Parallel principal components algorithm for OMA following Sanger neural network
To address the problems of singularities, sensitivity to measurement noise, and low efficiency in traditional principal component analysis (PCA)-based operational modal analysis (OMA), we present a Sanger neural network principal component analysis (SNNPCA) algorithm to identify the operational moda...
Saved in:
| Published in | International journal of applied electromagnetics and mechanics Vol. 59; no. 4; pp. 1401 - 1412 |
|---|---|
| Main Authors | , , , , , |
| Format | Journal Article |
| Language | English |
| Published |
London, England
SAGE Publications
01.04.2019
Sage Publications Ltd |
| Subjects | |
| Online Access | Get full text |
| ISSN | 1383-5416 1875-8800 |
| DOI | 10.3233/JAE-171011 |
Cover
| Abstract | To address the problems of singularities, sensitivity to measurement noise, and low efficiency in traditional principal component analysis (PCA)-based operational modal analysis (OMA), we present a Sanger neural network principal component analysis (SNNPCA) algorithm to identify the operational modal parameters. SNNPCA is a two-layer neural network that is trained using a generalized Hebbian algorithm to ensure that its output converges to the principal components. After SNNPCA has converged, the link weights of SNNPCA correspond to the separation matrix of PCA. In SNNPCA-based OMA, the measurement response points are set as the input neurons, modal coordinate response signals are set as the output neurons, and the link weights of the neural network represent the modal shapes. Therefore, the operational modal identification process in SNNPCA is physically meaningful and convergent. Furthermore, SNNPCA inherits the parallel nature of neural network algorithms, so it is also insensitive to measurement noise. Simulation results show that SNNPCA can identify the principal modal parameters accurately using only measurement response signals. This method can be applied in embedded devices to realize online monitoring and real-time fault diagnosis. |
|---|---|
| AbstractList | To address the problems of singularities, sensitivity to measurement noise, and low efficiency in traditional principal component analysis (PCA)-based operational modal analysis (OMA), we present a Sanger neural network principal component analysis (SNNPCA) algorithm to identify the operational modal parameters. SNNPCA is a two-layer neural network that is trained using a generalized Hebbian algorithm to ensure that its output converges to the principal components. After SNNPCA has converged, the link weights of SNNPCA correspond to the separation matrix of PCA. In SNNPCA-based OMA, the measurement response points are set as the input neurons, modal coordinate response signals are set as the output neurons, and the link weights of the neural network represent the modal shapes. Therefore, the operational modal identification process in SNNPCA is physically meaningful and convergent. Furthermore, SNNPCA inherits the parallel nature of neural network algorithms, so it is also insensitive to measurement noise. Simulation results show that SNNPCA can identify the principal modal parameters accurately using only measurement response signals. This method can be applied in embedded devices to realize online monitoring and real-time fault diagnosis. |
| Author | Chen, Yewang Wang, Cheng Cheng, Jianwei Huang, Haiyang Zhang, Yiwen Zhang, Tianshu |
