_y crossref_primary_10_1080_00207721_2024_2425952 crossref_primary_10_1109_ACCESS_2020_2981688 crossref_primary_10_1109_TII_2018_2789438 crossref_primary_10_1109_TII_2023_3329640 crossref_primary_10_1109_TSMC_2017_2693400 crossref_primary_10_1016_j_neunet_2021_02_002 crossref_primary_10_1016_j_asoc_2024_111511 crossref_primary_10_1109_TSMC_2017_2705160 crossref_primary_10_1016_j_neucom_2021_09_047 crossref_primary_10_3389_fnbot_2017_00047 crossref_primary_10_1109_TSMC_2017_2703140 crossref_primary_10_1016_j_neucom_2018_01_002 crossref_primary_10_1109_TII_2019_2899428 crossref_primary_10_1109_ACCESS_2022_3226253 crossref_primary_10_1109_TSMC_2018_2856266 crossref_primary_10_1016_j_neucom_2019_01_064 crossref_primary_10_1007_s00170_024_13401_5 crossref_primary_10_1016_j_neucom_2021_11_012 crossref_primary_10_1109_TNNLS_2019_2944992 crossref_primary_10_1109_TII_2017_2780892 crossref_primary_10_1016_j_neucom_2021_05_096 crossref_primary_10_1088_1742_6596_1861_1_012092 crossref_primary_10_1109_TMECH_2021_3056409 crossref_primary_10_1109_TII_2024_3476530 crossref_primary_10_3390_math11112556 crossref_primary_10_1016_j_chaos_2023_114285 crossref_primary_10_1109_TCST_2017_2756029 crossref_primary_10_1016_j_cor_2021_105582 crossref_primary_10_1016_j_neucom_2022_04_056 crossref_primary_10_1016_j_bspc_2021_103115 crossref_primary_10_1109_TNNLS_2018_2802650 crossref_primary_10_1002_oca_2417 crossref_primary_10_1016_j_jfranklin_2018_11_026 crossref_primary_10_1109_ACCESS_2024_3382189 crossref_primary_10_3389_fnbot_2022_1047325 crossref_primary_10_1007_s00521_019_04639_2 crossref_primary_10_1016_j_neucom_2018_11_064 crossref_primary_10_1007_s10462_022_10284_4 crossref_primary_10_1016_j_neucom_2018_11_068 crossref_primary_10_3389_fnbot_2025_1546731 crossref_primary_10_1109_TII_2023_3241683 crossref_primary_10_1115_1_4038492 crossref_primary_10_1109_TCYB_2021_3111204 crossref_primary_10_1109_TSMC_2020_2998485 crossref_primary_10_1109_TSMC_2019_2925886 crossref_primary_10_3390_axioms13120838 crossref_primary_10_1109_TII_2022_3149919 crossref_primary_10_1038_s41598_022_25724_y crossref_primary_10_1007_s10514_021_09988_3 crossref_primary_10_3390_math10173079 crossref_primary_10_1016_j_bspc_2021_102416 crossref_primary_10_1109_ACCESS_2018_2850758 crossref_primary_10_1007_s40747_022_00954_9 crossref_primary_10_1109_TFUZZ_2019_2914618 crossref_primary_10_1109_TIE_2017_2674624 crossref_primary_10_1109_ACCESS_2022_3185133 crossref_primary_10_1109_TCYB_2017_2760883 crossref_primary_10_4274_jtss_galenos_2022_70288 crossref_primary_10_1109_TSMC_2024_3444030 crossref_primary_10_1109_TMECH_2021_3094986 crossref_primary_10_2139_ssrn_4046460 crossref_primary_10_1109_TSMC_2023_3284533 crossref_primary_10_1109_TII_2020_3047959 crossref_primary_10_1109_TSMC_2023_3331051 crossref_primary_10_1007_s10462_024_11026_4 crossref_primary_10_1016_j_measurement_2020_107964 crossref_primary_10_1109_TSMC_2018_2870523 