Vehicle-Vehicle Energy Interaction Converter of Electric Vehicles: A Disturbance Observer Based Sliding Mode Control Algorithm

The electric vehicle technology is one of the most promising candidates to reduce fuel consumption and <inline-formula><tex-math notation="LaTeX">\rm CO_2</tex-math></inline-formula> emission. Although electric vehicles have been widely promoted by governments aroun...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on vehicular technology Vol. 70; no. 10; pp. 9910 - 9921
Main Authors Wang, Rui, Sun, Qiuye, Sun, Chenghao, Zhang, Huaguang, Gui, Yonghao, Wang, Peng
Format Journal Article
LanguageEnglish
Published New York IEEE 01.10.2021
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN0018-9545
1939-9359
DOI10.1109/TVT.2021.3105433

Cover

Abstract The electric vehicle technology is one of the most promising candidates to reduce fuel consumption and <inline-formula><tex-math notation="LaTeX">\rm CO_2</tex-math></inline-formula> emission. Although electric vehicles have been widely promoted by governments around the world, their development is seriously hampered due to charger unavailability and range anxiety. Based on this, this paper designs an energy interaction converter between two electric vehicles, which is controlled through disturbance observer based sliding mode control algorithm. For this converter, three main demands should be satisfied, i.e., high power density, weak source and constant power load. Therein, weak source whose minimum short circuit ratio (SCR) belongs to Jia et al. , 2020 and Wang et al. , 2020, is always called weak grid. Firstly, the equivalent impedance switching process is introduced to eliminate the impact of weak source. Meanwhile, the equivalent six channel interleaved floating dual boost converter is chosen to satisfy the high power density demand, whose generalized state-space function is further built to provide an indispensable preprocessing for following controller design. Moreover, in order to solve the problem regarding low frequency/sub-synchronous oscillation caused through constant power load feature regarding the energy consumption vehicle and weak source feature regarding the energy supply vehicle, a disturbance observer based sliding mode control algorithm is proposed through using generalized state-space function to provide standard DC power with both constant voltage and power. Furthermore, the proportional-resonant controller is proposed to solve the current sharing problem among six parallel channels, which reduces the heat loss and improves the service life of the device. Finally, simulation and experimental results verify the high performance of the proposed control algorithm.
AbstractList The electric vehicle technology is one of the most promising candidates to reduce fuel consumption and [Formula Omitted] emission. Although electric vehicles have been widely promoted by governments around the world, their development is seriously hampered due to charger unavailability and range anxiety. Based on this, this paper designs an energy interaction converter between two electric vehicles, which is controlled through disturbance observer based sliding mode control algorithm. For this converter, three main demands should be satisfied, i.e., high power density, weak source and constant power load. Therein, weak source whose minimum short circuit ratio (SCR) belongs to Jia et al. , 2020 and Wang et al. , 2020, is always called weak grid. Firstly, the equivalent impedance switching process is introduced to eliminate the impact of weak source. Meanwhile, the equivalent six channel interleaved floating dual boost converter is chosen to satisfy the high power density demand, whose generalized state-space function is further built to provide an indispensable preprocessing for following controller design. Moreover, in order to solve the problem regarding low frequency/sub-synchronous oscillation caused through constant power load feature regarding the energy consumption vehicle and weak source feature regarding the energy supply vehicle, a disturbance observer based sliding mode control algorithm is proposed through using generalized state-space function to provide standard DC power with both constant voltage and power. Furthermore, the proportional-resonant controller is proposed to solve the current sharing problem among six parallel channels, which reduces the heat loss and improves the service life of the device. Finally, simulation and experimental results verify the high performance of the proposed control algorithm.
