A Polynomial-Time Algorithm for Pliable Index Coding

In pliable index coding, we consider a server with <inline-formula> <tex-math notation="LaTeX">m </tex-math></inline-formula> messages and <inline-formula> <tex-math notation="LaTeX">n </tex-math></inline-formula> clients, where eac...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on information theory Vol. 64; no. 2; pp. 979 - 999
Main Authors Song, Linqi, Fragouli, Christina
Format Journal Article
LanguageEnglish
Published New York IEEE 01.02.2018
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN0018-9448
1557-9654
DOI10.1109/TIT.2017.2752088

Cover

Abstract In pliable index coding, we consider a server with <inline-formula> <tex-math notation="LaTeX">m </tex-math></inline-formula> messages and <inline-formula> <tex-math notation="LaTeX">n </tex-math></inline-formula> clients, where each client has as side information a subset of the messages. We seek to minimize the number of broadcast transmissions, so that each client can recover any one unknown message she does not already have. Previous work has shown that the pliable index coding problem is NP-hard and requires at most <inline-formula> <tex-math notation="LaTeX">\mathcal {O}(\log ^{2}(n)) </tex-math></inline-formula> broadcast transmissions, which indicates exponential savings over the conventional index coding that requires in the worst case <inline-formula> <tex-math notation="LaTeX">\mathcal {O}(n) </tex-math></inline-formula> transmissions. In this paper, building on a decoding criterion that we propose, we first design a deterministic polynomial-time algorithm that can realize the exponential benefits, by achieving, in the worst case, a performance upper bounded by <inline-formula> <tex-math notation="LaTeX">\mathcal {O}(\log ^{2}(n)) </tex-math></inline-formula> broadcast transmissions. We extend our algorithm to the <inline-formula> <tex-math notation="LaTeX">t </tex-math></inline-formula>-requests case, where each client requires <inline-formula> <tex-math notation="LaTeX">t </tex-math></inline-formula> unknown messages that she does not have, and show that our algorithm requires at most <inline-formula> <tex-math notation="LaTeX">\mathcal {O}(t\log (n)+\log ^{2}(n)) </tex-math></inline-formula> broadcast transmissions. We construct lower bound instances that require at least <inline-formula> <tex-math notation="LaTeX">\Omega (\log (n)) </tex-math></inline-formula> transmissions for linear pliable index coding and at least <inline-formula> <tex-math notation="LaTeX">\Omega (t+\log (n)) </tex-math></inline-formula> transmissions for the <inline-formula> <tex-math notation="LaTeX">t </tex-math></inline-formula>-requests case, indicating that both our upper and lower bounds are polynomials of <inline-formula> <tex-math notation="LaTeX">\log (n) </tex-math></inline-formula> and differ within a factor of <inline-formula> <tex-math notation="LaTeX">\mathcal {O}(\log (n)) </tex-math></inline-formula>. We provide a probabilistic analysis over random instances and show that the required number of transmissions is almost surely <inline-formula> <tex-math notation="LaTeX">\Theta (\log (n)) </tex-math></inline-formula>, as compared with the <inline-formula> <tex-math notation="LaTeX">\Theta (n/\log (n)) </tex-math></inline-formula> for index coding. In addition, we show that these upper and lower bounds also hold for vector pliable index coding in the worst case instances and the random graph instances, implying that vector coding does not provide benefits in terms of these bounds. Our numerical experiments show that our algorithm outperforms existing algorithms for pliable index coding by up to 50% less transmissions.
