Learning ReLU Networks on Linearly Separable Data: Algorithm, Optimality, and Generalization
Neural networks with rectified linear unit (ReLU) activation functions (a.k.a. ReLU networks) have achieved great empirical success in various domains. Nonetheless, existing results for learning ReLU networks either pose assumptions on the underlying data distribution being, e.g., Gaussian, or requi...
Saved in:
| Published in | IEEE transactions on signal processing Vol. 67; no. 9; pp. 2357 - 2370 |
|---|---|
| Main Authors | , , |
| Format | Journal Article |
| Language | English |
| Published |
New York
IEEE
01.05.2019
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Subjects | |
| Online Access | Get full text |
| ISSN | 1053-587X 1941-0476 |
| DOI | 10.1109/TSP.2019.2904921 |
Cover
| Abstract | Neural networks with rectified linear unit (ReLU) activation functions (a.k.a. ReLU networks) have achieved great empirical success in various domains. Nonetheless, existing results for learning ReLU networks either pose assumptions on the underlying data distribution being, e.g., Gaussian, or require the network size and/or training size to be sufficiently large. In this context, the problem of learning a two-layer ReLU network is approached in a binary classification setting, where the data are linearly separable and a hinge loss criterion is adopted. Leveraging the power of random noise perturbation, this paper presents a novel stochastic gradient descent (SGD) algorithm, which can provably train any single-hidden-layer ReLU network to attain global optimality, despite the presence of infinitely many bad local minima, maxima, and saddle points in general. This result is the first of its kind, requiring no assumptions on the data distribution, training/network size, or initialization. Convergence of the resultant iterative algorithm to a global minimum is analyzed by establishing both an upper bound and a lower bound on the number of non-zero updates to be performed. Moreover, generalization guarantees are developed for ReLU networks trained with the novel SGD leveraging classic compression bounds. These guarantees highlight a key difference (at least in the worst case) between reliably learning a ReLU network as well as a leaky ReLU network in terms of sample complexity. Numerical tests using both synthetic data and real images validate the effectiveness of the algorithm and the practical merits of the theory. |
|---|---|
| AbstractList | Neural networks with rectified linear unit (ReLU) activation functions (a.k.a. ReLU networks) have achieved great empirical success in various domains. Nonetheless, existing results for learning ReLU networks either pose assumptions on the underlying data distribution being, e.g., Gaussian, or require the network size and/or training size to be sufficiently large. In this context, the problem of learning a two-layer ReLU network is approached in a binary classification setting, where the data are linearly separable and a hinge loss criterion is adopted. Leveraging the power of random noise perturbation, this paper presents a novel stochastic gradient descent (SGD) algorithm, which can provably train any single-hidden-layer ReLU network to attain global optimality, despite the presence of infinitely many bad local minima, maxima, and saddle points in general. This result is the