| Author_xml | – sequence: 1 givenname: Cheng surname: Wang fullname: Wang, Cheng email: wangcheng@hqu.edu.cn organization: , – sequence: 2 givenname: Haiyang surname: Huang fullname: Huang, Haiyang organization: , – sequence: 3 givenname: Tianshu surname: Zhang fullname: Zhang, Tianshu organization: , – sequence: 4 givenname: Yewang surname: Chen fullname: Chen, Yewang email: wangcheng@hqu.edu.cn organization: , – sequence: 5 givenname: Yiwen surname: Zhang fullname: Zhang, Yiwen organization: , – sequence: 6 givenname: Jianwei surname: Cheng fullname: Cheng, Jianwei email: wangcheng@hqu.edu.cn organization: , |
| BookMark | eNptkE1LAzEQhoNUsK1e_AULHgRhNckku9ljKfWLSgX1vGRjdt2aJjVJKf57IysI4umdwzPvDM8EjayzGqFTgi-BAlzdzxY5KQkm5ACNiSh5LgTGozSDgJwzUhyhSQhrjImgFYzR6lF6aYw22db3VvVbaTLlNttUa2PIpOmc7-PbJmudz1YPs5TGuH1vu-xJ2k77zOpdakgR986_H6PDVpqgT35yil6uF8_z23y5urmbz5a5ohWJOdW0ZAQaiQteNi1jHCvVEA20euUgGZUNJkoQ0ioNvFWsFWWjC8aVpFpBAVN0NvRuvfvY6RDrtdt5m07WlFQcgAmAROGBUt6F4HVbqz7K2DsbvexNTXD9ra1O2upBW1q5-LOSxGyk__wfPh_gIDv9-8E_5BcJLXta |
| CitedBy_id | crossref_primary_10_1007_s40435_023_01315_1 |
| Cites_doi | 10.1007/BF00275687 10.1016/j.ymssp.2007.09.004 10.1111/j.1747-1567.2009.00539.x 10.1016/j.ymssp.2007.05.007 10.1207/s15327574ijt0403_4 10.1016/j.jsv.2007.09.030 10.1016/0893-6080(89)90044-0 10.1109/ICASSP.1990.115975 10.1016/0893-6080(88)90166-9 10.1006/mssp.2002.1570 10.1016/j.ymssp.2006.07.009 10.3233/JAE-141823 10.1080/14786440109462720 10.1109/TPDS.2016.2626289 10.1111/j.1747-1567.2008.00400.x 10.1016/j.ymssp.2006.12.005 |
| ContentType | Journal Article |
| Copyright | IOS Press and the authors. All rights reserved Copyright IOS Press BV 2019 |
| Copyright_xml | – notice: IOS Press and the authors. All rights reserved – notice: Copyright IOS Press BV 2019 |
| DBID | AAYXX CITATION 7SP 7TB 8FD FR3 KR7 L7M |
| DOI | 10.3233/JAE-171011 |
| DatabaseName | CrossRef Electronics & Communications Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database Engineering Research Database Civil Engineering Abstracts Advanced Technologies Database with Aerospace |
| DatabaseTitle | CrossRef Civil Engineering Abstracts Engineering Research Database Technology Research Database Mechanical & Transportation Engineering Abstracts Advanced Technologies Database with Aerospace Electronics & Communications Abstracts |
| DatabaseTitleList | CrossRef Civil Engineering Abstracts |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Physics |
| EISSN | 1875-8800 |
| EndPage | 1412 |
| ExternalDocumentID | 10_3233_JAE_171011 10.3233_JAE-171011 |
| GroupedDBID | 0R~ 4.4 5GY AAFNC AAGLT AAQXI ABDBF ABEFU ABJNI ABUBZ ABUJY ACGFO ACGFS ACIWK ACPQW ACUHS ADMLS ADZMO AEJQA AENEX AFRHK AFYTF AGIAB AHDMH AIAGR AJNRN ALMA_UNASSIGNED_HOLDINGS APPIZ ARTOV ASPBG AVWKF B0M CAG COF DU5 EAD EAP EAS EBS ECV EJD EMK EPL EST ESX FEDTE H13 HZ~ I-F IL9 IOS J8X MET MIO MK~ ML~ MV1 NGNOM O9- Q1R SAUOL SCNPE SFC TUS AAEJI AAPII AAYXX ADEBD AJGYC ALIRC CITATION 7SP 7TB 8FD FR3 KR7 L7M |
| ID | FETCH-LOGICAL-c291t-2e27413ba0657bf4450ccb1e329d53a42ab01c811fce35fc4f87be645ca2ec363 |
| ISSN | 1383-5416 |
| IngestDate | Fri Jul 25 10:10:50 EDT 2025 Thu Apr 24 22:58:12 EDT 2025 Wed Oct 01 06:44:39 EDT 2025 Tue Jun 17 22:29:12 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 4 |
| Keywords | Sanger neural network generalized Hebbian rule parallel measurement noise principal component analysis Operational modal analysis |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c291t-2e27413ba0657bf4450ccb1e329d53a42ab01c811fce35fc4f87be645ca2ec363 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| PQID | 2195334833 |
| PQPubID | 2046404 |
| PageCount | 12 |
| ParticipantIDs | proquest_journals_2195334833 crossref_citationtrail_10_3233_JAE_171011 crossref_primary_10_3233_JAE_171011 sage_journals_10_3233_JAE_171011 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 20190400 |
