Parallel principal components algorithm for OMA following Sanger neural network

To address the problems of singularities, sensitivity to measurement noise, and low efficiency in traditional principal component analysis (PCA)-based operational modal analysis (OMA), we present a Sanger neural network principal component analysis (SNNPCA) algorithm to identify the operational moda...

Full description

Saved in:
Bibliographic Details
Published inInternational journal of applied electromagnetics and mechanics Vol. 59; no. 4; pp. 1401 - 1412
Main Authors Wang, Cheng, Huang, Haiyang, Zhang, Tianshu, Chen, Yewang, Zhang, Yiwen, Cheng, Jianwei
Format Journal Article
LanguageEnglish
Published London, England SAGE Publications 01.04.2019
Sage Publications Ltd
Subjects
Online AccessGet full text
ISSN1383-5416
1875-8800
DOI10.3233/JAE-171011

Cover

Abstract To address the problems of singularities, sensitivity to measurement noise, and low efficiency in traditional principal component analysis (PCA)-based operational modal analysis (OMA), we present a Sanger neural network principal component analysis (SNNPCA) algorithm to identify the operational modal parameters. SNNPCA is a two-layer neural network that is trained using a generalized Hebbian algorithm to ensure that its output converges to the principal components. After SNNPCA has converged, the link weights of SNNPCA correspond to the separation matrix of PCA. In SNNPCA-based OMA, the measurement response points are set as the input neurons, modal coordinate response signals are set as the output neurons, and the link weights of the neural network represent the modal shapes. Therefore, the operational modal identification process in SNNPCA is physically meaningful and convergent. Furthermore, SNNPCA inherits the parallel nature of neural network algorithms, so it is also insensitive to measurement noise. Simulation results show that SNNPCA can identify the principal modal parameters accurately using only measurement response signals. This method can be applied in embedded devices to realize online monitoring and real-time fault diagnosis.
AbstractList To address the problems of singularities, sensitivity to measurement noise, and low efficiency in traditional principal component analysis (PCA)-based operational modal analysis (OMA), we present a Sanger neural network principal component analysis (SNNPCA) algorithm to identify the operational modal parameters. SNNPCA is a two-layer neural network that is trained using a generalized Hebbian algorithm to ensure that its output converges to the principal components. After SNNPCA has converged, the link weights of SNNPCA correspond to the separation matrix of PCA. In SNNPCA-based OMA, the measurement response points are set as the input neurons, modal coordinate response signals are set as the output neurons, and the link weights of the neural network represent the modal shapes. Therefore, the operational modal identification process in SNNPCA is physically meaningful and convergent. Furthermore, SNNPCA inherits the parallel nature of neural network algorithms, so it is also insensitive to measurement noise. Simulation results show that SNNPCA can identify the principal modal parameters accurately using only measurement response signals. This method can be applied in embedded devices to realize online monitoring and real-time fault diagnosis.
Author Chen, Yewang
Wang, Cheng
Cheng, Jianwei
Huang, Haiyang
Zhang, Yiwen
Zhang, Tianshu
Author_xml – sequence: 1
  givenname: Cheng
  surname: Wang
  fullname: Wang, Cheng
  email: wangcheng@hqu.edu.cn
  organization: ,
– sequence: 2
  givenname: Haiyang
  surname: Huang
  fullname: Huang, Haiyang
  organization: ,
– sequence: 3
  givenname: Tianshu
  surname: Zhang
  fullname: Zhang, Tianshu
  organization: ,
– sequence: 4
  givenname: Yewang
  surname: Chen
  fullname: Chen, Yewang
  email: wangcheng@hqu.edu.cn
  organization: ,
– sequence: 5
  givenname: Yiwen
  surname: Zhang
  fullname: Zhang, Yiwen
  organization: ,
– sequence: 6
  givenname: Jianwei