The electric vehicle technology is one of the most promising candidates to reduce fuel consumption and <inline-formula><tex-math notation="LaTeX">\rm CO_2</tex-math></inline-formula> emission. Although electric vehicles have been widely promoted by governments around the world, their development is seriously hampered due to charger unavailability and range anxiety. Based on this, this paper designs an energy interaction converter between two electric vehicles, which is controlled through disturbance observer based sliding mode control algorithm. For this converter, three main demands should be satisfied, i.e., high power density, weak source and constant power load. Therein, weak source whose minimum short circuit ratio (SCR) belongs to Jia et al. , 2020 and Wang et al. , 2020, is always called weak grid. Firstly, the equivalent impedance switching process is introduced to eliminate the impact of weak source. Meanwhile, the equivalent six channel interleaved floating dual boost converter is chosen to satisfy the high power density demand, whose generalized state-space function is further built to provide an indispensable preprocessing for following controller design. Moreover, in order to solve the problem regarding low frequency/sub-synchronous oscillation caused through constant power load feature regarding the energy consumption vehicle and weak source feature regarding the energy supply vehicle, a disturbance observer based sliding mode control algorithm is proposed through using generalized state-space function to provide standard DC power with both constant voltage and power. Furthermore, the proportional-resonant controller is proposed to solve the current sharing problem among six parallel channels, which reduces the heat loss and improves the service life of the device. Finally, simulation and experimental results verify the high performance of the proposed control algorithm.
Author Sun, Chenghao
Wang, Peng
Sun, Qiuye
Gui, Yonghao
Zhang, Huaguang
Wang, Rui
Author_xml – sequence: 1
  givenname: Rui
  orcidid: 0000-0002-6298-0716
  surname: Wang
  fullname: Wang, Rui
  email: 1610232@stu.neu.edu.cn
  organization: Northeastern University, Shenyang, Liaoning, China
– sequence: 2
  givenname: Qiuye
  orcidid: 0000-0001-8801-0884
  surname: Sun
  fullname: Sun, Qiuye
  email: sunqiuye@ise.neu.edu.cn
  organization: Northeastern University, Shenyang, Liaoning, China
– sequence: 3
  givenname: Chenghao
  surname: Sun
  fullname: Sun, Chenghao
  email: sunchenghaoneu@163.com
  organization: Northeastern University, Shenyang, Liaoning, China
– sequence: 4
  givenname: Huaguang
  orcidid: 0000-0002-0647-4050
  surname: Zhang
  fullname: Zhang, Huaguang
  email: hgzhang@ieee.org
  organization: Northeastern University, Shenyang, Liaoning, China
– sequence: 5
  givenname: Yonghao
  orcidid: 0000-0002-5043-5534
  surname: Gui
  fullname: Gui, Yonghao
  email: yg@es.aau.dk
  organization: Automation and Control Section at the Department of Electronic Systems, Aalborg University, Aalborg, Denmark
– sequence: 6
  givenname: Peng
  orcidid: 0000-0002-0093-7018
  surname: Wang
  fullname: Wang, Peng
  email: epwang@ntu.edu.sg
  organization: School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore, Singapore
