A Polynomial-Time Algorithm for Pliable Index Coding
In pliable index coding, we consider a server with <inline-formula> <tex-math notation="LaTeX">m </tex-math></inline-formula> messages and <inline-formula> <tex-math notation="LaTeX">n </tex-math></inline-formula> clients, where eac...
Saved in:
| Published in | IEEE transactions on information theory Vol. 64; no. 2; pp. 979 - 999 |
|---|---|
| Main Authors | , |
| Format | Journal Article |
| Language | English |
| Published |
New York
IEEE
01.02.2018
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Subjects | |
| Online Access | Get full text |
| ISSN | 0018-9448 1557-9654 |
| DOI | 10.1109/TIT.2017.2752088 |
Cover
| Abstract | In pliable index coding, we consider a server with <inline-formula> <tex-math notation="LaTeX">m </tex-math></inline-formula> messages and <inline-formula> <tex-math notation="LaTeX">n </tex-math></inline-formula> clients, where each client has as side information a subset of the messages. We seek to minimize the number of broadcast transmissions, so that each client can recover any one unknown message she does not already have. Previous work has shown that the pliable index coding problem is NP-hard and requires at most <inline-formula> <tex-math notation="LaTeX">\mathcal {O}(\log ^{2}(n)) </tex-math></inline-formula> broadcast transmissions, which indicates exponential savings over the conventional index coding that requires in the worst case <inline-formula> <tex-math notation="LaTeX">\mathcal {O}(n) </tex-math></inline-formula> transmissions. In this paper, building on a decoding criterion that we propose, we first design a deterministic polynomial-time algorithm that can realize the exponential benefits, by achieving, in the worst case, a performance upper bounded by <inline-formula> <tex-math notation="LaTeX">\mathcal {O}(\log ^{2}(n)) </tex-math></inline-formula> broadcast transmissions. We extend our algorithm to the <inline-formula> <tex-math notation="LaTeX">t </tex-math></inline-formula>-requests case, where each client requires <inline-formula> <tex-math notation="LaTeX">t </tex-math></inline-formula> unknown messages that she does not have, and show that our algorithm requires at most <inline-formula> <tex-math notation="LaTeX">\mathcal {O}(t\log (n)+\log ^{2}(n)) </tex-math></inline-formula> broadcast transmissions. We construct lower bound instances that require at least <inline-formula> <tex-math notation="LaTeX">\Omega (\log (n)) </tex-math></inline-formula> transmissions for linear pliable index coding and at least <inline-formula> <tex-math notation="LaTeX">\Omega (t+\log (n)) </tex-math></inline-formula> transmissions for the <inline-formula> <tex-math notation="LaTeX">t </tex-math></inline-formula>-requests case, indicating that both our upper and lower bounds are polynomials of <inline-formula> <tex-math notation="LaTeX">\log (n) </tex-math></inline-formula> and differ within a factor of <inline-formula> <tex-math notation="LaTeX">\mathcal {O}(\log (n)) </tex-math></inline-formula>. We provide a probabilistic analysis over random instances and show that the required number of transmissions is almost surely <inline-formula> <tex-math notation="LaTeX">\Theta (\log (n)) </tex-math></inline-formula>, as compared with the <inline-formula> <tex-math notation="LaTeX">\Theta (n/\log (n)) </tex-math></inline-formula> for index coding. In addition, we show that these upper and lower bounds also hold for vector pliable index coding in the worst case instances and the random graph instances, implying that vector coding does not provide benefits in terms of these bounds. Our numerical experiments show that our algorithm outperforms existing algorithms for pliable index coding by up to 50% less transmissions. |
