Modified ZNN for Time-Varying Quadratic Programming With Inherent Tolerance to Noises and Its Application to Kinematic Redundancy Resolution of Robot Manipulators

For quadratic programming (QP), it is usually assumed that the solving process is free of measurement noises or that the denoising has been conducted before the computation. However, time is precious for time-varying QP (TVQP) in practice. Preprocessing for denoising may consume extra time, and cons...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on industrial electronics (1982) Vol. 63; no. 11; pp. 6978 - 6988
Main Authors Jin, Long, Zhang, Yunong, Li, Shuai, Zhang, Yinyan
Format Journal Article
LanguageEnglish
Published New York IEEE 01.11.2016
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN0278-0046
1557-9948
DOI10.1109/TIE.2016.2590379

Cover

Abstract For quadratic programming (QP), it is usually assumed that the solving process is free of measurement noises or that the denoising has been conducted before the computation. However, time is precious for time-varying QP (TVQP) in practice. Preprocessing for denoising may consume extra time, and consequently violates real-time requirements. Therefore, a model with inherent noise tolerance is urgently needed to solve TVQP problems in real time. In this paper, we make progress along this direction by proposing a modified Zhang neural network (MZNN) model for the solution of TVQP. The original Zhang neural network model and the gradient neural network model are employed for comparisons with the MZNN model. In addition, theoretical analyses show that, without measurement noise, the proposed MZNN model globally converges to the exact real-time solution of the TVQP problem in an exponential manner and that, in the presence of measurement noises, the proposed MZNN model has a satisfactory performance. Finally, two illustrative simulation examples as well as a physical experiment are provided and analyzed to substantiate the efficacy and superiority of the proposed MZNN model for TVQP problem solving.
AbstractList For quadratic programming (QP), it is usually assumed that the solving process is free of measurement noises or that the denoising has been conducted before the computation. However, time is precious for time-varying QP (TVQP) in practice. Preprocessing for denoising may consume extra time, and consequently violates real-time requirements. Therefore, a model with inherent noise tolerance is urgently needed to solve TVQP problems in real time. In this paper, we make progress along this direction by proposing a modified Zhang neural network (MZNN) model for the solution of TVQP. The original Zhang neural network model and the gradient neural network model are employed for comparisons with the MZNN model. In addition, theoretical analyses show that, without measurement noise, the proposed MZNN model globally converges to the exact real-time solution of the TVQP problem in an exponential manner and that, in the presence of measurement noises, the proposed MZNN model has a satisfactory performance. Finally, two illustrative simulation examples as well as a physical experiment are provided and analyzed to substantiate the efficacy and superiority of the proposed MZNN model for TVQP problem solving.
Author Shuai Li
Yinyan Zhang
Yunong Zhang
Long Jin
Author_xml – sequence: 1
  givenname: Long
  surname: Jin
  fullname: Jin, Long
– sequence: 2
  givenname: Yunong
  surname: Zhang
  fullname: Zhang, Yunong
– sequence: 3
  givenname: Shuai
  surname: Li