BookMark eNp9kEtLAzEUhYMo2Kp7wU3A9dQ8JqlxV2t9QMWFtdshk7lTI9OkJqnQjb_dlBYXLlxdDpzvXPj66NB5BwidUzKglKir2Xw2YITRAadElJwfoB5VXBWKC3WIeoTQ60KJUhyjfowfOZaloj30PYd3azoo9hdPHITFBj-5BEGbZL3DY---IOSMfYsnHZgUrMF7IN7gEb6zMa1DrZ0B_FJHCLmPb3WEBr92trFugZ99A9ulFHyHR93CB5vel6foqNVdhLP9PUFv95PZ-LGYvjw8jUfTwjBFU8FJq4d6aITSRmndMm5qwRsja2NUSZmUimopcmyN5oIZCa2EktGmlg1Ay0_Q5W53FfznGmKqPvw6uPyyYuKaMUEF47lFdi0TfIwB2moV7FKHTUVJtbVcZcvV1nK1t5wR-QcxNumtthS07f4DL3agBYDfP0pQqZjiP3GOjiU
CODEN ITVTAB
CitedBy_id crossref_primary_10_3389_fenrg_2022_961488
crossref_primary_10_1109_TIE_2022_3215445
crossref_primary_10_1109_TITS_2023_3248153
crossref_primary_10_1109_TPEL_2024_3381158
crossref_primary_10_1016_j_est_2025_116187
crossref_primary_10_1109_TVT_2024_3491333
crossref_primary_10_3390_math12101531
crossref_primary_10_1109_TCE_2023_3277877
crossref_primary_10_1016_j_fuel_2022_125784
crossref_primary_10_1109_TII_2022_3178429
crossref_primary_10_1109_ACCESS_2022_3154779
crossref_primary_10_1016_j_aftran_2024_100007
crossref_primary_10_1109_TEC_2022_3226472
crossref_primary_10_1007_s40435_024_01546_w
crossref_primary_10_3389_fenrg_2022_1037624
crossref_primary_10_1109_TTE_2023_3345738
crossref_primary_10_1002_rnc_6396
crossref_primary_10_1002_acs_3514
crossref_primary_10_1049_rpg2_12931
crossref_primary_10_1109_JESTPE_2024_3403000
crossref_primary_10_1016_j_ifacol_2022_07_388
crossref_primary_10_1109_TCYB_2023_3295785
crossref_primary_10_3390_en17215377
crossref_primary_10_1016_j_rineng_2024_102774
crossref_primary_10_1109_ACCESS_2022_3160743
crossref_primary_10_3389_fenrg_2022_952420
crossref_primary_10_3390_jmse10111668
crossref_primary_10_3390_su142416698
crossref_primary_10_1007_s42835_023_01459_2
crossref_primary_10_1038_s41598_024_84412_1
crossref_primary_10_3390_pr11020532
crossref_primary_10_1109_TII_2022_3188352
crossref_primary_10_1109_TTE_2022_3184393
crossref_primary_10_1049_cth2_12547
Cites_doi 10.1038/s41560-017-0058-z
10.1109/TVT.2020.3025686
10.1016/j.rser.2017.01.027
10.1109/TSMC.2018.2850523
10.1109/TVT.2020.3040777
10.35833/MPCE.2020.000182
10.1109/TTE.2020.2993862
10.1109/TPEL.2015.2388796
10.1109/TIE.2021.3059543
10.1109/TEC.2020.2980033
10.1049/iet-pel.2014.0534
10.1109/TVT.2020.2980169
10.1109/TVT.2019.2899166
10.1049/iet-esi.2019.0023
10.1109/TPEL.2016.2626119
10.1109/TIE.2018.2873523
10.1109/TSG.2014.2305904
10.1109/TSTE.2019.2894633
10.1109/TPEL.2020.2981918
10.1109/TEC.2020.3021070
10.1109/TIE.2019.2955401
10.1109/IEEESTD.1997.85949
10.1109/TPEL.2015.2392371
10.1109/TPEL.2018.2813324
10.1109/TSG.2020.2970174
10.1109/TPEL.2011.2151880
10.1109/TVT.2020.3044265
10.1109/TIA.2017.2752686
10.1109/TIA.2013.2273751
10.1038/s41560-018-0136-x
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021
DBID 97E
RIA
RIE
AAYXX
CITATION
7SP
8FD
FR3
KR7
L7M
DOI 10.1109/TVT.2021.3105433
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Electronics & Communications Abstracts
Technology Research Database
Engineering Research Database
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Civil Engineering Abstracts
Engineering Research Database
Technology Research Database
Advanced Technologies Database with Aerospace
Electronics & Communications Abstracts
DatabaseTitleList Civil Engineering Abstracts

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1939-9359
EndPage 9921
ExternalDocumentID 10_1109_TVT_2021_3105433
9516929
Genre orig-research
GrantInformation_xml – fundername: National Key R&D Program of China
  grantid: 2018YFA0702200
  funderid: 10.13039/501100013290
– fundername: National Natural Science Foundation of China
  grantid: 62073065
  funderid: 10.13039/501100001809