|---|---|
| AbstractList | In pliable index coding, we consider a server with <inline-formula> <tex-math notation="LaTeX">m </tex-math></inline-formula> messages and <inline-formula> <tex-math notation="LaTeX">n </tex-math></inline-formula> clients, where each client has as side information a subset of the messages. We seek to minimize the number of broadcast transmissions, so that each client can recover any one unknown message she does not already have. Previous work has shown that the pliable index coding problem is NP-hard and requires at most <inline-formula> <tex-math notation="LaTeX">\mathcal {O}(\log ^{2}(n)) </tex-math></inline-formula> broadcast transmissions, which indicates exponential savings over the conventional index coding that requires in the worst case <inline-formula> <tex-math notation="LaTeX">\mathcal {O}(n) </tex-math></inline-formula> transmissions. In this paper, building on a decoding criterion that we propose, we first design a deterministic polynomial-time algorithm that can realize the exponential benefits, by achieving, in the worst case, a performance upper bounded by <inline-formula> <tex-math notation="LaTeX">\mathcal {O}(\log ^{2}(n)) </tex-math></inline-formula> broadcast transmissions. We extend our algorithm to the <inline-formula> <tex-math notation="LaTeX">t </tex-math></inline-formula>-requests case, where each client requires <inline-formula> <tex-math notation="LaTeX">t </tex-math></inline-formula> unknown messages that she does not have, and show that our algorithm requires at most <inline-formula> <tex-math notation="LaTeX">\mathcal {O}(t\log (n)+\log ^{2}(n)) </tex-math></inline-formula> broadcast transmissions. We construct lower bound instances that require at least <inline-formula> <tex-math notation="LaTeX">\Omega (\log (n)) </tex-math></inline-formula> transmissions for linear pliable index coding and at least <inline-formula> <tex-math notation="LaTeX">\Omega (t+\log (n)) </tex-math></inline-formula> transmissions for the <inline-formula> <tex-math notation="LaTeX">t </tex-math></inline-formula>-requests case, indicating that both our upper and lower bounds are polynomials of <inline-formula> <tex-math notation="LaTeX">\log (n) </tex-math></inline-formula> and differ within a factor of <inline-formula> <tex-math notation="LaTeX">\mathcal {O}(\log (n)) </tex-math></inline-formula>. We provide a probabilistic analysis over random instances and show that the required number of transmissions is almost surely <inline-formula> <tex-math notation="LaTeX">\Theta (\log (n)) </tex-math></inline-formula>, as compared with the <inline-formula> <tex-math notation="LaTeX">\Theta (n/\log (n)) </tex-math></inline-formula> for index coding. In addition, we show that these upper and lower bounds also hold for vector pliable index coding in the worst case instances and the random graph instances, implying that vector coding does not provide benefits in terms of these bounds. Our numerical experiments show that our algorithm outperforms existing algorithms for pliable index coding by up to 50% less transmissions. In pliable index coding, we consider a server withm messages and n clients, where each client