  fullname: Li, Shuai
– sequence: 4
  givenname: Yinyan
  surname: Zhang
  fullname: Zhang, Yinyan
BookMark eNp9kUFv1DAQhS1UJLaFOxIXS5yzHdtxHB-rqsCKdoFqAYlL5HUmravEDrZz6N_hl5LsVj1w4DSe8fveSPNOyYkPHgl5y2DNGOjz3eZqzYFVay41CKVfkBWTUhVal_UJWQFXdQFQVq_IaUoPAKyUTK7In5vQus5hS39tt7QLke7cgMUPEx-dv6PfJtNGk52lX2O4i2YYlulPl-_pxt9jRJ_pLvQYjbdIc6Db4BImanxLNznRi3HsnZ0Ngl9-PzuPw8HuFtvJtzP1OD9T6KeDJHT0NuxDpjfGu3HqTQ4xvSYvO9MnfPNUz8j3D1e7y0_F9ZePm8uL68JyzXIhFOyFlaVVWArsxNKVIKFsDVfKVqaDvRSmVExWnCFXDCXryk4IXWvQVpyR90ffMYbfE6bcPIQp-nllw2rBgHOoYFbBUWVjSCli14zRDfO5GgbNkkQzJ9EsSTRPScxI9Q9iXT7cJEfj-v-B746gQ8TnPUpCrbUUfwHjw5l2
CODEN ITIED6
CitedBy_id crossref_primary_10_1016_j_neucom_2022_03_026
crossref_primary_10_1016_j_jfranklin_2022_02_028
crossref_primary_10_1109_TCDS_2020_2979340
crossref_primary_10_1016_j_neucom_2022_05_036
crossref_primary_10_1016_j_neucom_2017_05_017
crossref_primary_10_1007_s11071_023_09008_2
crossref_primary_10_3390_math10010050
crossref_primary_10_1016_j_jfranklin_2023_06_044
crossref_primary_10_1007_s10462_024_10804_4
crossref_primary_10_1016_j_jfranklin_2020_02_024
crossref_primary_10_3390_math11020475
crossref_primary_10_1109_TIE_2020_2970669
crossref_primary_10_1109_TSMC_2019_2920778
crossref_primary_10_1016_j_cam_2021_113824
crossref_primary_10_1016_j_neucom_2020_07_040
crossref_primary_10_1002_rob_22250
crossref_primary_10_1016_j_neunet_2023_05_056
crossref_primary_10_3389_fnbot_2017_00050
crossref_primary_10_1016_j_jfranklin_2021_07_006
crossref_primary_10_1109_ACCESS_2020_3035530
crossref_primary_10_1109_TETCI_2024_3352417
crossref_primary_10_1109_TNNLS_2024_3371543
crossref_primary_10_1007_s11063_021_10566_y
crossref_primary_10_1080_00207721_2024_2425952
crossref_primary_10_1109_ACCESS_2020_2981688
crossref_primary_10_1109_TII_2018_2789438
crossref_primary_10_1109_TII_2023_3329640
crossref_primary_10_1109_TSMC_2017_2693400
crossref_primary_10_1016_j_neunet_2021_02_002
crossref_primary_10_1016_j_asoc_2024_111511
crossref_primary_10_1109_TSMC_2017_2705160
crossref_primary_10_1016_j_neucom_2021_09_047
crossref_primary_10_3389_fnbot_2017_00047
crossref_primary_10_1109_TSMC_2017_2703140
crossref_primary_10_1016_j_neucom_2018_01_002
crossref_primary_10_1109_TII_2019_2899428
crossref_primary_10_1109_ACCESS_2022_3226253
crossref_primary_10_1109_TSMC_2018_2856266
crossref_primary_10_1016_j_neucom_2019_01_064
crossref_primary_10_1007_s00170_024_13401_5
crossref_primary_10_1016_j_neucom_2021_11_012
crossref_primary_10_1109_TNNLS_2019_2944992
crossref_primary_10_1109_TII_2017_2780892
crossref_primary_10_1016_j_neucom_2021_05_096
crossref_primary_10_1088_1742_6596_1861_1_012092
crossref_primary_10_1109_TMECH_2021_3056409
crossref_primary_10_1109_TII_2024_3476530
crossref_primary_10_3390_math11112556
crossref_primary_10_1016_j_chaos_2023_114285
crossref_primary_10_1109_TCST_2017_2756029
crossref_primary_10_1016_j_cor_2021_105582
crossref_primary_10_1016_j_neucom_2022_04_056
crossref_primary_10_1016_j_bspc_2021_103115
crossref_primary_10_1109_TNNLS_2018_2802650
crossref_primary_10_1002_oca_2417
crossref_primary_10_1016_j_jfranklin_2018_11_026
crossref_primary_10_1109_ACCESS_2024_3382189
crossref_primary_10_3389_fnbot_2022_1047325
crossref_primary_10_1007_s00521_019_04639_2
crossref_primary_10_1016_j_neucom_2018_11_064
crossref_primary_10_1007_s10462_022_10284_4
crossref_primary_10_1016_j_neucom_2018_11_068
crossref_primary_10_3389_fnbot_2025_1546731
crossref_primary_10_1109_TII_2023_3241683
crossref_primary_10_1115_1_4038492
crossref_primary_10_1109_TCYB_2021_3111204
