Hybrid Matrix-Decomposition-Based Fast Direct Solver of Integral Equations

Our numerical experiments show that the hierarchical matrix (H-matrix) solver is more efficient than the butterfly solver for electrically small problems, although the converse is true for sufficiently large problems. In this communication, we propose a hybrid matrix decomposition algorithm (HMDA) t...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on antennas and propagation Vol. 69; no. 10; pp. 7068 - 7072
Main Authors Huang, Xiao-Wei, Yang, Ming-Lin, Sheng, Xin-Qing
Format Journal Article
LanguageEnglish
Published New York IEEE 01.10.2021
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN0018-926X
1558-2221
DOI10.1109/TAP.2021.3076351

Cover

Abstract Our numerical experiments show that the hierarchical matrix (H-matrix) solver is more efficient than the butterfly solver for electrically small problems, although the converse is true for sufficiently large problems. In this communication, we propose a hybrid matrix decomposition algorithm (HMDA) that combines the H-matrix and butterfly algorithms. In the HMDA, the H-matrix algorithm is employed to compress the lower-upper decomposition matrix in the lower levels, whereas the butterfly algorithm is adopted at the higher levels. Numerical examples demonstrate that the performance of the HMDA is similar to that of the H-matrix for electrically small problems and higher than the butterfly algorithm for electrically large problems.
AbstractList Our numerical experiments show that the hierarchical matrix (H-matrix) solver is more efficient than the butterfly solver for electrically small problems, although the converse is true for sufficiently large problems. In this communication, we propose a hybrid matrix decomposition algorithm (HMDA) that combines the H-matrix and butterfly algorithms. In the HMDA, the H-matrix algorithm is employed to compress the lower–upper decomposition matrix in the lower levels, whereas the butterfly algorithm is adopted at the higher levels. Numerical examples demonstrate that the performance of the HMDA is similar to that of the H-matrix for electrically small problems and higher than the butterfly algorithm for electrically large problems.
Author Huang, Xiao-Wei
Sheng, Xin-Qing
Yang, Ming-Lin
Author_xml – sequence: 1
  givenname: Xiao-Wei
  orcidid: 0000-0003-2248-7350
  surname: Huang
  fullname: Huang, Xiao-Wei
  organization: Institute for Applied Electromagnetics, School of Information and Electronics, Beijing Institute of Technology, Beijing, China
– sequence: 2
  givenname: Ming-Lin
  orcidid: 0000-0002-0638-9526
  surname: Yang
  fullname: Yang, Ming-Lin
  organization: Institute for Applied Electromagnetics, School of Information and Electronics, Beijing Institute of Technology, Beijing, China
– sequence: 3
  givenname: Xin-Qing
  orcidid: 0000-0002-8136-3705
  surname: Sheng
  fullname: Sheng, Xin-Qing
  email: xsheng@bit.edu.cn
  organization: Institute for Applied Electromagnetics, School of Information and Electronics, Beijing Institute of Technology, Beijing, China
BookMark eNp9kE1LAzEQhoNUsK3eBS8Lnrcm2SSbPdZ-2EpFwQrelmx2VlK2mzZJxf57t7Z48OBlhoH3mRmeHuo0tgGErgkeEIKzu-XwZUAxJYMEpyLh5Ax1CecyppSSDupiTGScUfF-gXrer9qRSca66HG2L5wpoycVnPmKx6DtemO9CcY28b3yUEZT5UM0Ng50iF5t_QkuslU0bwJ8OFVHk-1OHdL-Ep1XqvZwdep99DadLEezePH8MB8NF7GmGQkxhRIgbauASgmdlGVa8qLUWLMsEaWkvJA8EzTFshJayTStsoJQLpMKCsFw0ke3x70bZ7c78CFf2Z1r2pM55WnGGGaCtClxTGlnvXdQ5dqEn0eDU6bOCc4P3vLWW37wlp-8tSD-A26cWSu3_w-5OSIGAH7jGaOJoDz5BvQGej4
