Learning ReLU Networks on Linearly Separable Data: Algorithm, Optimality, and Generalization

Neural networks with rectified linear unit (ReLU) activation functions (a.k.a. ReLU networks) have achieved great empirical success in various domains. Nonetheless, existing results for learning ReLU networks either pose assumptions on the underlying data distribution being, e.g., Gaussian, or requi...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on signal processing Vol. 67; no. 9; pp. 2357 - 2370
Main Authors Wang, Gang, Giannakis, Georgios B., Chen, Jie
Format Journal Article
LanguageEnglish
Published New York IEEE 01.05.2019
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN1053-587X
1941-0476
DOI10.1109/TSP.2019.2904921

Cover

Abstract Neural networks with rectified linear unit (ReLU) activation functions (a.k.a. ReLU networks) have achieved great empirical success in various domains. Nonetheless, existing results for learning ReLU networks either pose assumptions on the underlying data distribution being, e.g., Gaussian, or require the network size and/or training size to be sufficiently large. In this context, the problem of learning a two-layer ReLU network is approached in a binary classification setting, where the data are linearly separable and a hinge loss criterion is adopted. Leveraging the power of random noise perturbation, this paper presents a novel stochastic gradient descent (SGD) algorithm, which can provably train any single-hidden-layer ReLU network to attain global optimality, despite the presence of infinitely many bad local minima, maxima, and saddle points in general. This result is the first of its kind, requiring no assumptions on the data distribution, training/network size, or initialization. Convergence of the resultant iterative algorithm to a global minimum is analyzed by establishing both an upper bound and a lower bound on the number of non-zero updates to be performed. Moreover, generalization guarantees are developed for ReLU networks trained with the novel SGD leveraging classic compression bounds. These guarantees highlight a key difference (at least in the worst case) between reliably learning a ReLU network as well as a leaky ReLU network in terms of sample complexity. Numerical tests using both synthetic data and real images validate the effectiveness of the algorithm and the practical merits of the theory.
AbstractList Neural networks with rectified linear unit (ReLU) activation functions (a.k.a. ReLU networks) have achieved great empirical success in various domains. Nonetheless, existing results for learning ReLU networks either pose assumptions on the underlying data distribution being, e.g., Gaussian, or require the network size and/or training size to be sufficiently large. In this context, the problem of learning a two-layer ReLU network is approached in a binary classification setting, where the data are linearly separable and a hinge loss criterion is adopted. Leveraging the power of random noise perturbation, this paper presents a novel stochastic gradient descent (SGD) algorithm, which can provably train any single-hidden-layer ReLU network to attain global optimality, despite the presence of infinitely many bad local minima, maxima, and saddle points in general. This result is the first of its kind, requiring no assumptions on the data distribution, training/network size, or initialization. Convergence of the resultant iterative algorithm to a global minimum is analyzed by establishing both an upper bound and a lower bound on the number of non-zero updates to be performed. Moreover, generalization guarantees are developed for ReLU networks trained with the novel SGD leveraging classic compression bounds. These guarantees highlight a key difference (at least in the worst case) between reliably learning a ReLU network as well as a leaky ReLU network in terms of sample complexity. Numerical tests using both synthetic data and real images validate the effectiveness of the algorithm and the practical merits of the theory.
Author Giannakis, Georgios B.