first of its kind, requiring no assumptions on the data distribution, training/network size, or initialization. Convergence of the resultant iterative algorithm to a global minimum is analyzed by establishing both an upper bound and a lower bound on the number of non-zero updates to be performed. Moreover, generalization guarantees are developed for ReLU networks trained with the novel SGD leveraging classic compression bounds. These guarantees highlight a key difference (at least in the worst case) between reliably learning a ReLU network as well as a leaky ReLU network in terms of sample complexity. Numerical tests using both synthetic data and real images validate the effectiveness of the algorithm and the practical merits of the theory. |
| Author | Giannakis, Georgios B. Chen, Jie Wang, Gang |
| Author_xml | – sequence: 1 givenname: Gang orcidid: 0000-0002-7266-2412 surname: Wang fullname: Wang, Gang email: gangwang@umn.edu organization: Digital Technology Center and the Department of Electrical and Computer Engineering, University of Minnesota, Minneapolis, MN, USA – sequence: 2 givenname: Georgios B. orcidid: 0000-0001-8264-6056 surname: Giannakis fullname: Giannakis, Georgios B. email: georgios@umn.edu organization: Digital Technology Center and the Department of Electrical and Computer Engineering, University of Minnesota, Minneapolis, MN, USA – sequence: 3 givenname: Jie orcidid: 0000-0003-2449-9793 surname: Chen fullname: Chen, Jie email: chenjie@bit.edu.cn organization: State Key Laboratory of Intelligent Control and Decision of Complex Systems, Beijing Institute of Technology, Beijing, China |
| BookMark | eNp9kM9PwjAUxxuDiYDeTbw08cqwr-u61RtBRZNFjEDiwWQpXYfF0WFXYvCvdwjx4MHTey_v-3k_vh3UspXVCJ0D6QMQcTWdPPUpAdGngjBB4Qi1QTAICIt5q8lJFAZREr-coE5dLwkBxgRvo9dUS2eNXeBnnc7wo_aflXuvcWVxamzTK7d4otfSyXmp8Y308hoPykXljH9b9fB47c1KlsZve1jaHI-01a6pv6Q3lT1Fx4Usa312iF00u7udDu-DdDx6GA7SQFEBPghpQlk8L3heFFxzLiIV6gSEopIqxRNB81BISeU8zsNYcg4q4QUBWjCmOFVhF13u565d9bHRtc-W1cbZZmVGKQkZgZhAo-J7lXJVXTtdZMr4nzu9k6bMgGQ7J7PGyWznZHZwsgHJH3Dtmq_d9j_kYo8YrfWvPOExxBGE32pNgCQ |
| CODEN | ITPRED |
| CitedBy_id | crossref_primary_10_1016_j_ins_2022_03_046 crossref_primary_10_1007_s13042_024_02282_5 crossref_primary_10_1016_j_actaastro_2022_08_038 crossref_primary_10_3390_rs13091703 crossref_primary_10_1109_TSP_2019_2910475 crossref_primary_10_1109_TSP_2020_3039360 crossref_primary_10_1109_JETCAS_2022_3142051 crossref_primary_10_1016_j_energy_2021_121657 crossref_primary_10_1109_TSP_2024_3410291 crossref_primary_10_3390_rs13163338 crossref_primary_10_1016_j_eij_2023_05_009 crossref_primary_10_1109_JLT_2022_3157386 crossref_primary_10_1109_ACCESS_2020_3010496 crossref_primary_10_1016_j_comnet_2020_107230 crossref_primary_10_1049_hve_2019_0067 crossref_primary_10_1016_j_jrras_2024_100846 crossref_primary_10_1109_TNNLS_2020_3007399 crossref_primary_10_1109_TSP_2021_3087905 crossref_primary_10_1016_j_prosdent_2024_09_014 crossref_primary_10_1016_j_scitotenv_2022_154298 crossref_primary_10_3390_mi16010055 crossref_primary_10_1364_JOSAB_474443 crossref_primary_10_1016_j_jksuci_2022_04_016 crossref_primary_10_1137_21M1394205 crossref_primary_10_1007_s11063_023_11207_2 crossref_primary_10_1038_s41598_023_31319_y crossref_primary_10_1109_TSP_2021_3128723 crossref_primary_10_1109_TSP_2021_3094911 crossref_primary_10_1109_JSAIT_2024_3381869 