AbstractList In pliable index coding, we consider a server with <inline-formula> <tex-math notation="LaTeX">m </tex-math></inline-formula> messages and <inline-formula> <tex-math notation="LaTeX">n </tex-math></inline-formula> clients, where each client has as side information a subset of the messages. We seek to minimize the number of broadcast transmissions, so that each client can recover any one unknown message she does not already have. Previous work has shown that the pliable index coding problem is NP-hard and requires at most <inline-formula> <tex-math notation="LaTeX">\mathcal {O}(\log ^{2}(n)) </tex-math></inline-formula> broadcast transmissions, which indicates exponential savings over the conventional index coding that requires in the worst case <inline-formula> <tex-math notation="LaTeX">\mathcal {O}(n) </tex-math></inline-formula> transmissions. In this paper, building on a decoding criterion that we propose, we first design a deterministic polynomial-time algorithm that can realize the exponential benefits, by achieving, in the worst case, a performance upper bounded by <inline-formula> <tex-math notation="LaTeX">\mathcal {O}(\log ^{2}(n)) </tex-math></inline-formula> broadcast transmissions. We extend our algorithm to the <inline-formula> <tex-math notation="LaTeX">t </tex-math></inline-formula>-requests case, where each client requires <inline-formula> <tex-math notation="LaTeX">t </tex-math></inline-formula> unknown messages that she does not have, and show that our algorithm requires at most <inline-formula> <tex-math notation="LaTeX">\mathcal {O}(t\log (n)+\log ^{2}(n)) </tex-math></inline-formula> broadcast transmissions. We construct lower bound instances that require at least <inline-formula> <tex-math notation="LaTeX">\Omega (\log (n)) </tex-math></inline-formula> transmissions for linear pliable index coding and at least <inline-formula> <tex-math notation="LaTeX">\Omega (t+\log (n)) </tex-math></inline-formula> transmissions for the <inline-formula> <tex-math notation="LaTeX">t </tex-math></inline-formula>-requests case, indicating that both our upper and lower bounds are polynomials of <inline-formula> <tex-math notation="LaTeX">\log (n) </tex-math></inline-formula> and differ within a factor of <inline-formula> <tex-math notation="LaTeX">\mathcal {O}(\log (n)) </tex-math></inline-formula>. We provide a probabilistic analysis over random instances and show that the required number of transmissions is almost surely <inline-formula> <tex-math notation="LaTeX">\Theta (\log (n)) </tex-math></inline-formula>, as compared with the <inline-formula> <tex-math notation="LaTeX">\Theta (n/\log (n)) </tex-math></inline-formula> for index coding. In addition, we show that these upper and lower bounds also hold for vector pliable index coding in the worst case instances and the random graph instances, implying that vector coding does not provide benefits in terms of these bounds. Our numerical experiments show that our algorithm outperforms existing algorithms for pliable index coding by up to 50% less transmissions.
In pliable index coding, we consider a server withm messages and n clients, where each client has as side information a subset of the messages. We seek to minimize the number of broadcast transmissions, so that each client can recover any one unknown message she does not already have. Previous work has shown that the pliable index coding problem is NP-hard and requires at most O(log2(n)) broadcast transmissions, which indicates exponential savings over the conventional index coding that requires in the worst case O(n) transmissions. In this paper, building on a decoding criterion that we propose, we first design a deterministic polynomial-time algorithm that can realize the exponential benefits, by achieving, in the worst case, a performance upper bounded by O(log2(n)) broadcast transmissions. We extend our algorithm to the t-requests case, where each client requires t unknown messages that she does not have, and show that our algorithm requires at most O(t log(n) + log2(n)) broadcast transmissions. We construct lower bound instances that require at least Ω(log(n)) transmissions for linear pliable index coding and at least Ω(t + log(n)) transmissions for the t-requests case, indicating that both our upper and lower bounds are polynomials of log(n) and differ within a factor of O(log(n)). We provide a probabilistic analysis over random instances and show that the required number of transmissions is almost surely Θ(log(n)), as compared with the Θ(n/ log(n)) for index coding. In addition, we show that these upper and lower bounds also hold for vector pliable index coding in the worst case instances and the random graph instances, implying that vector coding does not provide benefits in terms of these bounds. Our numerical experiments show that our algorithm outperforms existing algorithms for pliable index coding by up to 50% less transmissions.
Author Song, Linqi
Fragouli, Christina
Author_xml – sequence: 1
  givenname: Linqi
  orcidid: 0000-0003-2756-4984
  surname: Song
  fullname: Song, Linqi
  email: songlinqi@ucla.edu