crossref_primary_10_1109_TNNLS_2020_3041364 crossref_primary_10_2139_ssrn_4133445 crossref_primary_10_1038_s41598_023_39478_8 crossref_primary_10_1016_j_asoc_2021_107114 crossref_primary_10_3390_s24134333 crossref_primary_10_1109_TNNLS_2019_2934734 crossref_primary_10_1016_j_matcom_2024_10_031 crossref_primary_10_1109_TIE_2021_3050363 crossref_primary_10_1109_TNNLS_2018_2885042 crossref_primary_10_1016_j_neunet_2022_03_010 crossref_primary_10_1007_s11063_022_10988_2 crossref_primary_10_3390_biomimetics9080453 crossref_primary_10_1016_j_neucom_2020_08_037 crossref_primary_10_1007_s11063_019_10161_2 crossref_primary_10_1109_ACCESS_2025_3539374 crossref_primary_10_1109_TIE_2020_3007099 crossref_primary_10_1016_j_neucom_2017_06_030 crossref_primary_10_1109_TSMC_2017_2751259 crossref_primary_10_1109_TSMC_2021_3065091 crossref_primary_10_1016_j_neucom_2020_07_115 crossref_primary_10_1109_TNNLS_2020_2995396 crossref_primary_10_1016_j_eswa_2022_118735 crossref_primary_10_1016_j_neucom_2019_11_031 crossref_primary_10_1109_TNNLS_2018_2861404 crossref_primary_10_1109_ACCESS_2019_2907746 crossref_primary_10_3390_math12243891 crossref_primary_10_1016_j_neucom_2019_11_035 crossref_primary_10_1007_s10489_023_04724_z crossref_primary_10_1109_ACCESS_2020_3043190 crossref_primary_10_1109_ACCESS_2024_3419557 crossref_primary_10_1109_TCSII_2023_3313554 crossref_primary_10_1109_TII_2019_2899909 crossref_primary_10_3390_electronics13193951 crossref_primary_10_1016_j_neucom_2020_05_093 crossref_primary_10_1109_TNNLS_2021_3116321 crossref_primary_10_1109_TCST_2019_2963017 crossref_primary_10_1103_PhysRevE_107_044123 crossref_primary_10_1007_s00521_022_07757_6 crossref_primary_10_1016_j_neucom_2020_06_050 crossref_primary_10_1016_j_neucom_2020_06_051 crossref_primary_10_1109_TNNLS_2022_3171715 crossref_primary_10_1016_j_neucom_2020_10_110 crossref_primary_10_1007_s11063_021_10726_0 crossref_primary_10_1038_s41598_024_80899_w crossref_primary_10_1051_matecconf_201713900033 crossref_primary_10_1109_TNNLS_2021_3052896 crossref_primary_10_1109_TSMC_2018_2866843 crossref_primary_10_1007_s00521_017_3010_z crossref_primary_10_1109_TNNLS_2023_3315332 crossref_primary_10_1155_2018_4573631 crossref_primary_10_1109_ACCESS_2019_2896983 crossref_primary_10_1016_j_matcom_2022_05_033 crossref_primary_10_3390_math10183335 crossref_primary_10_1016_j_neucom_2019_11_101 crossref_primary_10_1016_j_neucom_2019_07_044 crossref_primary_10_1016_j_neucom_2017_05_026 crossref_primary_10_1109_TETCI_2024_3377678 crossref_primary_10_3390_s22197481 crossref_primary_10_1016_j_eswa_2024_124994 crossref_primary_10_1109_TSMC_2019_2956961 crossref_primary_10_1109_TSMC_2020_3020145 crossref_primary_10_1016_j_jfranklin_2023_09_022 crossref_primary_10_1109_TNNLS_2017_2761443 crossref_primary_10_1049_cit2_12019 crossref_primary_10_1016_j_neucom_2021_06_089 crossref_primary_10_1016_j_neucom_2018_10_078 crossref_primary_10_1080_01605682_2022_2096501 