  surname: Cheng
  fullname: Cheng, Jianwei
  email: wangcheng@hqu.edu.cn
  organization: ,
BookMark eNptkE1LAzEQhoNUsK1e_AULHgRhNckku9ljKfWLSgX1vGRjdt2aJjVJKf57IysI4umdwzPvDM8EjayzGqFTgi-BAlzdzxY5KQkm5ACNiSh5LgTGozSDgJwzUhyhSQhrjImgFYzR6lF6aYw22db3VvVbaTLlNttUa2PIpOmc7-PbJmudz1YPs5TGuH1vu-xJ2k77zOpdakgR986_H6PDVpqgT35yil6uF8_z23y5urmbz5a5ohWJOdW0ZAQaiQteNi1jHCvVEA20euUgGZUNJkoQ0ioNvFWsFWWjC8aVpFpBAVN0NvRuvfvY6RDrtdt5m07WlFQcgAmAROGBUt6F4HVbqz7K2DsbvexNTXD9ra1O2upBW1q5-LOSxGyk__wfPh_gIDv9-8E_5BcJLXta
CitedBy_id crossref_primary_10_1007_s40435_023_01315_1
Cites_doi 10.1007/BF00275687
10.1016/j.ymssp.2007.09.004
10.1111/j.1747-1567.2009.00539.x
10.1016/j.ymssp.2007.05.007
10.1207/s15327574ijt0403_4
10.1016/j.jsv.2007.09.030
10.1016/0893-6080(89)90044-0
10.1109/ICASSP.1990.115975
10.1016/0893-6080(88)90166-9
10.1006/mssp.2002.1570
10.1016/j.ymssp.2006.07.009
10.3233/JAE-141823
10.1080/14786440109462720
10.1109/TPDS.2016.2626289
10.1111/j.1747-1567.2008.00400.x
10.1016/j.ymssp.2006.12.005
ContentType Journal Article
Copyright IOS Press and the authors. All rights reserved
Copyright IOS Press BV 2019
Copyright_xml – notice: IOS Press and the authors. All rights reserved
– notice: Copyright IOS Press BV 2019
DBID AAYXX
CITATION
7SP
7TB
8FD
FR3
KR7
L7M
DOI 10.3233/JAE-171011
DatabaseName CrossRef
Electronics & Communications Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Civil Engineering Abstracts
Engineering Research Database
Technology Research Database
Mechanical & Transportation Engineering Abstracts
Advanced Technologies Database with Aerospace
Electronics & Communications Abstracts
DatabaseTitleList
CrossRef
Civil Engineering Abstracts
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 1875-8800
EndPage 1412
ExternalDocumentID 10_3233_JAE_171011
10.3233_JAE-171011
GroupedDBID 0R~
4.4
5GY
AAFNC
AAGLT
AAQXI
ABDBF
ABEFU
ABJNI
ABUBZ
ABUJY
ACGFO
ACGFS
ACIWK
ACPQW
ACUHS
ADMLS
ADZMO
AEJQA
AENEX
AFRHK
AFYTF
AGIAB
AHDMH
AIAGR
AJNRN
ALMA_UNASSIGNED_HOLDINGS
APPIZ
ARTOV
ASPBG
AVWKF
B0M
CAG
COF
DU5
EAD
EAP
EAS
EBS
ECV
EJD
EMK
EPL
EST
ESX
FEDTE
H13
HZ~
I-F
IL9
IOS
J8X
MET
MIO
MK~
ML~
MV1
NGNOM
O9-
Q1R
SAUOL
SCNPE
SFC
TUS
AAEJI
AAPII
AAYXX
ADEBD
AJGYC
ALIRC
CITATION
7SP
7TB
8FD
FR3
KR7
L7M
ID FETCH-LOGICAL-c291t-2e27413ba0657bf4450ccb1e329d53a42ab01c811fce35fc4f87be645ca2ec363
ISSN 1383-5416
IngestDate Fri Jul 25 10:10:50 EDT 2025
Thu Apr 24 22:58:12 EDT 2025
Wed Oct 01 06:44:39 EDT 2025
Tue Jun 17 22:29:12 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords Sanger neural network
generalized Hebbian rule
parallel
measurement noise
principal component analysis
Operational modal analysis
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c291t-2e27413ba0657bf4450ccb1e329d53a42ab01c811fce35fc4f87be645ca2ec363
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2195334833
PQPubID 2046404
PageCount 12
ParticipantIDs proquest_journals_2195334833
crossref_citationtrail_10_3233_JAE_171011
crossref_primary_10_3233_JAE_171011
sage_journals_10_3233_JAE_171011
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20190400
PublicationDateYYYYMMDD 2019-04-01
PublicationDate_xml – month: 4
  year: 2019
  text: 20190400
PublicationDecade 2010
PublicationPlace London, England
PublicationPlace_xml – name: London, England
– name: London
PublicationTitle International journal of applied electromagnetics and mechanics
PublicationYear 2019
Publisher SAGE Publications
Sage Publications Ltd
Publisher_xml – name: SAGE Publications
– name: Sage Publications Ltd
References Sese, Palmer, Montano 2004; 4
Wang, Gou, Bai, Yan 2013; 47
Wang, Cheng 2008; 311
Oja 1982; 15
Bai, Yan, Wang 2013; 47
Zhou, Chelidze 2007; 21
Hebb 1949; 30
Poncelet, Kerschen, Golinval, Verhelst 2007; 21
Wang, Guan, Gou, Hou, Bai, Yan 2014; 45
Zhe, Yanda, Falong 1996; 24
Rebelo, Julio, Varum, Costa 2009; 34
Wang, Song 2010; 29
Chung, Sainath, Ramabhadran, Picheny, Gunnels, Austel, Chauhari, Kingsbury 2017; 28
Bayraktar, Sevim, Altunişik, Turker 2009; 33
Kerschen, Poncelet, Golinval 2007; 21
Han, Feeny 2003; 17
Reynders, De Roeck 2008; 22