Chen, Jie
Wang, Gang
Author_xml – sequence: 1
  givenname: Gang
  orcidid: 0000-0002-7266-2412
  surname: Wang
  fullname: Wang, Gang
  email: gangwang@umn.edu
  organization: Digital Technology Center and the Department of Electrical and Computer Engineering, University of Minnesota, Minneapolis, MN, USA
– sequence: 2
  givenname: Georgios B.
  orcidid: 0000-0001-8264-6056
  surname: Giannakis
  fullname: Giannakis, Georgios B.
  email: georgios@umn.edu
  organization: Digital Technology Center and the Department of Electrical and Computer Engineering, University of Minnesota, Minneapolis, MN, USA
– sequence: 3
  givenname: Jie
  orcidid: 0000-0003-2449-9793
  surname: Chen
  fullname: Chen, Jie
  email: chenjie@bit.edu.cn
  organization: State Key Laboratory of Intelligent Control and Decision of Complex Systems, Beijing Institute of Technology, Beijing, China
BookMark eNp9kM9PwjAUxxuDiYDeTbw08cqwr-u61RtBRZNFjEDiwWQpXYfF0WFXYvCvdwjx4MHTey_v-3k_vh3UspXVCJ0D6QMQcTWdPPUpAdGngjBB4Qi1QTAICIt5q8lJFAZREr-coE5dLwkBxgRvo9dUS2eNXeBnnc7wo_aflXuvcWVxamzTK7d4otfSyXmp8Y308hoPykXljH9b9fB47c1KlsZve1jaHI-01a6pv6Q3lT1Fx4Usa312iF00u7udDu-DdDx6GA7SQFEBPghpQlk8L3heFFxzLiIV6gSEopIqxRNB81BISeU8zsNYcg4q4QUBWjCmOFVhF13u565d9bHRtc-W1cbZZmVGKQkZgZhAo-J7lXJVXTtdZMr4nzu9k6bMgGQ7J7PGyWznZHZwsgHJH3Dtmq_d9j_kYo8YrfWvPOExxBGE32pNgCQ
CODEN ITPRED
CitedBy_id crossref_primary_10_1016_j_ins_2022_03_046
crossref_primary_10_1007_s13042_024_02282_5
crossref_primary_10_1016_j_actaastro_2022_08_038
crossref_primary_10_3390_rs13091703
crossref_primary_10_1109_TSP_2019_2910475
crossref_primary_10_1109_TSP_2020_3039360
crossref_primary_10_1109_JETCAS_2022_3142051
crossref_primary_10_1016_j_energy_2021_121657
crossref_primary_10_1109_TSP_2024_3410291
crossref_primary_10_3390_rs13163338
crossref_primary_10_1016_j_eij_2023_05_009
crossref_primary_10_1109_JLT_2022_3157386
crossref_primary_10_1109_ACCESS_2020_3010496
crossref_primary_10_1016_j_comnet_2020_107230
crossref_primary_10_1049_hve_2019_0067
crossref_primary_10_1016_j_jrras_2024_100846
crossref_primary_10_1109_TNNLS_2020_3007399
crossref_primary_10_1109_TSP_2021_3087905
crossref_primary_10_1016_j_prosdent_2024_09_014
crossref_primary_10_1016_j_scitotenv_2022_154298
crossref_primary_10_3390_mi16010055
crossref_primary_10_1364_JOSAB_474443
crossref_primary_10_1016_j_jksuci_2022_04_016
crossref_primary_10_1137_21M1394205
crossref_primary_10_1007_s11063_023_11207_2
crossref_primary_10_1038_s41598_023_31319_y
crossref_primary_10_1109_TSP_2021_3128723
crossref_primary_10_1109_TSP_2021_3094911
crossref_primary_10_1109_JSAIT_2024_3381869
crossref_primary_10_1016_j_oceaneng_2021_109435
crossref_primary_10_1177_09544062231206658
crossref_primary_10_1016_j_eswa_2022_118736
crossref_primary_10_1109_TSG_2024_3382740
crossref_primary_10_3389_fenrg_2022_1058378
crossref_primary_10_1007_s10489_020_02171_8
crossref_primary_10_1109_TEMC_2022_3174635
crossref_primary_10_1016_j_eswa_2023_122010
crossref_primary_10_1109_TCSII_2021_3124666
crossref_primary_10_1080_09544828_2023_2261095
crossref_primary_10_1002_cjce_25060
crossref_primary_10_3390_electronics12071631
crossref_primary_10_1016_j_jcp_2023_112581
crossref_primary_10_1088_1361_6501_ac1b43
crossref_primary_10_1007_s00245_020_09656_5
crossref_primary_10_1109_TVT_2023_3267500