| PublicationDateYYYYMMDD | 2019-04-01 |
| PublicationDate_xml | – month: 4 year: 2019 text: 20190400 |
| PublicationDecade | 2010 |
| PublicationPlace | London, England |
| PublicationPlace_xml | – name: London, England – name: London |
| PublicationTitle | International journal of applied electromagnetics and mechanics |
| PublicationYear | 2019 |
| Publisher | SAGE Publications Sage Publications Ltd |
| Publisher_xml | – name: SAGE Publications – name: Sage Publications Ltd |
| References | Sese, Palmer, Montano 2004; 4 Wang, Gou, Bai, Yan 2013; 47 Wang, Cheng 2008; 311 Oja 1982; 15 Bai, Yan, Wang 2013; 47 Zhou, Chelidze 2007; 21 Hebb 1949; 30 Poncelet, Kerschen, Golinval, Verhelst 2007; 21 Wang, Guan, Gou, Hou, Bai, Yan 2014; 45 Zhe, Yanda, Falong 1996; 24 Rebelo, Julio, Varum, Costa 2009; 34 Wang, Song 2010; 29 Chung, Sainath, Ramabhadran, Picheny, Gunnels, Austel, Chauhari, Kingsbury 2017; 28 Bayraktar, Sevim, Altunişik, Turker 2009; 33 Kerschen, Poncelet, Golinval 2007; 21 Han, Feeny 2003; 17 Reynders, De Roeck 2008; 22 Pearson LIII 1901; 2 Sanger 1988; 1 Sanger 1989; 2 bibr22-JAE-171011 Zhe W. (bibr23-JAE-171011) 1996; 24 Bai J. (bibr13-JAE-171011) 2013; 47 bibr29-JAE-171011 Goursat M. (bibr1-JAE-171011) 2011 bibr12-JAE-171011 bibr21-JAE-171011 bibr8-JAE-171011 Hebb D.O. (bibr19-JAE-171011) 1949; 30 Wang J. (bibr18-JAE-171011) 2010; 29 bibr25-JAE-171011 bibr9-JAE-171011 bibr15-JAE-171011 bibr11-JAE-171011 Wang Q. (bibr2-JAE-171011) 2013; 318 Karhunen J. (bibr28-JAE-171011) 1981 bibr7-JAE-171011 bibr4-JAE-171011 bibr20-JAE-171011 Diamantaras K.I. (bibr24-JAE-171011) 1996 bibr14-JAE-171011 bibr10-JAE-171011 bibr26-JAE-171011 bibr3-JAE-171011 Wang C. (bibr6-JAE-171011) 2013; 47 bibr17-JAE-171011 Wold H. (bibr16-JAE-171011) 1966 Uhl T. (bibr5-JAE-171011) 2001 Mishra A.K. (bibr27-JAE-171011) |
| References_xml | – volume: 21 start-page: 3072 issue: 8 year: 2007 end-page: 3087 article-title: Blind source separation based on vibration mode identification publication-title: Mechanical Systems and Signal Processing – volume: 34 start-page: 62 year: 2009 end-page: 68 article-title: Cable tensioning control and modal identification of a circular cable-stayed footbridge publication-title: Experimental Techniques – volume: 21 start-page: 3072 issue: 8 year: 2007 end-page: 3087 article-title: Blind source separation based vibration mode identification publication-title: Mechanical Systems and Signal Processing – volume: 28 start-page: 1703 issue: 6 year: 2017 end-page: 1714 article-title: Parallel deep neural network training for big data on blue gene/q publication-title: IEEE Transactions on Parallel and Distributed Systems – volume: 24 start-page: 12 issue: 4 year: 1996 end-page: 16 article-title: A neural network learning algorithm for PCA and MCA publication-title: Acta ELectronica Sinica – volume: 29 start-page: 100 issue: 8 year: 2010 end-page: 103 article-title: Neural network online training platform based on embedded system publication-title: Transducer and Microsystem Technologies – volume: 30 start-page: 74 issue: 1 year: 1949 end-page: 76 article-title: The organization of behavior: A Neuropsychological Approach publication-title: American Journal of Physical Medicine and Rehabilitation – volume: 2 start-page: 459 issue: 6 year: 1989 end-page: 473 article-title: Optimal unsupervised learning in a single-layer linear feedforward neural network publication-title: Neural Networks – volume: 33 start-page: 65 year: 2009 end-page: 75 article-title: Analytical and operational modal analyses of Turkish style reinforced