has as side information a subset of the messages. We seek to minimize the number of broadcast transmissions, so that each client can recover any one unknown message she does not already have. Previous work has shown that the pliable index coding problem is NP-hard and requires at most O(log2(n)) broadcast transmissions, which indicates exponential savings over the conventional index coding that requires in the worst case O(n) transmissions. In this paper, building on a decoding criterion that we propose, we first design a deterministic polynomial-time algorithm that can realize the exponential benefits, by achieving, in the worst case, a performance upper bounded by O(log2(n)) broadcast transmissions. We extend our algorithm to the t-requests case, where each client requires t unknown messages that she does not have, and show that our algorithm requires at most O(t log(n) + log2(n)) broadcast transmissions. We construct lower bound instances that require at least Ω(log(n)) transmissions for linear pliable index coding and at least Ω(t + log(n)) transmissions for the t-requests case, indicating that both our upper and lower bounds are polynomials of log(n) and differ within a factor of O(log(n)). We provide a probabilistic analysis over random instances and show that the required number of transmissions is almost surely Θ(log(n)), as compared with the Θ(n/ log(n)) for index coding. In addition, we show that these upper and lower bounds also hold for vector pliable index coding in the worst case instances and the random graph instances, implying that vector coding does not provide benefits in terms of these bounds. Our numerical experiments show that our algorithm outperforms existing algorithms for pliable index coding by up to 50% less transmissions. |
| Author | Song, Linqi Fragouli, Christina |
| Author_xml | – sequence: 1 givenname: Linqi orcidid: 0000-0003-2756-4984 surname: Song fullname: Song, Linqi email: songlinqi@ucla.edu organization: Department of Electrical Engineering, University of California, Los Angeles, Los Angeles, CA, USA – sequence: 2 givenname: Christina surname: Fragouli fullname: Fragouli, Christina email: christina.fragouli@ucla.edu organization: Department of Electrical Engineering, University of California, Los Angeles, Los Angeles, CA, USA |
| BookMark | eNp9kD1rwzAQQEVJoUnavdDF0NnpnT5saQyhH4FAM7izUGQ5VbCtVHag-fd1SOjQodNx8N4dvAkZtaF1hNwjzBBBPRXLYkYB8xnNBQUpr8gYhchTlQk-ImMAlKniXN6QSdfthpULpGPC58k61Mc2NN7UaeEbl8zrbYi-_2ySKsRkXXuzqV2ybEv3nSxC6dvtLbmuTN25u8ucko-X52Lxlq7eX5eL-Sq1VGGfMqhsWQF31shSUVB2Iw1VoARHdFK5ynCkwgprBZbUZJY5iiBKZXi-ySs2JY_nu_sYvg6u6_UuHGI7vNQUcy4AGIOBys6UjaHroqu09b3pfWj7aHytEfSpkB4K6VMhfSk0iPBH3EffmHj8T3k4K94594tLYBllnP0Az-lxSQ |
| CODEN | IETTAW |
| CitedBy_id | crossref_primary_10_1109_TIT_2018_2853548 crossref_primary_10_1109_TIT_2022_3186238 crossref_primary_10_1109_TCOMM_2023_3274144 crossref_primary_10_1109_TIT_2019_2947669 crossref_primary_10_1109_JSAIT_2022_3232126 crossref_primary_10_1109_TCOMM_2019_2910266 crossref_primary_10_1109_TIT_2024_3355416 crossref_primary_10_1109_TCOMM_2022_3168280 crossref_primary_10_1109_TIT_2019_2954338 crossref_primary_10_1360_SSM_2022_0074 |
| Cites_doi | 10.1109/INFOCOM.2008.4544612 10.1109/TIT.2010.2103753 10.1109/TIT.2010.2048502 10.1109/ISIT.2011.6034247 10.1109/TIT.2013.2295331 10.1109/INFCOM.1998.662940 10.1109/TIT.2013.2264472 10.1109/TIT.2012.2188777 10.1109/ISIT.2016.7541273 10.1109/NETCOD.2015.7176784 10.1109/ISIT.2012.6283912 10.1007/BF01261326 10.1109/ISIT.2012.6283850 10.1109/TIT.2009.2023702 10.1109/TIT.2015.2414926 10.1109/TIT.2015.2477821 10.1109/ISIT.2011.6034005 10.1109/TIT.2014.2338865 10.1109/ISIT.2013.6620369 10.1109/ISIT.2013.6620405 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018 |