Pearson LIII 1901; 2
Sanger 1988; 1
Sanger 1989; 2
bibr22-JAE-171011
Zhe W. (bibr23-JAE-171011) 1996; 24
Bai J. (bibr13-JAE-171011) 2013; 47
bibr29-JAE-171011
Goursat M. (bibr1-JAE-171011) 2011
bibr12-JAE-171011
bibr21-JAE-171011
bibr8-JAE-171011
Hebb D.O. (bibr19-JAE-171011) 1949; 30
Wang J. (bibr18-JAE-171011) 2010; 29
bibr25-JAE-171011
bibr9-JAE-171011
bibr15-JAE-171011
bibr11-JAE-171011
Wang Q. (bibr2-JAE-171011) 2013; 318
Karhunen J. (bibr28-JAE-171011) 1981
bibr7-JAE-171011
bibr4-JAE-171011
bibr20-JAE-171011
Diamantaras K.I. (bibr24-JAE-171011) 1996
bibr14-JAE-171011
bibr10-JAE-171011
bibr26-JAE-171011
bibr3-JAE-171011
Wang C. (bibr6-JAE-171011) 2013; 47
bibr17-JAE-171011
Wold H. (bibr16-JAE-171011) 1966
Uhl T. (bibr5-JAE-171011) 2001
Mishra A.K. (bibr27-JAE-171011)
References_xml – volume: 21
  start-page: 3072
  issue: 8
  year: 2007
  end-page: 3087
  article-title: Blind source separation based on vibration mode identification
  publication-title: Mechanical Systems and Signal Processing
– volume: 34
  start-page: 62
  year: 2009
  end-page: 68
  article-title: Cable tensioning control and modal identification of a circular cable-stayed footbridge
  publication-title: Experimental Techniques
– volume: 21
  start-page: 3072
  issue: 8
  year: 2007
  end-page: 3087
  article-title: Blind source separation based vibration mode identification
  publication-title: Mechanical Systems and Signal Processing
– volume: 28
  start-page: 1703
  issue: 6
  year: 2017
  end-page: 1714
  article-title: Parallel deep neural network training for big data on blue gene/q
  publication-title: IEEE Transactions on Parallel and Distributed Systems
– volume: 24
  start-page: 12
  issue: 4
  year: 1996
  end-page: 16
  article-title: A neural network learning algorithm for PCA and MCA
  publication-title: Acta ELectronica Sinica
– volume: 29
  start-page: 100
  issue: 8
  year: 2010
  end-page: 103
  article-title: Neural network online training platform based on embedded system
  publication-title: Transducer and Microsystem Technologies
– volume: 30
  start-page: 74
  issue: 1
  year: 1949
  end-page: 76
  article-title: The organization of behavior: A Neuropsychological Approach
  publication-title: American Journal of Physical Medicine and Rehabilitation
– volume: 2
  start-page: 459
  issue: 6
  year: 1989
  end-page: 473
  article-title: Optimal unsupervised learning in a single-layer linear feedforward neural network
  publication-title: Neural Networks
– volume: 33
  start-page: 65
  year: 2009
  end-page: 75
  article-title: Analytical and operational modal analyses of Turkish style reinforced concrete minarets for structural identification
  publication-title: Experimental Techniques
– volume: 45
  start-page: 137
  issue: 1–4
  year: 2014
  end-page: 144
  article-title: Principal component analysis based three-dimensional operational modal analysis
  publication-title: International Journal of Applied Electromagnetics and Mechanics
– volume: 17
  start-page: 989
  issue: 5
  year: 2003
  end-page: 1001
  article-title: Application of proper orthogonal decomposition to structural vibration analysis
  publication-title: Mechanical Structures and Signal Processing
– volume: 15
  start-page: 267
  issue: 3
  year: 1982
  end-page: 273
  article-title: Simplified neuron model as a principal component analyzer
  publication-title: Journal of Mathematical Biology
– volume: 4
  start-page: 253
  issue: 3
  year: 2004
  end-page: 266
  article-title: Psychometric measurement models and artificial neural networks
  publication-title: International Journal of Testing
– volume: 21
  start-page: 1561
  year: 2007
  end-page: 1575
  article-title: Physical interpretation of independent component analysis in structural dynamics
  publication-title: Mechanical Systems and Signal Processing
– volume: 22
  start-page: 617
  issue: 3
  year: 2008
  end-page: 637
  article-title: Reference-based combined deterministic–stochastic subspace identification for experimental and operational modal analysis