crossref_primary_10_1016_j_oceaneng_2021_109435 crossref_primary_10_1177_09544062231206658 crossref_primary_10_1016_j_eswa_2022_118736 crossref_primary_10_1109_TSG_2024_3382740 crossref_primary_10_3389_fenrg_2022_1058378 crossref_primary_10_1007_s10489_020_02171_8 crossref_primary_10_1109_TEMC_2022_3174635 crossref_primary_10_1016_j_eswa_2023_122010 crossref_primary_10_1109_TCSII_2021_3124666 crossref_primary_10_1080_09544828_2023_2261095 crossref_primary_10_1002_cjce_25060 crossref_primary_10_3390_electronics12071631 crossref_primary_10_1016_j_jcp_2023_112581 crossref_primary_10_1088_1361_6501_ac1b43 crossref_primary_10_1007_s00245_020_09656_5 crossref_primary_10_1109_TVT_2023_3267500 crossref_primary_10_1007_s40305_020_00309_6 crossref_primary_10_1109_TNNLS_2021_3106044 crossref_primary_10_1109_JSEN_2021_3054744 crossref_primary_10_1007_s10915_022_02059_4 crossref_primary_10_1002_sta4_354 crossref_primary_10_1016_j_compag_2024_109198 crossref_primary_10_1364_AO_528259 crossref_primary_10_1109_ACCESS_2024_3461360 crossref_primary_10_1002_aisy_202100112 crossref_primary_10_3390_mi14010188 crossref_primary_10_1016_j_ins_2023_119953 crossref_primary_10_1109_JAS_2022_105923 crossref_primary_10_1016_j_cie_2022_107970 crossref_primary_10_3390_electronics12102252 crossref_primary_10_1016_j_apenergy_2020_116328 crossref_primary_10_1016_j_measurement_2023_113125 crossref_primary_10_1109_ACCESS_2020_3035157 crossref_primary_10_1109_TNNLS_2023_3306421 crossref_primary_10_1109_TRS_2024_3417519 crossref_primary_10_1109_TSP_2022_3224647 crossref_primary_10_1109_TMTT_2022_3223122 crossref_primary_10_1109_TPWRS_2023_3277076 crossref_primary_10_1287_moor_2021_1228 crossref_primary_10_1109_ACCESS_2021_3069566 crossref_primary_10_1016_j_engappai_2024_109299 crossref_primary_10_1109_TCCN_2019_2936193 crossref_primary_10_2174_2666145416666230420093435 crossref_primary_10_3390_e23060751 crossref_primary_10_1038_s43586_022_00125_7 crossref_primary_10_1287_opre_2021_2217 crossref_primary_10_1109_ACCESS_2019_2928843 crossref_primary_10_1109_LGRS_2020_3023706 crossref_primary_10_1109_TSP_2019_2926023 |
| Cites_doi | 10.1162/neco.1996.8.3.643 10.1109/TIT.2017.2756858 10.1017/CBO9781107298019 10.1109/72.809097 10.1137/1.9781611971309 10.1037/h0042519 10.1109/34.107014 10.1109/72.105415 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019 |
| DBID | 97E RIA RIE AAYXX CITATION 7SC 7SP 8FD JQ2 L7M L~C L~D |
| DOI | 10.1109/TSP.2019.2904921 |
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
| DatabaseTitle | CrossRef Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Technology Research Database |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1941-0476 |
| EndPage | 2370 |
| ExternalDocumentID | 10_1109_TSP_2019_2904921 8671751 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: National Science Foundation grantid: 1500713; 1514056; 1505970; 1711471 funderid: 10.13039/100000001 – fundername: National Natural Science Foundation of China grantid: U1509215; 61621063 funderid: 10.13039/501100001809 – fundername: Program for Changjiang Scholars and Innovative Research Team in University grantid: IRT1208 |
| GroupedDBID | -~X .DC 0R~ 29I 4.4 5GY 6IK 85S 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACIWK ACNCT AENEX AGQYO AHBIQ AJQPL AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 EBS EJD F5P HZ~ IFIPE IPLJI JAVBF LAI MS~ O9- OCL P2P RIA RIE RNS TAE TN5 AAYXX CITATION 7SC 7SP 8FD JQ2 L7M L~C L~D RIG |