GroupedDBID -~X
.DC
0R~
29I
3EH
4.4
5GY
5VS
6IK
97E
AAIKC
AAJGR
AAMNW
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ACNCT
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
HZ~
H~9
IAAWW
IBMZZ
ICLAB
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
MS~
O9-
OCL
P2P
RIA
RIE
RNS
RXW
TAE
TN5
VH1
AAYXX
CITATION
7SP
8FD
FR3
KR7
L7M
ID FETCH-LOGICAL-c291t-30fa7a7c59ac9aaf23cb53dc6bcc94126691a656bcfca352c6ef6e421db6deef3
IEDL.DBID RIE
ISSN 0018-9545
IngestDate Mon Jun 30 10:09:06 EDT 2025
Thu Apr 24 22:54:53 EDT 2025
Wed Oct 01 02:27:02 EDT 2025
Wed Aug 27 02:26:48 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 10
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c291t-30fa7a7c59ac9aaf23cb53dc6bcc94126691a656bcfca352c6ef6e421db6deef3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-6298-0716
0000-0002-0647-4050
0000-0002-0093-7018
0000-0001-8801-0884
0000-0002-5043-5534
PQID 2582251523
PQPubID 85454
PageCount 12
ParticipantIDs proquest_journals_2582251523
crossref_citationtrail_10_1109_TVT_2021_3105433
ieee_primary_9516929
crossref_primary_10_1109_TVT_2021_3105433
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-10-01
PublicationDateYYYYMMDD 2021-10-01
PublicationDate_xml – month: 10
  year: 2021
  text: 2021-10-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on vehicular technology
PublicationTitleAbbrev TVT
PublicationYear 2021
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref12
ref15
ref14
ref30
ref11
ref10
ref2
ref1
ref17
ref16
ref19
ref18
ref24
ref23
ref26
ref25
ref20
ref22
ref21
ref28
ref27
ref29
ref7
ref9
ref4
ref3
ref6
ref5
wang (ref8) 2021; 36
References_xml – ident: ref1
  doi: 10.1038/s41560-017-0058-z
– ident: ref5
  doi: 10.1109/TVT.2020.3025686
– ident: ref13
  doi: 10.1016/j.rser.2017.01.027
– ident: ref27
  doi: 10.1109/TSMC.2018.2850523
– ident: ref3
  doi: 10.1109/TVT.2020.3040777
– ident: ref6
  doi: 10.35833/MPCE.2020.000182
– ident: ref17
  doi: 10.1109/TTE.2020.2993862
– ident: ref30
  doi: 10.1109/TPEL.2015.2388796
– ident: ref11
  doi: 10.1109/TIE.2021.3059543
– ident: ref28
  doi: 10.1109/TEC.2020.2980033
– ident: ref20
  doi: 10.1049/iet-pel.2014.0534
– ident: ref18
  doi: 10.1109/TVT.2020.2980169
– ident: ref12
  doi: 10.1109/TVT.2019.2899166
– ident: ref26
  doi: 10.1049/iet-esi.2019.0023
– ident: ref22
  doi: 10.1109/TPEL.2016.2626119
– ident: ref24
  doi: 10.1109/TIE.2018.2873523
– ident: ref15
  doi: 10.1109/TSG.2014.2305904
– ident: ref29
  doi: 10.1109/TSTE.2019.2894633
– ident: ref10
  doi: 10.1109/TPEL.2020.2981918
– volume: 36
  start-page: 1045
  year: 2021
  ident: ref8
  article-title: Line inductance stability operation domain assessment for weak grids with multiple constant power loads
  publication-title: IEEE Trans Energy Convers
  doi: 10.1109/TEC.2020.3021070
– ident: ref7
  doi: 10.1109/TIE.2019.2955401
– ident: ref25
  doi: 10.1109/IEEESTD.1997.85949
– ident: ref14
  doi: 10.1109/TPEL.2015.2392371
– ident: ref16
  doi: 10.1109/TPEL.2018.2813324
– ident: ref23
  doi: 10.1109/TSG.2020.2970174
– ident: ref9
  doi: 10.1109/TPEL.2011.2151880
– ident: ref2
  doi: 10.1109/TVT.2020.3044265
– ident: ref21
  doi: 10.1109/TIA.2017.2752686
– ident: ref19
  doi: 10.1109/TIA.2013.2273751
– ident: ref4
  doi: 10.1038/s41560-018-0136-x
SSID ssj0014491
Score 2.5415716
Snippet The electric vehicle technology is one of the most promising candidates to reduce fuel consumption and <inline-formula><tex-math notation="LaTeX">\rm...