crossref_primary_10_1109_TNNLS_2023_3242313 crossref_primary_10_1016_j_rcim_2021_102291 crossref_primary_10_3390_s20010188 crossref_primary_10_1016_j_cam_2017_06_017 crossref_primary_10_1109_TNNLS_2018_2853732 crossref_primary_10_1016_j_jfranklin_2022_05_021 crossref_primary_10_1016_j_neucom_2024_128136 crossref_primary_10_1109_TII_2019_2957186 crossref_primary_10_3390_s19081758 crossref_primary_10_1016_j_neucom_2022_09_043 crossref_primary_10_1109_TII_2024_3431046 |
Cites_doi | 10.1109/TIE.2014.2316250 10.1109/TIE.2014.2365432 10.1049/iet-cta.2011.0573 10.1080/00207721.2014.909971 10.1109/TIE.2014.2345353 10.1109/TCYB.2014.2321390 10.1109/TIE.2014.2364459 10.1017/CBO9780511804441 10.1109/TIE.2015.2412524 10.1109/TIE.2013.2240635 10.1007/978-0-85729-148-6 10.1109/TNNLS.2015.2435014 10.1109/TNN.2006.881046 10.1109/TIE.2014.2327562 10.1002/oca.897 10.1016/j.neucom.2011.06.003 10.1109/TIE.2014.2378751 10.1109/TNN.2004.841779 10.1109/TIE.2011.2169636 10.1109/TIE.2014.2362095 10.1016/j.physleta.2009.03.011 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2016 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2016 |
DBID | 97E RIA RIE AAYXX CITATION 7SP 8FD L7M |
DOI | 10.1109/TIE.2016.2590379 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Electronics & Communications Abstracts Technology Research Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Technology Research Database Advanced Technologies Database with Aerospace Electronics & Communications Abstracts |
DatabaseTitleList | Technology Research Database |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1557-9948 |
EndPage | 6988 |
ExternalDocumentID | 4224039651 10_1109_TIE_2016_2590379 7508995 |
Genre | orig-research |
GrantInformation_xml | – fundername: National Natural Science Foundation of China grantid: 61473323; 61401385 funderid: 10.13039/501100001809 – fundername: Science and Technology Program of Guangzhou, China grantid: 2014J4100057 – fundername: Departmental General Research Fund of Hong Kong Polytechnic University grantid: G.61.37.UA7L – fundername: Hong Kong Research Grants Council Early Career Scheme grantid: 25214015 |
GroupedDBID | -~X .DC 0R~ 29I 4.4 5GY 5VS 6IK 97E 9M8 AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACGFS ACIWK ACKIV ACNCT AENEX AETIX AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD HZ~ H~9 IBMZZ ICLAB IFIPE IFJZH IPLJI JAVBF LAI M43 MS~ O9- OCL P2P RIA RIE RNS TAE TN5 TWZ VH1 VJK AAYXX CITATION 7SP 8FD L7M RIG |
ID | FETCH-LOGICAL-c291t-370b3c54c7e43ef30b3c40504da277c6af0b53a4715621e271e51f4f3398909c3 |
IEDL.DBID | RIE |
ISSN | 0278-0046 |
IngestDate | Mon Jun 30 10:22:53 EDT 2025 Wed Oct 01 00:26:49 EDT 2025 Thu Apr 24 22:52:06 EDT 2025 Tue Aug 26 16:42:46 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 11 |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c291t-370b3c54c7e43ef30b3c40504da277c6af0b53a4715621e271e51f4f3398909c3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