| ID | FETCH-LOGICAL-c291t-328247bf6dff6e6695c3e819c2a2cc6892d39aa2ab7d37a661c86f012f44c62c3 |
| IEDL.DBID | RIE |
| ISSN | 1053-587X |
| IngestDate | Mon Jun 30 10:17:38 EDT 2025 Wed Oct 01 03:34:31 EDT 2025 Thu Apr 24 23:04:09 EDT 2025 Wed Aug 27 02:47:16 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 9 |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c291t-328247bf6dff6e6695c3e819c2a2cc6892d39aa2ab7d37a661c86f012f44c62c3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0001-8264-6056 0000-0002-7266-2412 0000-0003-2449-9793 |
| PQID | 2203401701 |
| PQPubID | 85478 |
| PageCount | 14 |
| ParticipantIDs | proquest_journals_2203401701 crossref_citationtrail_10_1109_TSP_2019_2904921 crossref_primary_10_1109_TSP_2019_2904921 ieee_primary_8671751 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2019-05-01 |
| PublicationDateYYYYMMDD | 2019-05-01 |
| PublicationDate_xml | – month: 05 year: 2019 text: 2019-05-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York |
| PublicationTitle | IEEE transactions on signal processing |
| PublicationTitleAbbrev | TSP |
| PublicationYear | 2019 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref35 ref36 ref31 ref11 ref32 ref10 liang (ref20) 2018 zhou (ref40) 2018 oymak (ref27) 2018 auer (ref2) 1995 soltanolkotabi (ref34) 2017 ref1 raghu (ref30) 2017; 70 nguyen (ref25) 0 zhang (ref38) 2018 dheeru (ref6) 2017 neyshabur (ref23) 2014 novikoff (ref26) 0; 12 du (ref41) 2018; 80 xu (ref37) 2018 kawaguchi (ref15) 2017 krizhevsky (ref16) 2012 oymak (ref28) 2019 brutzkus (ref4) 2018 nair (ref22) 2010 laurent (ref18) 2018; 80 nguyen (ref24) 2019 laurent (ref17) 2018 kalan (ref12) 2019 goodfellow (ref9) 2016; 1 kawaguchi (ref13) 2016 blum (ref3) 1988 poole (ref29) 2016 simonyan (ref33) 2014 kawaguchi (ref14) 2019 ref5 zhong (ref39) 2017; 70 dziugaite (ref7) 2007 li (ref19) 2018 ge (ref8) 2015; 40 littlestone (ref21) 1986 |
| References_xml | – start-page: 1097 year: 2012 ident: ref16 article-title: ImageNet classification with deep convolutional neural networks publication-title: Adv Neural Inf Process Syst – year: 2007 ident: ref7 article-title: Computing nonvacuous generalization bounds for deep (stochastic) neural networks with many more parameters than training data – volume: 70 start-page: 2847 year: 2017 ident: ref30 article-title: On the expressive power of deep neural networks publication-title: Proc IEEE Intern Conf on Machine Learning – year: 2018 ident: ref19 article-title: Over-parameterized deep neural networks have no strict local minima for any continuous activations – start-page: 807 year: 2010 ident: ref22 article-title: Rectified linear units improve restricted Boltzmann machines publication-title: Proc IEEE Intern Conf on Machine Learning – volume: 80 start-page: 1338 year: 2018 ident: ref41 article-title: Gradient descent learns one-hidden-layer CNN: Don't be afraid of spurious local minima publication-title: Proc IEEE Intern Conf on Machine Learning – start-page: 494 year: 1988 ident: ref3 article-title: Training a 3-node neural network is NP-complete publication-title: Adv Neural Inf Process Syst – year: 2017 ident: ref15 article-title: Generalization in deep learning – year: 2018 ident: ref38 article-title: Real-time power system state