CODEN IETPAK
CitedBy_id crossref_primary_10_1109_TMTT_2023_3248166
Cites_doi 10.1016/j.jcp.2019.109014
10.1137/090771806
10.1109/TAP.2019.2927660
10.1088/0067-0049/199/1/5
10.1002/nla.691
10.1109/TAP.2017.2727511
10.1109/LAWP.2016.2626786
10.1109/8.633855
10.1177/1094342019861139
10.1007/s00607-003-0019-1
10.1109/TAP.2008.926739
10.1109/8.511816
10.1109/TAP.2009.2028665
10.1002/mop.31166
10.1109/LAWP.2012.2234433
10.1016/j.jcp.2011.02.033
10.1109/TEMC.2005.857898
10.1007/s00791-014-0226-7
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021
DBID 97E
RIA
RIE
AAYXX
CITATION
7SP
8FD
L7M
DOI 10.1109/TAP.2021.3076351
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE/IET Electronic Library
CrossRef
Electronics & Communications Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Technology Research Database
Advanced Technologies Database with Aerospace
Electronics & Communications Abstracts
DatabaseTitleList Technology Research Database

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1558-2221
EndPage 7072
ExternalDocumentID 10_1109_TAP_2021_3076351
9423625
Genre orig-research
GrantInformation_xml – fundername: Graduate Technological Innovation Project of Beijing Institute of Technology
  grantid: 2019CX10011
  funderid: 10.13039/501100005085
– fundername: National Key Research and Development Program of China
  grantid: 2017YFB0202500
  funderid: 10.13039/501100012166
GroupedDBID -~X
0R~
29I
4.4
5GY
5VS
6IK
85S
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABFSI
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ACKIV
ACNCT
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
E.L
EBS
EJD
F5P
HZ~
H~9
IAAWW
IBMZZ
ICLAB
IDIHD
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
RIA
RIE
RNS
RXW
TAE
TAF
TN5
VH1
VJK
VOH
AAYOK
AAYXX
CITATION
RIG
7SP
8FD
L7M
ID FETCH-LOGICAL-c291t-2edee72ed6efa6c3dd7d5bdc0c4936d825b85962708f6ca877f9b12583feb6403
IEDL.DBID RIE
ISSN 0018-926X
IngestDate Mon Jun 30 10:11:20 EDT 2025
Thu Apr 24 22:51:27 EDT 2025
Tue Jul 01 03:22:56 EDT 2025
Wed Aug 27 02:26:55 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 10
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c291t-2edee72ed6efa6c3dd7d5bdc0c4936d825b85962708f6ca877f9b12583feb6403
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-8136-3705
0000-0003-2248-7350
0000-0002-0638-9526
PQID 2579440461
PQPubID 85476
PageCount 5
ParticipantIDs ieee_primary_9423625
crossref_primary_10_1109_TAP_2021_3076351
proquest_journals_2579440461
crossref_citationtrail_10_1109_TAP_2021_3076351
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-10-01
PublicationDateYYYYMMDD 2021-10-01
PublicationDate_xml – month: 10
  year: 2021
  text: 2021-10-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on antennas and propagation
PublicationTitleAbbrev TAP
PublicationYear 2021
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref12
ref14
ref11
ref10
ref2
ref1
ref17
ref16
ref19
ref18
ref8
ref7
ref9
ref4
ref3
ref6
ref5
Liu (ref15) 2020
References_xml – ident: ref7
  doi: 10.1016/j.jcp.2019.109014
– ident: ref16
  doi: 10.1137/090771806
– ident: ref2
  doi: 10.1109/TAP.2019.2927660
– ident: ref13
  doi: 10.1088/0067-0049/199/1/5
– ident: ref5
  doi: 10.1002/nla.691
– ident: ref9