crossref_primary_10_1109_TSMC_2020_2998485
crossref_primary_10_1109_TSMC_2019_2925886
crossref_primary_10_3390_axioms13120838
crossref_primary_10_1109_TII_2022_3149919
crossref_primary_10_1038_s41598_022_25724_y
crossref_primary_10_1007_s10514_021_09988_3
crossref_primary_10_3390_math10173079
crossref_primary_10_1016_j_bspc_2021_102416
crossref_primary_10_1109_ACCESS_2018_2850758
crossref_primary_10_1007_s40747_022_00954_9
crossref_primary_10_1109_TFUZZ_2019_2914618
crossref_primary_10_1109_TIE_2017_2674624
crossref_primary_10_1109_ACCESS_2022_3185133
crossref_primary_10_1109_TCYB_2017_2760883
crossref_primary_10_4274_jtss_galenos_2022_70288
crossref_primary_10_1109_TSMC_2024_3444030
crossref_primary_10_1109_TMECH_2021_3094986
crossref_primary_10_2139_ssrn_4046460
crossref_primary_10_1109_TSMC_2023_3284533
crossref_primary_10_1109_TII_2020_3047959
crossref_primary_10_1109_TSMC_2023_3331051
crossref_primary_10_1007_s10462_024_11026_4
crossref_primary_10_1016_j_measurement_2020_107964
crossref_primary_10_1109_TSMC_2018_2870523
crossref_primary_10_1109_TNNLS_2020_3041364
crossref_primary_10_2139_ssrn_4133445
crossref_primary_10_1038_s41598_023_39478_8
crossref_primary_10_1016_j_asoc_2021_107114
crossref_primary_10_3390_s24134333
crossref_primary_10_1109_TNNLS_2019_2934734
crossref_primary_10_1016_j_matcom_2024_10_031
crossref_primary_10_1109_TIE_2021_3050363
crossref_primary_10_1109_TNNLS_2018_2885042
crossref_primary_10_1016_j_neunet_2022_03_010
crossref_primary_10_1007_s11063_022_10988_2
crossref_primary_10_3390_biomimetics9080453
crossref_primary_10_1016_j_neucom_2020_08_037
crossref_primary_10_1007_s11063_019_10161_2
crossref_primary_10_1109_ACCESS_2025_3539374
crossref_primary_10_1109_TIE_2020_3007099
crossref_primary_10_1016_j_neucom_2017_06_030
crossref_primary_10_1109_TSMC_2017_2751259
crossref_primary_10_1109_TSMC_2021_3065091
crossref_primary_10_1016_j_neucom_2020_07_115
crossref_primary_10_1109_TNNLS_2020_2995396
crossref_primary_10_1016_j_eswa_2022_118735
crossref_primary_10_1016_j_neucom_2019_11_031
crossref_primary_10_1109_TNNLS_2018_2861404
crossref_primary_10_1109_ACCESS_2019_2907746
crossref_primary_10_3390_math12243891
crossref_primary_10_1016_j_neucom_2019_11_035
crossref_primary_10_1007_s10489_023_04724_z
crossref_primary_10_1109_ACCESS_2020_3043190
crossref_primary_10_1109_ACCESS_2024_3419557
crossref_primary_10_1109_TCSII_2023_3313554
crossref_primary_10_1109_TII_2019_2899909
crossref_primary_10_3390_electronics13193951
crossref_primary_10_1016_j_neucom_2020_05_093
crossref_primary_10_1109_TNNLS_2021_3116321
crossref_primary_10_1109_TCST_2019_2963017
crossref_primary_10_1103_PhysRevE_107_044123
crossref_primary_10_1007_s00521_022_07757_6
crossref_primary_10_1016_j_neucom_2020_06_050
crossref_primary_10_1016_j_neucom_2020_06_051
crossref_primary_10_1109_TNNLS_2022_3171715
crossref_primary_10_1016_j_neucom_2020_10_110
crossref_primary_10_1007_s11063_021_10726_0
crossref_primary_10_1038_s41598_024_80899_w
crossref_primary_10_1051_matecconf_201713900033
crossref_primary_10_1109_TNNLS_2021_3052896
crossref_primary_10_1109_TSMC_2018_2866843
crossref_primary_10_1007_s00521_017_3010_z
crossref_primary_10_1109_TNNLS_2023_3315332
crossref_primary_10_1155_2018_4573631
crossref_primary_10_1109_ACCESS_2019_2896983
crossref_primary_10_1016_j_matcom_2022_05_033
crossref_primary_10_3390_math10183335
crossref_primary_10_1016_j_neucom_2019_11_101
crossref_primary_10_1016_j_neucom_2019_07_044
crossref_primary_10_1016_j_neucom_2017_05_026
crossref_primary_10_1109_TETCI_2024_3377678