  organization: Department of Electrical Engineering, University of California, Los Angeles, Los Angeles, CA, USA
– sequence: 2
  givenname: Christina
  surname: Fragouli
  fullname: Fragouli, Christina
  email: christina.fragouli@ucla.edu
  organization: Department of Electrical Engineering, University of California, Los Angeles, Los Angeles, CA, USA
BookMark eNp9kD1rwzAQQEVJoUnavdDF0NnpnT5saQyhH4FAM7izUGQ5VbCtVHag-fd1SOjQodNx8N4dvAkZtaF1hNwjzBBBPRXLYkYB8xnNBQUpr8gYhchTlQk-ImMAlKniXN6QSdfthpULpGPC58k61Mc2NN7UaeEbl8zrbYi-_2ySKsRkXXuzqV2ybEv3nSxC6dvtLbmuTN25u8ucko-X52Lxlq7eX5eL-Sq1VGGfMqhsWQF31shSUVB2Iw1VoARHdFK5ynCkwgprBZbUZJY5iiBKZXi-ySs2JY_nu_sYvg6u6_UuHGI7vNQUcy4AGIOBys6UjaHroqu09b3pfWj7aHytEfSpkB4K6VMhfSk0iPBH3EffmHj8T3k4K94594tLYBllnP0Az-lxSQ
CODEN IETTAW
CitedBy_id crossref_primary_10_1109_TIT_2018_2853548
crossref_primary_10_1109_TIT_2022_3186238
crossref_primary_10_1109_TCOMM_2023_3274144
crossref_primary_10_1109_TIT_2019_2947669
crossref_primary_10_1109_JSAIT_2022_3232126
crossref_primary_10_1109_TCOMM_2019_2910266
crossref_primary_10_1109_TIT_2024_3355416
crossref_primary_10_1109_TCOMM_2022_3168280
crossref_primary_10_1109_TIT_2019_2954338
crossref_primary_10_1360_SSM_2022_0074
Cites_doi 10.1109/INFOCOM.2008.4544612
10.1109/TIT.2010.2103753
10.1109/TIT.2010.2048502
10.1109/ISIT.2011.6034247
10.1109/TIT.2013.2295331
10.1109/INFCOM.1998.662940
10.1109/TIT.2013.2264472
10.1109/TIT.2012.2188777
10.1109/ISIT.2016.7541273
10.1109/NETCOD.2015.7176784
10.1109/ISIT.2012.6283912
10.1007/BF01261326
10.1109/ISIT.2012.6283850
10.1109/TIT.2009.2023702
10.1109/TIT.2015.2414926
10.1109/TIT.2015.2477821
10.1109/ISIT.2011.6034005
10.1109/TIT.2014.2338865
10.1109/ISIT.2013.6620369
10.1109/ISIT.2013.6620405
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
DOI 10.1109/TIT.2017.2752088
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Technology Research Database
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE/IET Electronic Library (IEL) (UW System Shared)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
EISSN 1557-9654
EndPage 999
ExternalDocumentID 10_1109_TIT_2017_2752088
8036234
Genre orig-research
GrantInformation_xml – fundername: National Science Foundation
  grantid: 1527550
  funderid: 10.13039/100000001
GroupedDBID -~X
.DC
0R~
29I
3EH
4.4
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABFSI
ABQJQ
ABVLG
ACGFO
ACGFS
ACGOD
ACIWK
AENEX
AETEA
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
E.L
EBS
EJD
F5P
HZ~
H~9
IAAWW
IBMZZ
ICLAB
IDIHD
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
MS~
O9-
OCL
P2P
PQQKQ
RIA
RIE
RNS
RXW
TAE
TN5
VH1
VJK
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
RIG
ID FETCH-LOGICAL-c291t-30fcdf04eca8d9209cb8a29095411e89efa4125c5cc51d2a6c3e2105d9a47b7f3
IEDL.DBID RIE
ISSN 0018-9448
IngestDate Sun Jun 29 15:36:04 EDT 2025
Wed Oct 01 02:55:14 EDT 2025
Thu Apr 24 22:57:03 EDT 2025
Tue Aug 26 16:59:35 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c291t-30fcdf04eca8d9209cb8a29095411e89efa4125c5cc51d2a6c3e2105d9a47b7f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-2756-4984
PQID 2174500330
PQPubID 36024
PageCount 21
ParticipantIDs crossref_citationtrail_10_1109_TIT_2017_2752088
crossref_primary_10_1109_TIT_2017_2752088
ieee_primary_8036234
proquest_journals_2174500330
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2018-02-01
PublicationDateYYYYMMDD 2018-02-01
PublicationDate_xml – month: 02
  year: 2018
  text: 2018-02-01
  day: 01
PublicationDecade 2010
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on information theory
PublicationTitleAbbrev TIT
PublicationYear 2018
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref12
ref15
ref20
ref11
ref22
ref10
ref21
ref2
golovnev (ref13) 2017
ref1
ref17
ref16
ref19
ref18
ref8
ref7
ref9
ref4
ref3
bollobás (ref14) 2013
ref6
ref5
References_xml – start-page: 1
  year: 2017
  ident: ref13
  article-title: The minrank of random graphs
  publication-title: Proc 21st Int Workshop Randomization Comput (RANDOM)
– ident: ref6
  doi: 10.1109/INFOCOM.2008.4544612
– ident: ref11
  doi: 10.1109/TIT.2010.2103753
– ident: ref17
  doi: 10.1109/TIT.2010.2048502
– year: 2013
  ident: ref14
  publication-title: Modern Graph Theory
– ident: ref21
  doi: 10.1109/ISIT.2011.6034247
– ident: ref12
  doi: 10.1109/TIT.2013.2295331
– ident: ref3
  doi: 10.1109/INFCOM.1998.662940
– ident: ref5
  doi: 10.1109/TIT.2013.2264472
– ident: ref20
  doi: 10.1109/TIT.2012.2188777
– ident: ref2
  doi: 10.1109/ISIT.2016.7541273
– ident: ref1
  doi: 10.1109/NETCOD.2015.7176784
– ident: ref7
  doi: 10.1109/ISIT.2012.6283912
– ident: ref10
  doi: 10.1007/BF01261326
– ident: ref22
  doi: 10.1109/ISIT.2012.6283850
– ident: ref4
  doi: 10.1109/TIT.2009.2023702
– ident: ref18
  doi: 10.1109/TIT.2015.2414926
– ident: ref9
  doi: 10.1109/TIT.2015.2477821
– ident: ref19
  doi: 10.1109/ISIT.2011.6034005
– ident: ref15
  doi: 10.1109/TIT.2014.2338865
– ident: ref16
  doi: 10.1109/ISIT.2013.6620369
– ident: ref8
  doi: 10.1109/ISIT.2013.6620405
SSID ssj0014512
Score 2.4197764
Snippet In pliable index coding, we consider a server with <inline-formula> <tex-math notation="LaTeX">m </tex-math></inline-formula> messages and <inline-formula>...