  publication-title: Mechanical Systems and Signal Processing
– volume: 1
  start-page: 127
  issue: Supplement-1
  year: 1988
  article-title: Optimal unsupervised learning
  publication-title: Neural Networks
– volume: 21
  start-page: 2335
  issue: 6
  year: 2007
  end-page: 2358
  article-title: Output-only modal analysis using blind source separation techniques
  publication-title: Mechanical Systems and Signal Processing
– volume: 2
  start-page: 559
  issue: 11
  year: 1901
  end-page: 572
  article-title: On lines and planes of closest fit to systems of points in space
  publication-title: The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science
– volume: 47
  start-page: 85
  issue: 1
  year: 2013
  end-page: 89
  article-title: Modal identification method following locally linear embedding
  publication-title: Journal of Xi’an Jiaotong University
– volume: 47
  start-page: 97
  issue: 11
  year: 2013
  end-page: 103
  article-title: Modal parameter identification with principal component analysis
  publication-title: Journal of Xi’an JiaoTong University
– volume: 311
  start-page: 737
  issue: 3
  year: 2008
  end-page: 755
  article-title: Modal analysis of mdof structure by using free vibration response data only
  publication-title: Journal of Sound and Vibration
– ident: bibr20-JAE-171011
  doi: 10.1007/BF00275687
– ident: bibr14-JAE-171011
  doi: 10.1016/j.ymssp.2007.09.004
– ident: bibr4-JAE-171011
  doi: 10.1111/j.1747-1567.2009.00539.x
– ident: bibr11-JAE-171011
  doi: 10.1016/j.ymssp.2007.05.007
– ident: bibr29-JAE-171011
  doi: 10.1016/j.ymssp.2007.05.007
– ident: bibr26-JAE-171011
  doi: 10.1207/s15327574ijt0403_4
– volume: 29
  start-page: 100
  issue: 8
  year: 2010
  ident: bibr18-JAE-171011
  publication-title: Transducer and Microsystem Technologies
– ident: bibr9-JAE-171011
  doi: 10.1016/j.jsv.2007.09.030
– ident: bibr22-JAE-171011
  doi: 10.1016/0893-6080(89)90044-0
– volume: 30
  start-page: 74
  issue: 1
  year: 1949
  ident: bibr19-JAE-171011
  publication-title: American Journal of Physical Medicine and Rehabilitation
– start-page: 349
  volume-title: 2015 25th International Conference Radioelektronika (RADIOELEKTRONIKA 2015)
  ident: bibr27-JAE-171011
– start-page: 1421
  volume-title: Structural Dynamics
  year: 2011
  ident: bibr1-JAE-171011
– ident: bibr25-JAE-171011
  doi: 10.1109/ICASSP.1990.115975
– volume-title: Festschrift for J. Neyman: Research Papers in Statistics
  year: 1966
  ident: bibr16-JAE-171011
– ident: bibr21-JAE-171011
  doi: 10.1016/0893-6080(88)90166-9
– volume: 47
  start-page: 97
  issue: 11
  year: 2013
  ident: bibr6-JAE-171011
  publication-title: Journal of Xi’an JiaoTong University
– ident: bibr8-JAE-171011
  doi: 10.1006/mssp.2002.1570
– volume-title: In-Operation Modal Analysis and its Application
  year: 2001
  ident: bibr5-JAE-171011
– ident: bibr12-JAE-171011
  doi: 10.1016/j.ymssp.2006.07.009
– ident: bibr7-JAE-171011
  doi: 10.3233/JAE-141823
– ident: bibr15-JAE-171011
  doi: 10.1080/14786440109462720
– ident: bibr17-JAE-171011
  doi: 10.1109/TPDS.2016.2626289
– ident: bibr3-JAE-171011
  doi: 10.1111/j.1747-1567.2008.00400.x
– volume-title: Principal Component Neural Networks: Theory and Application
  year: 1996
  ident: bibr24-JAE-171011
– volume: 24
  start-page: 12
  issue: 4
  year: 1996
  ident: bibr23-JAE-171011
  publication-title: Acta ELectronica Sinica
– volume: 318
  start-page: 39
  volume-title: Applied Mechanics and Materials
  year: 2013
  ident: bibr2-JAE-171011
– ident: bibr10-JAE-171011
  doi: 10.1016/j.ymssp.2006.12.005
– volume-title: New Methods for Stochastic Approximation of Truncated Karhunen-Loeve Expansions
  year: 1981
  ident: bibr28-JAE-171011
– volume: 47
  start-page: 85
  issue: 1
  year: 2013
  ident: bibr13-JAE-171011
  publication-title: Journal of Xi’an Jiaotong University
SSID ssj0018293
Score 2.1298203
Snippet To address the problems of singularities, sensitivity to measurement noise, and low efficiency in traditional principal component analysis (PCA)-based...