estimation and forecasting via deep neural networks – year: 2018 ident: ref20 article-title: Adding one neuron can eliminate all bad local minima – volume: 12 start-page: 615 year: 0 ident: ref26 article-title: On convergence proofs for perceptrons publication-title: Proc Symp Math Theory Automata – ident: ref1 doi: 10.1162/neco.1996.8.3.643 – volume: 70 start-page: 4140 year: 2017 ident: ref39 article-title: Recovery guarantees for one-hidden-layer neural networks publication-title: Proc IEEE Intern Conf on Machine Learning – volume: 40 start-page: 797 year: 2015 ident: ref8 article-title: Escaping from saddle points-Online stochastic gradient for tensor decomposition publication-title: Proc Conf Learn Theory – ident: ref36 doi: 10.1109/TIT.2017.2756858 – start-page: 3727 year: 0 ident: ref25 article-title: Optimization landscape and expressivity of deep CNNs publication-title: Proc Int Conf Mach Learn – ident: ref32 doi: 10.1017/CBO9781107298019 – volume: 1 year: 2016 ident: ref9 publication-title: Deep Learning – year: 2018 ident: ref37 article-title: Convergence of SGD in learning ReLU models with separable data – year: 2019 ident: ref12 article-title: Fitting ReLUs via SGD and Quantized SGD – start-page: 1 year: 2018 ident: ref4 article-title: SGD learns over-parameterized networks that provably generalize on linearly separable data publication-title: Proc Int Conf on Learning Rep – year: 2018 ident: ref27 article-title: Stochastic gradient descent learns state equations with nonlinear activations – year: 2014 ident: ref23 article-title: In search of the real inductive bias: On the role of implicit regularization in deep learning – year: 1986 ident: ref21 article-title: Relating data compression and learnability – year: 2019 ident: ref14 article-title: Elimination of all bad local minima in deep learning – volume: 80 start-page: 2914 year: 2018 ident: ref18 article-title: The multilinear structure of ReLU networks publication-title: Proc IEEE Intern Conf on Machine Learning – ident: ref35 doi: 10.1109/72.809097 – year: 2017 ident: ref6 article-title: UCI machine learning repository – ident: ref5 doi: 10.1137/1.9781611971309 – ident: ref31 doi: 10.1037/h0042519 – start-page: 2908 year: 2018 ident: ref17 article-title: Deep linear neural networks with arbitrary loss: All local minima are global publication-title: Proc Int Conf Mach Learn – ident: ref10 doi: 10.1109/34.107014 – start-page: 3360 year: 2016 ident: ref29 article-title: Exponential expressivity in deep neural networks through transient chaos publication-title: Adv Neural Inf Process Syst – year: 2014 ident: ref33 article-title: Very deep convolutional networks for large-scale image recognition – start-page: 586 year: 2016 ident: ref13 article-title: Deep learning without poor local minima publication-title: Adv Neural Inf Process Syst – start-page: 316 year: 1995 ident: ref2 article-title: Exponentially many local minima for single neurons publication-title: Adv Neural Inf Process Syst – year: 2019 ident: ref24 article-title: On connected sublevel sets in deep learning – start-page: 2007 year: 2017 ident: ref34 article-title: Learning ReLU via gradient descent publication-title: Adv Neural Inf Process Syst – start-page: 1 year: 2018 ident: ref40 article-title: Critical points of linear neural networks: Analytical forms and landscape properties publication-title: Proc Int Conf on Learning Rep – ident: ref11 doi: 10.1109/72.105415 – year: 2019 ident: ref28 article-title: Towards moderate overparameterization: Global convergence guarantees for training shallow neural networks |