  doi: 10.1109/TAP.2017.2727511
– ident: ref11
  doi: 10.1109/LAWP.2016.2626786
– ident: ref1
  doi: 10.1109/8.633855
– year: 2020
  ident: ref15
  article-title: Butterfly factorization via randomized matrix-vector multiplications
  publication-title: arXiv:2002.03400
– ident: ref19
  doi: 10.1177/1094342019861139
– ident: ref3
  doi: 10.1007/s00607-003-0019-1
– ident: ref4
  doi: 10.1109/TAP.2008.926739
– ident: ref8
  doi: 10.1109/8.511816
– ident: ref6
  doi: 10.1109/TAP.2009.2028665
– ident: ref10
  doi: 10.1002/mop.31166
– ident: ref12
  doi: 10.1109/LAWP.2012.2234433
– ident: ref17
  doi: 10.1016/j.jcp.2011.02.033
– ident: ref14
  doi: 10.1109/TEMC.2005.857898
– ident: ref18
  doi: 10.1007/s00791-014-0226-7
SSID ssj0014844
Score 2.38059
Snippet Our numerical experiments show that the hierarchical matrix (H-matrix) solver is more efficient than the butterfly solver for electrically small problems,...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 7068
SubjectTerms Algorithms
Antennas
Butterfly algorithm
Clustering algorithms
Decomposition
direct solvers
Electromagnetic scattering
hierarchical matrix (H-matrix)
Impedance
Integral equations
integral equations (IEs)
Matrix decomposition
Partitioning algorithms
Solvers
Title Hybrid Matrix-Decomposition-Based Fast Direct Solver of Integral Equations
URI https://ieeexplore.ieee.org/document/9423625
https://www.proquest.com/docview/2579440461
Volume 69
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT-MwEB4BJzjwXlFe8oEL0rrNw7HjI6-qIBWttCD1FsX25LKoBZpKwK9nHKcVu4sQlyiK7MiaGXu-scffAJygkJFQmPIsk5qLMnLcWFVyTfDU5MIJ0VBsDG_l4F7cjLLREvxc3IVBxCb5DLv-tTnLdxM781tlPU2-n_D6MiyTmYW7WosTA5GLwLgc0wRO5Gh-JBnp3t3ZLwoEk7hL9kz-Nf7LBTU1Vf5biBvv0t-A4XxcIankT3dWm659-4ey8bsD34T1Fmays2AXW7CE421Y-0A-uAM3g1d_W4sNPUn_C79En13epnDxc3JujvXLac3Cosh-T3wONZtU7DowTDywq6fAEz7dhfv-1d3FgLeVFbhNdFzzBB2ioqfEqpQ2dU65zDgbWaFT6ShqNHlTlifKK2nLXKlKG4JCeVqhkSJKf8DKeDLGPWAEWQjhoHWurHz0ZFSZoUrpQ1ImeaY60JsLu7At7bivfvFQNOFHpAtST-HVU7Tq6cDposdjoNz4ou2Ol_aiXSvoDhzO9Vm0c3Ja0OKkPRuijPc_73UAq_7fIVXvEFbq5xkeEeSozXFja-97gtHD
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3fT9swED4Bexg8jDGG1tFtfuBl0tzmh2PHj2WjKowiJIrUtyi2Ly-gdqypNPjrOcdpxTY07SWKIluxfOe77-zzdwBHKGQkFKY8y6TmoowcN1aVXBM8NblwQjQUG-MLOboWZ9NsugFf1ndhELFJPsOef23O8t3cLv1WWV-T7ye8vgkvMooq8nBba31mIHIROJdjWsKJnK4OJSPdnwwuKRRM4h5pNHnY-Dcn1FRV-csUN_5luAvj1chCWslNb1mbnn34g7Txf4f-Gl61QJMNgmbswQbO3sDOE_rBfTgb3fv7Wmzsafp_8W_o88vbJC5-TO7NsWG5qFkwi-xq7rOo2bxip4Fj4pad3AWm8MVbuB6eTL6OeFtbgdtExzVP0CEqekqsSmlT55TLjLORFTqVjuJGkzeFeaK8krbMlaq0ITCUpxUaKaL0ALZm8xm-A0aghTAOWufKysdPRpUZqpQ-JGWSZ6oD_dVkF7YlHvf1L26LJgCJdEHiKbx4ilY8Hfi87vEjkG78o-2-n-11u3aiO9BdybNoV-WiIPOkPR-ijN8_3-sTvBxNxufF-enF90PY9v8JiXtd2Kp_LvEDAZDafGz07hGw6tUW
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Hybrid+Matrix-Decomposition-Based+Fast+Direct+Solver+of+Integral+Equations&rft.jtitle=IEEE+transactions+on+antennas+and+propagation&rft.au=Xiao-Wei%2C+Huang&rft.au=Ming-Lin%2C+Yang&rft.au=Xin-Qing+Sheng&rft.date=2021-10-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=0018-926X&rft.eissn=1558-2221&rft.volume=69&rft.issue=10&rft.spage=7068&rft_id=info:doi/10.1109%2FTAP.2021.3076351&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0018-926X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0018-926X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0018-926X&client=summon