crossref_primary_10_1007_s40305_020_00309_6
crossref_primary_10_1109_TNNLS_2021_3106044
crossref_primary_10_1109_JSEN_2021_3054744
crossref_primary_10_1007_s10915_022_02059_4
crossref_primary_10_1002_sta4_354
crossref_primary_10_1016_j_compag_2024_109198
crossref_primary_10_1364_AO_528259
crossref_primary_10_1109_ACCESS_2024_3461360
crossref_primary_10_1002_aisy_202100112
crossref_primary_10_3390_mi14010188
crossref_primary_10_1016_j_ins_2023_119953
crossref_primary_10_1109_JAS_2022_105923
crossref_primary_10_1016_j_cie_2022_107970
crossref_primary_10_3390_electronics12102252
crossref_primary_10_1016_j_apenergy_2020_116328
crossref_primary_10_1016_j_measurement_2023_113125
crossref_primary_10_1109_ACCESS_2020_3035157
crossref_primary_10_1109_TNNLS_2023_3306421
crossref_primary_10_1109_TRS_2024_3417519
crossref_primary_10_1109_TSP_2022_3224647
crossref_primary_10_1109_TMTT_2022_3223122
crossref_primary_10_1109_TPWRS_2023_3277076
crossref_primary_10_1287_moor_2021_1228
crossref_primary_10_1109_ACCESS_2021_3069566
crossref_primary_10_1016_j_engappai_2024_109299
crossref_primary_10_1109_TCCN_2019_2936193
crossref_primary_10_2174_2666145416666230420093435
crossref_primary_10_3390_e23060751
crossref_primary_10_1038_s43586_022_00125_7
crossref_primary_10_1287_opre_2021_2217
crossref_primary_10_1109_ACCESS_2019_2928843
crossref_primary_10_1109_LGRS_2020_3023706
crossref_primary_10_1109_TSP_2019_2926023
Cites_doi 10.1162/neco.1996.8.3.643
10.1109/TIT.2017.2756858
10.1017/CBO9781107298019
10.1109/72.809097
10.1137/1.9781611971309
10.1037/h0042519
10.1109/34.107014
10.1109/72.105415
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
DOI 10.1109/TSP.2019.2904921
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Technology Research Database
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1941-0476
EndPage 2370
ExternalDocumentID 10_1109_TSP_2019_2904921
8671751
Genre orig-research
GrantInformation_xml – fundername: National Science Foundation
  grantid: 1500713; 1514056; 1505970; 1711471
  funderid: 10.13039/100000001
– fundername: National Natural Science Foundation of China
  grantid: U1509215; 61621063
  funderid: 10.13039/501100001809
– fundername: Program for Changjiang Scholars and Innovative Research Team in University
  grantid: IRT1208
GroupedDBID -~X
.DC
0R~
29I
4.4
5GY
6IK
85S
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACIWK
ACNCT
AENEX
AGQYO
AHBIQ
AJQPL
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
EBS
EJD
F5P
HZ~
IFIPE
IPLJI
JAVBF
LAI
MS~
O9-
OCL
P2P
RIA
RIE
RNS
TAE
TN5
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
RIG
ID FETCH-LOGICAL-c291t-328247bf6dff6e6695c3e819c2a2cc6892d39aa2ab7d37a661c86f012f44c62c3
IEDL.DBID RIE
ISSN 1053-587X
IngestDate Mon Jun 30 10:17:38 EDT 2025
Wed Oct 01 03:34:31 EDT 2025
Thu Apr 24 23:04:09 EDT 2025
Wed Aug 27 02:47:16 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 9
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c291t-328247bf6dff6e6695c3e819c2a2cc6892d39aa2ab7d37a661c86f012f44c62c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-8264-6056
0000-0002-7266-2412
0000-0003-2449-9793
PQID 2203401701
PQPubID 85478
PageCount 14
ParticipantIDs proquest_journals_2203401701
crossref_citationtrail_10_1109_TSP_2019_2904921