crossref_primary_10_3390_s22197481
crossref_primary_10_1016_j_eswa_2024_124994
crossref_primary_10_1109_TSMC_2019_2956961
crossref_primary_10_1109_TSMC_2020_3020145
crossref_primary_10_1016_j_jfranklin_2023_09_022
crossref_primary_10_1109_TNNLS_2017_2761443
crossref_primary_10_1049_cit2_12019
crossref_primary_10_1016_j_neucom_2021_06_089
crossref_primary_10_1016_j_neucom_2018_10_078
crossref_primary_10_1080_01605682_2022_2096501
crossref_primary_10_1109_TNNLS_2023_3242313
crossref_primary_10_1016_j_rcim_2021_102291
crossref_primary_10_3390_s20010188
crossref_primary_10_1016_j_cam_2017_06_017
crossref_primary_10_1109_TNNLS_2018_2853732
crossref_primary_10_1016_j_jfranklin_2022_05_021
crossref_primary_10_1016_j_neucom_2024_128136
crossref_primary_10_1109_TII_2019_2957186
crossref_primary_10_3390_s19081758
crossref_primary_10_1016_j_neucom_2022_09_043
crossref_primary_10_1109_TII_2024_3431046
Cites_doi 10.1109/TIE.2014.2316250
10.1109/TIE.2014.2365432
10.1049/iet-cta.2011.0573
10.1080/00207721.2014.909971
10.1109/TIE.2014.2345353
10.1109/TCYB.2014.2321390
10.1109/TIE.2014.2364459
10.1017/CBO9780511804441
10.1109/TIE.2015.2412524
10.1109/TIE.2013.2240635
10.1007/978-0-85729-148-6
10.1109/TNNLS.2015.2435014
10.1109/TNN.2006.881046
10.1109/TIE.2014.2327562
10.1002/oca.897
10.1016/j.neucom.2011.06.003
10.1109/TIE.2014.2378751
10.1109/TNN.2004.841779
10.1109/TIE.2011.2169636
10.1109/TIE.2014.2362095
10.1016/j.physleta.2009.03.011
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2016
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2016
DBID 97E
RIA
RIE
AAYXX
CITATION
7SP
8FD
L7M
DOI 10.1109/TIE.2016.2590379
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Electronics & Communications Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Technology Research Database
Advanced Technologies Database with Aerospace
Electronics & Communications Abstracts
DatabaseTitleList Technology Research Database

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1557-9948
EndPage 6988
ExternalDocumentID 4224039651
10_1109_TIE_2016_2590379
7508995
Genre orig-research
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 61473323; 61401385
  funderid: 10.13039/501100001809
– fundername: Science and Technology Program of Guangzhou, China
  grantid: 2014J4100057
– fundername: Departmental General Research Fund of Hong Kong Polytechnic University
  grantid: G.61.37.UA7L
– fundername: Hong Kong Research Grants Council Early Career Scheme
  grantid: 25214015
GroupedDBID -~X
.DC
0R~
29I
4.4
5GY
5VS
6IK
97E
9M8
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ACKIV
ACNCT
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
HZ~
H~9
IBMZZ
ICLAB
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
MS~
O9-
OCL
P2P
RIA
RIE
RNS
TAE
TN5
TWZ
VH1
VJK
AAYXX
CITATION
7SP
8FD
L7M
RIG
ID FETCH-LOGICAL-c291t-370b3c54c7e43ef30b3c40504da277c6af0b53a4715621e271e51f4f3398909c3
IEDL.DBID RIE
ISSN 0278-0046
IngestDate Mon Jun 30 10:22:53 EDT 2025
Wed Oct 01 00:26:49 EDT 2025
Thu Apr 24 22:52:06 EDT 2025
Tue Aug 26 16:42:46 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 11
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c291t-370b3c54c7e43ef30b3c40504da277c6af0b53a4715621e271e51f4f3398909c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 1831022060
PQPubID 85464
PageCount 11
ParticipantIDs ieee_primary_7508995
crossref_primary_10_1109_TIE_2016_2590379
proquest_journals_1831022060
crossref_citationtrail_10_1109_TIE_2016_2590379
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2016-Nov.