| DBID | 97E RIA RIE AAYXX CITATION 7SC 7SP 8FD JQ2 L7M L~C L~D |
| DOI | 10.1109/TIT.2017.2752088 |
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
| DatabaseTitle | CrossRef Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Technology Research Database |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE/IET Electronic Library (IEL) (UW System Shared) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Computer Science |
| EISSN | 1557-9654 |
| EndPage | 999 |
| ExternalDocumentID | 10_1109_TIT_2017_2752088 8036234 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: National Science Foundation grantid: 1527550 funderid: 10.13039/100000001 |
| GroupedDBID | -~X .DC 0R~ 29I 3EH 4.4 5GY 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABFSI ABQJQ ABVLG ACGFO ACGFS ACGOD ACIWK AENEX AETEA AETIX AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 E.L EBS EJD F5P HZ~ H~9 IAAWW IBMZZ ICLAB IDIHD IFIPE IFJZH IPLJI JAVBF LAI M43 MS~ O9- OCL P2P PQQKQ RIA RIE RNS RXW TAE TN5 VH1 VJK AAYXX CITATION 7SC 7SP 8FD JQ2 L7M L~C L~D RIG |
| ID | FETCH-LOGICAL-c291t-30fcdf04eca8d9209cb8a29095411e89efa4125c5cc51d2a6c3e2105d9a47b7f3 |
| IEDL.DBID | RIE |
| ISSN | 0018-9448 |
| IngestDate | Sun Jun 29 15:36:04 EDT 2025 Wed Oct 01 02:55:14 EDT 2025 Thu Apr 24 22:57:03 EDT 2025 Tue Aug 26 16:59:35 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 2 |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c291t-30fcdf04eca8d9209cb8a29095411e89efa4125c5cc51d2a6c3e2105d9a47b7f3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0003-2756-4984 |
| PQID | 2174500330 |
| PQPubID | 36024 |
| PageCount | 21 |
| ParticipantIDs | crossref_citationtrail_10_1109_TIT_2017_2752088 crossref_primary_10_1109_TIT_2017_2752088 ieee_primary_8036234 proquest_journals_2174500330 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2018-02-01 |
| PublicationDateYYYYMMDD | 2018-02-01 |
| PublicationDate_xml | – month: 02 year: 2018 text: 2018-02-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York |
| PublicationTitle | IEEE transactions on information theory |
| PublicationTitleAbbrev | TIT |
| PublicationYear | 2018 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref12 ref15 ref20 ref11 ref22 ref10 ref21 ref2 golovnev (ref13) 2017 ref1 ref17 ref16 ref19 ref18 ref8 ref7 ref9 ref4 ref3 bollobás (ref14) 2013 ref6 ref5 |
| References_xml | – start-page: 1 year: 2017 ident: ref13 article-title: The minrank of random graphs publication-title: Proc 21st Int Workshop Randomization Comput (RANDOM) – ident: ref6 doi: 10.1109/INFOCOM.2008.4544612 – ident: ref11 doi: 10.1109/TIT.2010.2103753 – ident: ref17 doi: 10.1109/TIT.2010.2048502 – year: 2013 ident: ref14 publication-title: Modern Graph Theory – ident: ref21 doi: 10.1109/ISIT.2011.6034247 – ident: ref12 doi: 10.1109/TIT.2013.2295331 – ident: ref3 doi: 10.1109/INFCOM.1998.662940 – ident: ref5 doi: 10.1109/TIT.2013.2264472 – ident: ref20 doi: 10.1109/TIT.2012.2188777 – ident: ref2 doi: 10.1109/ISIT.2016.7541273 – ident: ref1 doi: 10.1109/NETCOD.2015.7176784 – ident: ref7 doi: 10.1109/ISIT.2012.6283912 – ident: ref10 doi: 10.1007/BF01261326 – ident: ref22 doi: 10.1109/ISIT.2012.6283850 – ident: ref4 doi: 10.1109/TIT.2009.2023702 – ident: ref18 doi: 10.1109/TIT.2015.2414926 – ident: ref9 doi: 10.1109/TIT.2015.2477821 – ident: ref19 doi: 10.1109/ISIT.2011.6034005 – ident: ref15 doi: 10.1109/TIT.2014.2338865 – ident: ref16 doi: 10.1109/ISIT.2013.6620369 – ident: ref8 doi: 10.1109/ISIT.2013.6620405 |