The electric vehicle technology is one of the most promising candidates to reduce fuel consumption and [Formula Omitted] emission. Although electric vehicles...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 9910
SubjectTerms Algorithms
Bridge circuits
Control algorithms
Control systems design
Control theory
Controllers
Converters
Current sharing
Disturbance observers
Electric vehicle
Electric vehicles
Energy consumption
energy interaction converter
Equivalence
Heat loss
Impedance
impedance switching
Inductance
Power consumption
Power system measurements
Service life
Short circuits
Sliding mode control
Title Vehicle-Vehicle Energy Interaction Converter of Electric Vehicles: A Disturbance Observer Based Sliding Mode Control Algorithm
URI https://ieeexplore.ieee.org/document/9516929
https://www.proquest.com/docview/2582251523
Volume 70
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1939-9359
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014491
  issn: 0018-9545
  databaseCode: RIE
  dateStart: 19670101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LTxsxEB5BTuVQ3mpoQD5wqcQm-_TG3AIkiiq1PRCi3Fb2rA0RIUFhc-mhv71jrxO1BaGedqWdsSzNeOcbzwvgnJNXZVSug5zrMkjR5IHiXQyyMJSxifLcKJcg-50P79Kvk2yyBRebWhittUs-02376mL55QJX9qqsI2xQJxbbsJ13eV2rtYkYpKmfjhfRASZYsA5JhqIzGo_IEYwj8k8JoCTJXybIzVR59SN21mWwC9_W-6qTSh7bq0q18ec_LRv_d-N78NHDTNar9WIftvT8AHb-aD54CL_G-sF-DPyT9V0ZIHN3hHW5A7u2Oek26ZMtDOu7iTlTZJ7h5ZL12A2pyWqprO6wH8pe8RLxFZnGkt3OptYwMjtuza5kU-JZb3a_WE6rh6cjuBv0R9fDwE9jCDAWURUkoZG5zDETEoWUJk5QZUmJXCGKNCJDLyJJ6FChQUmwDrk2XKdxVCpeam2SY2jMF3P9CZhUxKE1EXcJEPFUES4it0-Rs4eEWLMmdNYCKtC3KrcTM2aFc1lCUZBICyvSwou0CV82HM91m453aA-thDZ0XjhNaK11oPDn-KWIMwJQBPni5ORtrs_wwa5dp_e1oFEtV_qUYEqlzpx-_gYeMeWV
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9tAEB5ReqAc-qKoKbTsgUulOvFjvWZ7S2lQKK8DAXGzdse7JSIkKDgXDvx2ZtebCFpU9WRLnrFXmlnPNzsvgG1BXpXVhYkKYaqIoy0iLXYwyuNYpTYpCqt9guyx6J_xXxf5xRJ8W9TCGGN88plpu1sfy68mOHNHZR3pgjqpfAEvc8553lRrLWIGnIf5eAltYQIG86BkLDuD8wG5gmlCHipBlCx7YoT8VJW_fsXevuy9gaP5ypq0kqv2rNZtvPujaeP_Lv0tvA5Ak3UbzXgHS2b8HlYftR9cg_tzc-keRuHKer4QkPlTwqbgge26rHSX9skmlvX8zJwhssBw-5112U9SlNlUO-1hJ9od8hLxDzKOFTsdDZ1pZG7gmnuTS4pn3dHvyXRYX15_gLO93mC3H4V5DBGmMqmjLLaqUAXmUqFUyqYZ6jyrUGhEyRMy9TJRhA81WlQE7FAYKwxPk0qLyhibrcPyeDI2H4EpTRzGEPEOQSLBNSEjcvw0uXtImDVvQWcuoBJDs3I3M2NUeqclliWJtHQiLYNIW_B1wXHTNOr4B-2ak9CCLginBZtzHSjDTr4t05wgFIG-NPv0PNcWrPQHR4fl4f7xwQa8ct9pkv02YbmezsxnAi21_uJ19QFIYuji
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Vehicle-Vehicle+Energy+Interaction+Converter+of+Electric+Vehicles%3A+A+Disturbance+Observer+Based+Sliding+Mode+Control+Algorithm&rft.jtitle=IEEE+transactions+on+vehicular+technology&rft.au=Wang%2C+Rui&rft.au=Sun%2C+Qiuye&rft.au=Sun%2C+Chenghao&rft.au=Zhang%2C+Huaguang&rft.date=2021-10-01&rft.issn=0018-9545&rft.eissn=1939-9359&rft.volume=70&rft.issue=10&rft.spage=9910&rft.epage=9921&rft_id=info:doi/10.1109%2FTVT.2021.3105433&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TVT_2021_3105433
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0018-9545&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0018-9545&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0018-9545&client=summon