In pliable index coding, we consider a server withm messages and n clients, where each client has as side information a subset of the messages. We seek to...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 979
SubjectTerms <italic xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">t -requests
Algorithm design and analysis
Algorithms
Coding
Decoding
Encoding
greedy algorithm
index coding
Indexes
Lower bounds
Messages
Pliable index coding
polynomial time algorithm
Polynomials
Probabilistic analysis
random graphs
Servers
Set theory
Silicon
Upper bound
Title A Polynomial-Time Algorithm for Pliable Index Coding
URI https://ieeexplore.ieee.org/document/8036234
https://www.proquest.com/docview/2174500330
Volume 64
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE/IET Electronic Library (IEL) (UW System Shared)
  customDbUrl:
  eissn: 1557-9654
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014512
  issn: 0018-9448
  databaseCode: RIE
  dateStart: 19630101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT8JAEJ4AJz2IgkYUTQ9eTCxs2-1jj4RIwATDARJuzXa7VWKlBstBf7072xaNGuOtye4mm3nszHRmvgG4iij344hwVCRhUiemZhR7rmkx6fjCtWSgoZSm9954Qe-W7rIGN7teGCmlLj6TPfzUufw4E1v8VdYP8Ll1aB3qfuAVvVq7jAF1rQIZ3FIKrGKOKiVJWH8-mWMNl9-zfdcmesbKpwnSM1V-PMTauoyaMK3uVRSVPPW2edQT798gG_978UM4KN1MY1DIxRHU5LoFzWqEg1FqdAv2v-ARtoEOjFmWvmGnMk9N7A4xBulDtlnlj8-G8m6NWbrCVitjghiLxjBDw3cMi9HtfDg2y7EKprCZlZsOSUScECoFD2JmEyaigNtM-VrUUrxhMuFUuT3CFYpXsc094UgVGLox49SP_MQ5gcY6W8tTbPjmLLEkVUsBVbocoXfmeEQmgaVWkg70K0qHosQcx9EXaahjD8JCxZsQeROWvOnA9e7ES4G38cfeNpJ6t6-kcge6FTPDUiFfQ4y8XBxcR85-P3UOezbKji7I7kIj32zlhfI38uhSC9oHYnjPSA
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT8MwDLYGHIADgwFiMKAHLkh0S9tkbY4TAm3AEIdN2q1K0xQmyoqgO8CvJ07bgQAhbpWSSJEfsV3bnwFOIir8OCICFUna1IupHcVdZjtceb5kjgoMlNLwttsf06sJm9TgbNELo5QyxWeqjZ8mlx9nco6_yjoBPrceXYIVRillRbfWImdAmVNggztahXXUUSUlCe-MBiOs4vLbrs9cYqasfBohM1Xlx1Ns7MtlHYbVzYqyksf2PI_a8v0baON_r74JG6WjafUKydiCmpo1oF4NcbBKnW7A-hdEwm2gPesuS9-wV1mkNvaHWL30PnuZ5g9PlvZvrbt0is1W1gBRFq3zDE3fDowvL0bnfbscrGBLlzu57ZFExgmhSoog5i7hMgqEy7W3RR3NHa4SQbXjI5nU3Ipd0ZWe0qEhi7mgfuQn3i4sz7KZ2sOWb8ETR1G9FFCtzRH6Z16XqCRw9ErShE5F6VCWqOM4_CINTfRBeKh5EyJvwpI3TThdnHguEDf-2LuNpF7sK6nchFbFzLBUydcQYy-Go-vI_u-njmG1PxrehDeD2-sDWHNRjkx5dguW85e5OtTeRx4dGaH7AGqf0pU
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Polynomial-Time+Algorithm+for+Pliable+Index+Coding&rft.jtitle=IEEE+transactions+on+information+theory&rft.au=Song%2C+Linqi&rft.au=Fragouli%2C+Christina&rft.date=2018-02-01&rft.issn=0018-9448&rft.eissn=1557-9654&rft.volume=64&rft.issue=2&rft.spage=979&rft.epage=999&rft_id=info:doi/10.1109%2FTIT.2017.2752088&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TIT_2017_2752088
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0018-9448&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0018-9448&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0018-9448&client=summon