crossref_primary_10_1109_TSP_2019_2904921
ieee_primary_8671751
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-05-01
PublicationDateYYYYMMDD 2019-05-01
PublicationDate_xml – month: 05
  year: 2019
  text: 2019-05-01
  day: 01
PublicationDecade 2010
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on signal processing
PublicationTitleAbbrev TSP
PublicationYear 2019
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref35
ref36
ref31
ref11
ref32
ref10
liang (ref20) 2018
zhou (ref40) 2018
oymak (ref27) 2018
auer (ref2) 1995
soltanolkotabi (ref34) 2017
ref1
raghu (ref30) 2017; 70
nguyen (ref25) 0
zhang (ref38) 2018
dheeru (ref6) 2017
neyshabur (ref23) 2014
novikoff (ref26) 0; 12
du (ref41) 2018; 80
xu (ref37) 2018
kawaguchi (ref15) 2017
krizhevsky (ref16) 2012
oymak (ref28) 2019
brutzkus (ref4) 2018
nair (ref22) 2010
laurent (ref18) 2018; 80
nguyen (ref24) 2019
laurent (ref17) 2018
kalan (ref12) 2019
goodfellow (ref9) 2016; 1
kawaguchi (ref13) 2016
blum (ref3) 1988
poole (ref29) 2016
simonyan (ref33) 2014
kawaguchi (ref14) 2019
ref5
zhong (ref39) 2017; 70
dziugaite (ref7) 2007
li (ref19) 2018
ge (ref8) 2015; 40
littlestone (ref21) 1986
References_xml – start-page: 1097
  year: 2012
  ident: ref16
  article-title: ImageNet classification with deep convolutional neural networks
  publication-title: Adv Neural Inf Process Syst
– year: 2007
  ident: ref7
  article-title: Computing nonvacuous generalization bounds for deep (stochastic) neural networks with many more parameters than training data
– volume: 70
  start-page: 2847
  year: 2017
  ident: ref30
  article-title: On the expressive power of deep neural networks
  publication-title: Proc IEEE Intern Conf on Machine Learning
– year: 2018
  ident: ref19
  article-title: Over-parameterized deep neural networks have no strict local minima for any continuous activations
– start-page: 807
  year: 2010
  ident: ref22
  article-title: Rectified linear units improve restricted Boltzmann machines
  publication-title: Proc IEEE Intern Conf on Machine Learning
– volume: 80
  start-page: 1338
  year: 2018
  ident: ref41
  article-title: Gradient descent learns one-hidden-layer CNN: Don't be afraid of spurious local minima
  publication-title: Proc IEEE Intern Conf on Machine Learning
– start-page: 494
  year: 1988
  ident: ref3
  article-title: Training a 3-node neural network is NP-complete
  publication-title: Adv Neural Inf Process Syst
– year: 2017
  ident: ref15
  article-title: Generalization in deep learning
– year: 2018
  ident: ref38
  article-title: Real-time power system state estimation and forecasting via deep neural networks
– year: 2018
  ident: ref20
  article-title: Adding one neuron can eliminate all bad local minima
– volume: 12
  start-page: 615
  year: 0
  ident: ref26
  article-title: On convergence proofs for perceptrons
  publication-title: Proc Symp Math Theory Automata
– ident: ref1
  doi: 10.1162/neco.1996.8.3.643
– volume: 70
  start-page: 4140
  year: 2017
  ident: ref39
  article-title: Recovery guarantees for one-hidden-layer neural networks
  publication-title: Proc IEEE Intern Conf on Machine Learning
– volume: 40
  start-page: 797
  year: 2015
  ident: ref8
  article-title: Escaping from saddle points-Online stochastic gradient for tensor decomposition