SourceID proquest
crossref
sage
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1401
SubjectTerms Algorithms
Computer simulation
Convergence
Electronic devices
Embedded systems
Fault diagnosis
Modal analysis
Modal identification
Neural networks
Neurons
Noise measurement
Noise sensitivity
Parameter identification
Principal components analysis
Sensitivity analysis
Singularities
Title Parallel principal components algorithm for OMA following Sanger neural network
URI https://journals.sagepub.com/doi/full/10.3233/JAE-171011
https://www.proquest.com/docview/2195334833
Volume 59
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVEBS
  databaseName: EBSCOhost Academic Search Ultimate
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  eissn: 1875-8800
  dateEnd: 20250201
  omitProxy: true
  ssIdentifier: ssj0018293
  issn: 1383-5416
  databaseCode: ABDBF
  dateStart: 19960301
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  providerName: EBSCOhost
– providerCode: PRVEBS
  databaseName: Inspec with Full Text
  customDbUrl:
  eissn: 1875-8800
  dateEnd: 20250201
  omitProxy: false
  ssIdentifier: ssj0018293
  issn: 1383-5416
  databaseCode: ADMLS
  dateStart: 19960901
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text
  providerName: EBSCOhost
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1ti9NAEF5qD8Ev4itWT1lQBJHV7EvS5GM5W8rRXgVbrJ_CZrO5HqRpvbYc-lv8sc5mt0mqRdQvadlsN2H26e7M7MwzCL1KNfd0KgOi0wgMFJEGRKbUJ0KxVKlARjQ0Cc7ji2A4E-dzf95q_WhELe22yTv1_Wheyf_MKrTBvJos2X-Y2WpQaIDvML9whRmG61_N8Ud5bUqh5G_X1mVecn0s16uiTFuT-eUKTP_FsgwlnIx78Jnnq5uSg9um-xo2S_hRYWPBm4rqoaewwS8hndrq6ucs5WWhK6rnpTaJxI0A-s_OHX220G6LLCHkWofy6pus2yvn9RQwu1ns6tADuzZ-0Tf73s5PQaNGeMuvIUg2xq8OWzILL1jKxBfU0WLbNrClCKwvXnO1dvzhV01XRLn0Gkvx2J7AmfFZD857fUJBnXJL-wHx9sUkHsxGo3jan09fr78SU5PMnN27Ai230AmDPcNro5Peh_HoU3VKFbKS1Ll6d0t_ax74vn7cocJTWzGNwMFSl5neQ3edEYJ7FlH3UUsXD9DtMhhYbR6iyR5XuMIVrnGFK1xhwBUGXOEKV9jiCltcYYerR2g26E_PhsQV3iCKRXRLmDakRjyRoJ92k0wI31MqoZqzKPW5FEwmHlUhpZnS3M-UyMJuogPhK8m04gF_jNoFvNMThLupMpWQksxkuwSmnAGYdNTrRqmIApolHfRmL51YOVZ6Uxwlj8E6NZKMQZKxlWQHvaz6ri0Xy9Fep3shx-7fsYmZOS3mIuS8g7ARfH3r9xGe_nmEZ-hOje9T1N5e7_Rz0Ey3yQsHkJ9G4ZMs
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Parallel+principal+components+algorithm+for+OMA+following+Sanger+neural+network&rft.jtitle=International+journal+of+applied+electromagnetics+and+mechanics&rft.au=Wang%2C+Cheng&rft.au=Huang%2C+Haiyang&rft.au=Zhang%2C+Tianshu&rft.au=Chen%2C+Yewang&rft.date=2019-04-01&rft.pub=Sage+Publications+Ltd&rft.issn=1383-5416&rft.eissn=1875-8800&rft.volume=59&rft.issue=4&rft.spage=1401&rft_id=info:doi/10.3233%2FJAE-171011&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1383-5416&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1383-5416&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1383-5416&client=summon