2016-11-00
20161101
PublicationDateYYYYMMDD 2016-11-01
PublicationDate_xml – month: 11
  year: 2016
  text: 2016-Nov.
PublicationDecade 2010
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on industrial electronics (1982)
PublicationTitleAbbrev TIE
PublicationYear 2016
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref12
ref15
ref14
ref11
ref10
ref2
ref1
ref17
ref16
ref19
piltan (ref25) 2012; 6
cai (ref24) 2010; 31
mathews (ref20) 2005
ref22
ref21
oppenheim (ref23) 1997
zhang (ref18) 2011
ref8
ref7
ref9
ref4
ref3
ref6
ref5
References_xml – ident: ref2
  doi: 10.1109/TIE.2014.2316250
– ident: ref16
  doi: 10.1109/TIE.2014.2365432
– ident: ref22
  doi: 10.1049/iet-cta.2011.0573
– ident: ref3
  doi: 10.1080/00207721.2014.909971
– ident: ref6
  doi: 10.1109/TIE.2014.2345353
– year: 1997
  ident: ref23
  publication-title: Signals & Systems
– ident: ref17
  doi: 10.1109/TCYB.2014.2321390
– ident: ref12
  doi: 10.1109/TIE.2014.2364459
– ident: ref19
  doi: 10.1017/CBO9780511804441
– ident: ref1
  doi: 10.1109/TIE.2015.2412524
– ident: ref7
  doi: 10.1109/TIE.2013.2240635
– volume: 6
  start-page: 106
  year: 2012
  ident: ref25
  article-title: Puma-560 robot manipulator position sliding mode control methods using MATLAB/SIMULINK and their integration into graduate/undergraduate nonlinear control, robotics and MATLAB courses
  publication-title: Int J Robot Autom
– ident: ref21
  doi: 10.1007/978-0-85729-148-6
– ident: ref13
  doi: 10.1109/TNNLS.2015.2435014
– ident: ref11
  doi: 10.1109/TNN.2006.881046
– ident: ref15
  doi: 10.1109/TIE.2014.2327562
– volume: 31
  start-page: 213
  year: 2010
  ident: ref24
  article-title: Bi-criteria optimal control of redundant robot manipulators using LVI-based primal-dual neural network
  publication-title: Optim Control Appl Methods
  doi: 10.1002/oca.897
– year: 2011
  ident: ref18
  publication-title: Zhang Neural Networks and Neural-Dynamic Method
– ident: ref9
  doi: 10.1016/j.neucom.2011.06.003
– ident: ref4
  doi: 10.1109/TIE.2014.2378751
– year: 2005
  ident: ref20
  publication-title: Numerical Methods Using MATLAB
– ident: ref10
  doi: 10.1109/TNN.2004.841779
– ident: ref8
  doi: 10.1109/TIE.2011.2169636
– ident: ref14
  doi: 10.1109/TIE.2014.2362095
– ident: ref5
  doi: 10.1016/j.physleta.2009.03.011
SSID ssj0014515
Score 2.6033738
Snippet For quadratic programming (QP), it is usually assumed that the solving process is free of measurement noises or that the denoising has been conducted before...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 6978
SubjectTerms Analytical models
Computational modeling
Mathematical model
Modified Zhang neural network (MZNN)
Neural networks
Noise measurement
Problem-solving
random noise
Real-time systems
redundancy resolution