| SSID | ssj0014512 |
| Score | 2.4197764 |
| Snippet | In pliable index coding, we consider a server with <inline-formula> <tex-math notation="LaTeX">m </tex-math></inline-formula> messages and <inline-formula>... In pliable index coding, we consider a server withm messages and n clients, where each client has as side information a subset of the messages. We seek to... |
| SourceID | proquest crossref ieee |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 979 |
| SubjectTerms | <italic xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">t -requests Algorithm design and analysis Algorithms Coding Decoding Encoding greedy algorithm index coding Indexes Lower bounds Messages Pliable index coding polynomial time algorithm Polynomials Probabilistic analysis random graphs Servers Set theory Silicon Upper bound |
| Title | A Polynomial-Time Algorithm for Pliable Index Coding |
| URI | https://ieeexplore.ieee.org/document/8036234 https://www.proquest.com/docview/2174500330 |
| Volume | 64 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE/IET Electronic Library (IEL) (UW System Shared) customDbUrl: eissn: 1557-9654 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0014512 issn: 0018-9448 databaseCode: RIE dateStart: 19630101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT8JAEJ4AJz2IgkYUTQ9eTCxs2-1jj4RIwATDARJuzXa7VWKlBstBf7072xaNGuOtye4mm3nszHRmvgG4iij344hwVCRhUiemZhR7rmkx6fjCtWSgoZSm9954Qe-W7rIGN7teGCmlLj6TPfzUufw4E1v8VdYP8Ll1aB3qfuAVvVq7jAF1rQIZ3FIKrGKOKiVJWH8-mWMNl9-zfdcmesbKpwnSM1V-PMTauoyaMK3uVRSVPPW2edQT798gG_978UM4KN1MY1DIxRHU5LoFzWqEg1FqdAv2v-ARtoEOjFmWvmGnMk9N7A4xBulDtlnlj8-G8m6NWbrCVitjghiLxjBDw3cMi9HtfDg2y7EKprCZlZsOSUScECoFD2JmEyaigNtM-VrUUrxhMuFUuT3CFYpXsc094UgVGLox49SP_MQ5gcY6W8tTbPjmLLEkVUsBVbocoXfmeEQmgaVWkg70K0qHosQcx9EXaahjD8JCxZsQeROWvOnA9e7ES4G38cfeNpJ6t6-kcge6FTPDUiFfQ4y8XBxcR85-P3UOezbKji7I7kIj32zlhfI38uhSC9oHYnjPSA |
| linkProvider | IEEE |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT8MwDLYGHIADgwFiMKAHLkh0S9tkbY4TAm3AEIdN2q1K0xQmyoqgO8CvJ07bgQAhbpWSSJEfsV3bnwFOIir8OCICFUna1IupHcVdZjtceb5kjgoMlNLwttsf06sJm9TgbNELo5QyxWeqjZ8mlx9nco6_yjoBPrceXYIVRillRbfWImdAmVNggztahXXUUSUlCe-MBiOs4vLbrs9cYqasfBohM1Xlx1Ns7MtlHYbVzYqyksf2PI_a8v0baON_r74JG6WjafUKydiCmpo1oF4NcbBKnW7A-hdEwm2gPesuS9-wV1mkNvaHWL30PnuZ5g9PlvZvrbt0is1W1gBRFq3zDE3fDowvL0bnfbscrGBLlzu57ZFExgmhSoog5i7hMgqEy7W3RR3NHa4SQbXjI5nU3Ipd0ZWe0qEhi7mgfuQn3i4sz7KZ2sOWb8ETR1G9FFCtzRH6Z16XqCRw9ErShE5F6VCWqOM4_CINTfRBeKh5EyJvwpI3TThdnHguEDf-2LuNpF7sK6nchFbFzLBUydcQYy-Go-vI_u-njmG1PxrehDeD2-sDWHNRjkx5dguW85e5OtTeRx4dGaH7AGqf0pU |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Polynomial-Time+Algorithm+for+Pliable+Index+Coding&rft.jtitle=IEEE+transactions+on+information+theory&rft.au=Song%2C+Linqi&rft.au=Fragouli%2C+Christina&rft.date=2018-02-01&rft.issn=0018-9448&rft.eissn=1557-9654&rft.volume=64&rft.issue=2&rft.spage=979&rft.epage=999&rft_id=info:doi/10.1109%2FTIT.2017.2752088&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TIT_2017_2752088 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0018-9448&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0018-9448&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0018-9448&client=summon |