PQID | 1831022060 |
PQPubID | 85464 |
PageCount | 11 |
ParticipantIDs | ieee_primary_7508995 crossref_primary_10_1109_TIE_2016_2590379 proquest_journals_1831022060 crossref_citationtrail_10_1109_TIE_2016_2590379 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2016-Nov. 2016-11-00 20161101 |
PublicationDateYYYYMMDD | 2016-11-01 |
PublicationDate_xml | – month: 11 year: 2016 text: 2016-Nov. |
PublicationDecade | 2010 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York |
PublicationTitle | IEEE transactions on industrial electronics (1982) |
PublicationTitleAbbrev | TIE |
PublicationYear | 2016 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref13 ref12 ref15 ref14 ref11 ref10 ref2 ref1 ref17 ref16 ref19 piltan (ref25) 2012; 6 cai (ref24) 2010; 31 mathews (ref20) 2005 ref22 ref21 oppenheim (ref23) 1997 zhang (ref18) 2011 ref8 ref7 ref9 ref4 ref3 ref6 ref5 |
References_xml | – ident: ref2 doi: 10.1109/TIE.2014.2316250 – ident: ref16 doi: 10.1109/TIE.2014.2365432 – ident: ref22 doi: 10.1049/iet-cta.2011.0573 – ident: ref3 doi: 10.1080/00207721.2014.909971 – ident: ref6 doi: 10.1109/TIE.2014.2345353 – year: 1997 ident: ref23 publication-title: Signals & Systems – ident: ref17 doi: 10.1109/TCYB.2014.2321390 – ident: ref12 doi: 10.1109/TIE.2014.2364459 – ident: ref19 doi: 10.1017/CBO9780511804441 – ident: ref1 doi: 10.1109/TIE.2015.2412524 – ident: ref7 doi: 10.1109/TIE.2013.2240635 – volume: 6 start-page: 106 year: 2012 ident: ref25 article-title: Puma-560 robot manipulator position sliding mode control methods using MATLAB/SIMULINK and their integration into graduate/undergraduate nonlinear control, robotics and MATLAB courses publication-title: Int J Robot Autom – ident: ref21 doi: 10.1007/978-0-85729-148-6 – ident: ref13 doi: 10.1109/TNNLS.2015.2435014 – ident: ref11 doi: 10.1109/TNN.2006.881046 – ident: ref15 doi: 10.1109/TIE.2014.2327562 – volume: 31 start-page: 213 year: 2010 ident: ref24 article-title: Bi-criteria optimal control of redundant robot manipulators using LVI-based primal-dual neural network publication-title: Optim Control Appl Methods doi: 10.1002/oca.897 – year: 2011 ident: ref18 publication-title: Zhang Neural Networks and Neural-Dynamic Method – ident: ref9 doi: 10.1016/j.neucom.2011.06.003 – ident: ref4 doi: 10.1109/TIE.2014.2378751 – year: 2005 ident: ref20 publication-title: Numerical Methods Using MATLAB – ident: ref10 doi: 10.1109/TNN.2004.841779 – ident: ref8 doi: 10.1109/TIE.2011.2169636 – ident: ref14 doi: 10.1109/TIE.2014.2362095 – ident: ref5 doi: 10.1016/j.physleta.2009.03.011 |
SSID | ssj0014515 |
Score | 2.6033738 |
Snippet | For quadratic programming (QP), it is usually assumed that the solving process is free of measurement noises or that the denoising has been conducted before... |
SourceID | proquest crossref ieee |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 6978 |