theoretical analyses
time-varying quadratic programming (TVQP)
Title Modified ZNN for Time-Varying Quadratic Programming With Inherent Tolerance to Noises and Its Application to Kinematic Redundancy Resolution of Robot Manipulators
URI https://ieeexplore.ieee.org/document/7508995
https://www.proquest.com/docview/1831022060
Volume 63
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1557-9948
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014515
  issn: 0278-0046
  databaseCode: RIE
  dateStart: 19820101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELbanuDAqyAWCpoDFySy6zh2Uh8r1KoL2hVUW6i4RI4zUVctMdp4L_yc_tJ6nOxSAULc8rAdSzMef87MN8PYG5UfWiyqNBFFxROiViZVY_Kw4g0KK3NTcSI4z-b56bn8cKEudti7LRcGEWPwGY7pMvrya2fX9KtsEna3cDxQu2y3KHTP1dp6DKTqqxUIyhgbDn0blyTXk8X0mGK48nGA-jyjoK07W1CsqfKHIY67y8lDNtvMqw8quRqvfTW2P39L2fi_E3_EHgwwE456vXjMdrB9wu7fST64z25mrl42AYHCt_kcAnYFooMkX8yKmE_weW1q0g4Ln_oQru_09OvSX8K0vSSSoIeFu0YqzIHgHczdssMOTFvD1Hdw9MszTm8_hg_H7LBwhkRcI6MO5DvoNR9cA2euch5mpl3GmmJu1T1l5yfHi_enyVCxIbFCpz5YK15lVklboMywyeguIEIuayOKwuam4ZXKTNgQA-xKURQpqrSRTZbpQ821zZ6xvda1-JwB5agSwYoLLYVEVWsCFsaomhsVhlIjNtkIsbRDOnOqqnFdxmMN12UQe0liLwexj9jbbY8ffSqPf7TdJylu2w0CHLGDjZ6Uw1rvypRqtQnBc_7i771esnth7OiD4vqA7fnVGl8FKOOr11GHbwGX2fCc
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB6VcgAOFCiIhRbmwAWJ7DqOnTTHqmq1S5sIqi1UXCLHcdQVJUYb74Wfwy_Fk2S3FSDELQ87tjTjeWTmmwF4I-MDbZIyDHhSsoCglUFZq9ifeGW4FrEqGQGcszyeXoj3l_JyC95tsDDGmC75zIzpsovlV1av6FfZxGs37x7IO3BXeq8i6dFam5iBkH2_Ak41Y73btw5KsnQynx1TFlc89sY-iyht65YS6rqq_CGKO_1ysgPZemd9WsnX8cqVY_3jt6KN_7v1R_BwMDTxsOeMx7Blmifw4Fb5wV34mdlqUXsbFL_kOXrrFQkQEnxSS8I-4ceVqog_NH7ok7i-0dPPC3eFs-aKYIIO5_baUGsOg85ibhetaVE1Fc5ci4c3sXF6e-oX7urD4rkh6BqJdaToQc_7aGs8t6V1mKlm0XUVs8v2KVycHM-PpsHQsyHQPA2dl1esjLQUOjEiMnVEd94mZKJSPEl0rGpWykh5legNr9DwJDQyrEUdRelBylIdPYPtxjbmOSBVqeJejvNUcGFklZJpoZSsmJL-U3IEkzURCz0UNKe-GtdF59iwtPBkL4jsxUD2EbzdzPjeF_P4x9hdouJm3EDAEeyt-aQYTntbhNStjXMWsxd_n_Ua7k3n2VlxNstPX8J9WqfHM-7BtluuzL43bFz5quPnX11z8-A
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Modified+ZNN+for+Time-Varying+Quadratic+Programming+With+Inherent+Tolerance+to+Noises+and+Its+Application+to+Kinematic+Redundancy+Resolution+of+Robot+Manipulators&rft.jtitle=IEEE+transactions+on+industrial+electronics+%281982%29&rft.au=Long%2C+Jin&rft.au=Zhang%2C+Yunong&rft.au=Li%2C+Shuai&rft.au=Zhang%2C+Yinyan&rft.date=2016-11-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=0278-0046&rft.eissn=1557-9948&rft.volume=63&rft.issue=11&rft.spage=6978&rft_id=info:doi/10.1109%2FTIE.2016.2590379&rft.externalDBID=NO_FULL_TEXT&rft.externalDocID=4224039651
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0278-0046&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0278-0046&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0278-0046&client=summon