| SSID | ssj0014496 |
| Score | 2.621158 |
| Snippet | Neural networks with rectified linear unit (ReLU) activation functions (a.k.a. ReLU networks) have achieved great empirical success in various domains.... |
| SourceID | proquest crossref ieee |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 2357 |
| SubjectTerms | Algorithms Artificial neural networks Computational modeling Deep learning Domains Empirical analysis escaping local minima Fasteners generalization global optimality Iterative algorithms Iterative methods Lower bounds Machine learning Maxima Neural networks Neurons Optimization Random noise Saddle points Signal processing algorithms stochastic gradient descent Training Upper bounds |
| Title | Learning ReLU Networks on Linearly Separable Data: Algorithm, Optimality, and Generalization |
| URI | https://ieeexplore.ieee.org/document/8671751 https://www.proquest.com/docview/2203401701 |
| Volume | 67 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 1941-0476 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0014496 issn: 1053-587X databaseCode: RIE dateStart: 19910101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NS8MwFA-6kx78muL8IgcvwtqtSZY03kQdIjrFOdhBKGmSTnG24rqLf71Jmg2_EG-FJiW8l-T9Xt97vwfAoWI4FTjKjFtCaUCkcVAEVVGAtTRgggqBXYX3dY9eDMjlsDNcAM15LYzW2iWf6dA-uli-KuTU_iprWS42ZuulF1lMq1qtecSAENeLy8AFHHRiNpyFJNu8dd-_tTlcPETc4GEUfTFBrqfKj4vYWZfuKrieratKKnkOp2UayvdvlI3_XfgaWPEwE55U-2IdLOh8Ayx_Ih-sgwdPrTqCd_pqAHtVPvgEFjk0Dqq2xMewry01eDrW8EyU4hiejEfF21P5-NKEN-aueXEgvglFrqDnr_ZlnZtg0D2_P70IfK-FQCIelQE2rhdhaUZVllFNKe9IrA1akEggKWnMkcJcCCRSpjATxqrLmGbGumWESIok3gK1vMj1NoCSyQjJ2GIjZd5lqVF6jDGLOEkVVboBWjPxJ9ITkdt-GOPEOSRtnhiFJVZhiVdYAxzNZ7xWJBx_jK1b-c_HedE3wN5Mw4k_pZMEoTYmlkAo2vl91i5Yst-uEhz3QK18m-p9A0LK9MDtvg_YQteB |
| linkProvider | IEEE |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lj9owEB6h7aHdQ190tWxp68NeKhEgtuPEvaG2iHaBXRWQOFSKHNuhVSGsIFz662s7JupLq71Fiq1YM7bnm8zMNwCXKiaZIGFu3BLGAiqNgyKYCgOipQETTAjiKrwnUzZa0M_LaNmATl0Lo7V2yWe6ax9dLF9t5cH-KutZLrbY1ks_iCilUVWtVccMKHXduAxgIEGUxMtjULLPe_PZjc3i4l3MDSLG4R9GyHVV-ecqdvZl-AQmx5VVaSU_uocy68qff5E23nfpT-GxB5poUO2MZ9DQxXM4_Y1-sAlfPbnqCn3R4wWaVhnhe7QtkHFRtaU-RjNtycGztUYfRCneocF6td19L79tOuja3DYbB-M7SBQKeQZrX9j5AhbDj_P3o8B3Wwgk5mEZEON80TjLmcpzphnjkSTa4AWJBZaSJRwrwoXAIosViYWx6zJhubFvOaWSYUnO4KTYFvockIxliGVi0ZEy7_LMqD0hJA45zRRTugW9o_hT6anIbUeMdepckj5PjcJSq7DUK6wFb-sZtxUNxx1jm1b-9Tgv-ha0jxpO_Tndpxj3CbUUQuHF_2e9gYej-WScjj9Nr17CI_udKt2xDSfl7qBfGUhSZq_dTvwFSqHazg |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Learning+ReLU+Networks+on+Linearly+Separable+Data%3A+Algorithm%2C+Optimality%2C+and+Generalization&rft.jtitle=IEEE+transactions+on+signal+processing&rft.au=Wang%2C+Gang&rft.au=Giannakis%2C+Georgios+B&rft.au=Chen%2C+Jie&rft.date=2019-05-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=1053-587X&rft.eissn=1941-0476&rft.volume=67&rft.issue=9&rft.spage=2357&rft_id=info:doi/10.1109%2FTSP.2019.2904921&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1053-587X&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1053-587X&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1053-587X&client=summon |