  publication-title: Proc Conf Learn Theory
– ident: ref36
  doi: 10.1109/TIT.2017.2756858
– start-page: 3727
  year: 0
  ident: ref25
  article-title: Optimization landscape and expressivity of deep CNNs
  publication-title: Proc Int Conf Mach Learn
– ident: ref32
  doi: 10.1017/CBO9781107298019
– volume: 1
  year: 2016
  ident: ref9
  publication-title: Deep Learning
– year: 2018
  ident: ref37
  article-title: Convergence of SGD in learning ReLU models with separable data
– year: 2019
  ident: ref12
  article-title: Fitting ReLUs via SGD and Quantized SGD
– start-page: 1
  year: 2018
  ident: ref4
  article-title: SGD learns over-parameterized networks that provably generalize on linearly separable data
  publication-title: Proc Int Conf on Learning Rep
– year: 2018
  ident: ref27
  article-title: Stochastic gradient descent learns state equations with nonlinear activations
– year: 2014
  ident: ref23
  article-title: In search of the real inductive bias: On the role of implicit regularization in deep learning
– year: 1986
  ident: ref21
  article-title: Relating data compression and learnability
– year: 2019
  ident: ref14
  article-title: Elimination of all bad local minima in deep learning
– volume: 80
  start-page: 2914
  year: 2018
  ident: ref18
  article-title: The multilinear structure of ReLU networks
  publication-title: Proc IEEE Intern Conf on Machine Learning
– ident: ref35
  doi: 10.1109/72.809097
– year: 2017
  ident: ref6
  article-title: UCI machine learning repository
– ident: ref5
  doi: 10.1137/1.9781611971309
– ident: ref31
  doi: 10.1037/h0042519
– start-page: 2908
  year: 2018
  ident: ref17
  article-title: Deep linear neural networks with arbitrary loss: All local minima are global
  publication-title: Proc Int Conf Mach Learn
– ident: ref10
  doi: 10.1109/34.107014
– start-page: 3360
  year: 2016
  ident: ref29
  article-title: Exponential expressivity in deep neural networks through transient chaos
  publication-title: Adv Neural Inf Process Syst
– year: 2014
  ident: ref33
  article-title: Very deep convolutional networks for large-scale image recognition
– start-page: 586
  year: 2016
  ident: ref13
  article-title: Deep learning without poor local minima
  publication-title: Adv Neural Inf Process Syst
– start-page: 316
  year: 1995
  ident: ref2
  article-title: Exponentially many local minima for single neurons
  publication-title: Adv Neural Inf Process Syst
– year: 2019
  ident: ref24
  article-title: On connected sublevel sets in deep learning
– start-page: 2007
  year: 2017
  ident: ref34
  article-title: Learning ReLU via gradient descent
  publication-title: Adv Neural Inf Process Syst
– start-page: 1
  year: 2018
  ident: ref40
  article-title: Critical points of linear neural networks: Analytical forms and landscape properties
  publication-title: Proc Int Conf on Learning Rep
– ident: ref11
  doi: 10.1109/72.105415
– year: 2019
  ident: ref28
  article-title: Towards moderate overparameterization: Global convergence guarantees for training shallow neural networks
SSID ssj0014496
Score 2.621158
Snippet Neural networks with rectified linear unit (ReLU) activation functions (a.k.a. ReLU networks) have achieved great empirical success in various domains....