SubjectTerms | Analytical models Computational modeling Mathematical model Modified Zhang neural network (MZNN) Neural networks Noise measurement Problem-solving random noise Real-time systems redundancy resolution theoretical analyses time-varying quadratic programming (TVQP) |
Title | Modified ZNN for Time-Varying Quadratic Programming With Inherent Tolerance to Noises and Its Application to Kinematic Redundancy Resolution of Robot Manipulators |
URI | https://ieeexplore.ieee.org/document/7508995 https://www.proquest.com/docview/1831022060 |
Volume | 63 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 1557-9948 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0014515 issn: 0278-0046 databaseCode: RIE dateStart: 19820101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELbanuDAqyAWCpoDFySy6zh2Uh8r1KoL2hVUW6i4RI4zUVctMdp4L_yc_tJ6nOxSAULc8rAdSzMef87MN8PYG5UfWiyqNBFFxROiViZVY_Kw4g0KK3NTcSI4z-b56bn8cKEudti7LRcGEWPwGY7pMvrya2fX9KtsEna3cDxQu2y3KHTP1dp6DKTqqxUIyhgbDn0blyTXk8X0mGK48nGA-jyjoK07W1CsqfKHIY67y8lDNtvMqw8quRqvfTW2P39L2fi_E3_EHgwwE456vXjMdrB9wu7fST64z25mrl42AYHCt_kcAnYFooMkX8yKmE_weW1q0g4Ln_oQru_09OvSX8K0vSSSoIeFu0YqzIHgHczdssMOTFvD1Hdw9MszTm8_hg_H7LBwhkRcI6MO5DvoNR9cA2euch5mpl3GmmJu1T1l5yfHi_enyVCxIbFCpz5YK15lVklboMywyeguIEIuayOKwuam4ZXKTNgQA-xKURQpqrSRTZbpQ821zZ6xvda1-JwB5agSwYoLLYVEVWsCFsaomhsVhlIjNtkIsbRDOnOqqnFdxmMN12UQe0liLwexj9jbbY8ffSqPf7TdJylu2w0CHLGDjZ6Uw1rvypRqtQnBc_7i771esnth7OiD4vqA7fnVGl8FKOOr11GHbwGX2fCc |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB6VcgAOFCiIhRbmwAWJ7DqOnTTHqmq1S5sIqi1UXCLHcdQVJUYb74Wfwy_Fk2S3FSDELQ87tjTjeWTmmwF4I-MDbZIyDHhSsoCglUFZq9ifeGW4FrEqGQGcszyeXoj3l_JyC95tsDDGmC75zIzpsovlV1av6FfZxGs37x7IO3BXeq8i6dFam5iBkH2_Ak41Y73btw5KsnQynx1TFlc89sY-iyht65YS6rqq_CGKO_1ysgPZemd9WsnX8cqVY_3jt6KN_7v1R_BwMDTxsOeMx7Blmifw4Fb5wV34mdlqUXsbFL_kOXrrFQkQEnxSS8I-4ceVqog_NH7ok7i-0dPPC3eFs-aKYIIO5_baUGsOg85ibhetaVE1Fc5ci4c3sXF6e-oX7urD4rkh6BqJdaToQc_7aGs8t6V1mKlm0XUVs8v2KVycHM-PpsHQsyHQPA2dl1esjLQUOjEiMnVEd94mZKJSPEl0rGpWykh5legNr9DwJDQyrEUdRelBylIdPYPtxjbmOSBVqeJejvNUcGFklZJpoZSsmJL-U3IEkzURCz0UNKe-GtdF59iwtPBkL4jsxUD2EbzdzPjeF_P4x9hdouJm3EDAEeyt-aQYTntbhNStjXMWsxd_n_Ua7k3n2VlxNstPX8J9WqfHM-7BtluuzL43bFz5quPnX11z8-A |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Modified+ZNN+for+Time-Varying+Quadratic+Programming+With+Inherent+Tolerance+to+Noises+and+Its+Application+to+Kinematic+Redundancy+Resolution+of+Robot+Manipulators&rft.jtitle=IEEE+transactions+on+industrial+electronics+%281982%29&rft.au=Long%2C+Jin&rft.au=Zhang%2C+Yunong&rft.au=Li%2C+Shuai&rft.au=Zhang%2C+Yinyan&rft.date=2016-11-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=0278-0046&rft.eissn=1557-9948&rft.volume=63&rft.issue=11&rft.spage=6978&rft_id=info:doi/10.1109%2FTIE.2016.2590379&rft.externalDBID=NO_FULL_TEXT&rft.externalDocID=4224039651 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0278-0046&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0278-0046&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0278-0046&client=summon |