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 2357
SubjectTerms Algorithms
Artificial neural networks
Computational modeling
Deep learning
Domains
Empirical analysis
escaping local minima
Fasteners
generalization
global optimality
Iterative algorithms
Iterative methods
Lower bounds
Machine learning
Maxima
Neural networks
Neurons
Optimization
Random noise
Saddle points
Signal processing algorithms
stochastic gradient descent
Training
Upper bounds
Title Learning ReLU Networks on Linearly Separable Data: Algorithm, Optimality, and Generalization
URI https://ieeexplore.ieee.org/document/8671751
https://www.proquest.com/docview/2203401701
Volume 67
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1941-0476
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014496
  issn: 1053-587X
  databaseCode: RIE
  dateStart: 19910101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NS8MwFA-6kx78muL8IgcvwtqtSZY03kQdIjrFOdhBKGmSTnG24rqLf71Jmg2_EG-FJiW8l-T9Xt97vwfAoWI4FTjKjFtCaUCkcVAEVVGAtTRgggqBXYX3dY9eDMjlsDNcAM15LYzW2iWf6dA-uli-KuTU_iprWS42ZuulF1lMq1qtecSAENeLy8AFHHRiNpyFJNu8dd-_tTlcPETc4GEUfTFBrqfKj4vYWZfuKrieratKKnkOp2UayvdvlI3_XfgaWPEwE55U-2IdLOh8Ayx_Ih-sgwdPrTqCd_pqAHtVPvgEFjk0Dqq2xMewry01eDrW8EyU4hiejEfF21P5-NKEN-aueXEgvglFrqDnr_ZlnZtg0D2_P70IfK-FQCIelQE2rhdhaUZVllFNKe9IrA1akEggKWnMkcJcCCRSpjATxqrLmGbGumWESIok3gK1vMj1NoCSyQjJ2GIjZd5lqVF6jDGLOEkVVboBWjPxJ9ITkdt-GOPEOSRtnhiFJVZhiVdYAxzNZ7xWJBx_jK1b-c_HedE3wN5Mw4k_pZMEoTYmlkAo2vl91i5Yst-uEhz3QK18m-p9A0LK9MDtvg_YQteB
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lj9owEB6h7aHdQ190tWxp68NeKhEgtuPEvaG2iHaBXRWQOFSKHNuhVSGsIFz662s7JupLq71Fiq1YM7bnm8zMNwCXKiaZIGFu3BLGAiqNgyKYCgOipQETTAjiKrwnUzZa0M_LaNmATl0Lo7V2yWe6ax9dLF9t5cH-KutZLrbY1ks_iCilUVWtVccMKHXduAxgIEGUxMtjULLPe_PZjc3i4l3MDSLG4R9GyHVV-ecqdvZl-AQmx5VVaSU_uocy68qff5E23nfpT-GxB5poUO2MZ9DQxXM4_Y1-sAlfPbnqCn3R4wWaVhnhe7QtkHFRtaU-RjNtycGztUYfRCneocF6td19L79tOuja3DYbB-M7SBQKeQZrX9j5AhbDj_P3o8B3Wwgk5mEZEON80TjLmcpzphnjkSTa4AWJBZaSJRwrwoXAIosViYWx6zJhubFvOaWSYUnO4KTYFvockIxliGVi0ZEy7_LMqD0hJA45zRRTugW9o_hT6anIbUeMdepckj5PjcJSq7DUK6wFb-sZtxUNxx1jm1b-9Tgv-ha0jxpO_Tndpxj3CbUUQuHF_2e9gYej-WScjj9Nr17CI_udKt2xDSfl7qBfGUhSZq_dTvwFSqHazg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Learning+ReLU+Networks+on+Linearly+Separable+Data%3A+Algorithm%2C+Optimality%2C+and+Generalization&rft.jtitle=IEEE+transactions+on+signal+processing&rft.au=Wang%2C+Gang&rft.au=Giannakis%2C+Georgios+B&rft.au=Chen%2C+Jie&rft.date=2019-05-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=1053-587X&rft.eissn=1941-0476&rft.volume=67&rft.issue=9&rft.spage=2357&rft_id=info:doi/10.1109%2FTSP.2019.2904921&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1053-587X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1053-587X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1053-587X&client=summon