concrete minarets for structural identification publication-title: Experimental Techniques – volume: 45 start-page: 137 issue: 1–4 year: 2014 end-page: 144 article-title: Principal component analysis based three-dimensional operational modal analysis publication-title: International Journal of Applied Electromagnetics and Mechanics – volume: 17 start-page: 989 issue: 5 year: 2003 end-page: 1001 article-title: Application of proper orthogonal decomposition to structural vibration analysis publication-title: Mechanical Structures and Signal Processing – volume: 15 start-page: 267 issue: 3 year: 1982 end-page: 273 article-title: Simplified neuron model as a principal component analyzer publication-title: Journal of Mathematical Biology – volume: 4 start-page: 253 issue: 3 year: 2004 end-page: 266 article-title: Psychometric measurement models and artificial neural networks publication-title: International Journal of Testing – volume: 21 start-page: 1561 year: 2007 end-page: 1575 article-title: Physical interpretation of independent component analysis in structural dynamics publication-title: Mechanical Systems and Signal Processing – volume: 22 start-page: 617 issue: 3 year: 2008 end-page: 637 article-title: Reference-based combined deterministic–stochastic subspace identification for experimental and operational modal analysis publication-title: Mechanical Systems and Signal Processing – volume: 1 start-page: 127 issue: Supplement-1 year: 1988 article-title: Optimal unsupervised learning publication-title: Neural Networks – volume: 21 start-page: 2335 issue: 6 year: 2007 end-page: 2358 article-title: Output-only modal analysis using blind source separation techniques publication-title: Mechanical Systems and Signal Processing – volume: 2 start-page: 559 issue: 11 year: 1901 end-page: 572 article-title: On lines and planes of closest fit to systems of points in space publication-title: The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science – volume: 47 start-page: 85 issue: 1 year: 2013 end-page: 89 article-title: Modal identification method following locally linear embedding publication-title: Journal of Xi’an Jiaotong University – volume: 47 start-page: 97 issue: 11 year: 2013 end-page: 103 article-title: Modal parameter identification with principal component analysis publication-title: Journal of Xi’an JiaoTong University – volume: 311 start-page: 737 issue: 3 year: 2008 end-page: 755 article-title: Modal analysis of mdof structure by using free vibration response data only publication-title: Journal of Sound and Vibration – ident: bibr20-JAE-171011 doi: 10.1007/BF00275687 – ident: bibr14-JAE-171011 doi: 10.1016/j.ymssp.2007.09.004 – ident: bibr4-JAE-171011 doi: 10.1111/j.1747-1567.2009.00539.x – ident: bibr11-JAE-171011 doi: 10.1016/j.ymssp.2007.05.007 – ident: bibr29-JAE-171011 doi: 10.1016/j.ymssp.2007.05.007 – ident: bibr26-JAE-171011 doi: 10.1207/s15327574ijt0403_4 – volume: 29 start-page: 100 issue: 8 year: 2010 ident: bibr18-JAE-171011 publication-title: Transducer and Microsystem Technologies – ident: bibr9-JAE-171011 doi: 10.1016/j.jsv.2007.09.030 – ident: bibr22-JAE-171011 doi: 10.1016/0893-6080(89)90044-0 – volume: 30 start-page: 74 issue: 1 year: 1949 ident: bibr19-JAE-171011 publication-title: American Journal of Physical Medicine and Rehabilitation – start-page: 349 volume-title: 2015 25th International Conference Radioelektronika (RADIOELEKTRONIKA 2015) ident: bibr27-JAE-171011 – start-page: 1421 volume-title: Structural Dynamics year: 2011 ident: bibr1-JAE-171011 – ident: bibr25-JAE-171011 doi: 10.1109/ICASSP.1990.115975 – volume-title: Festschrift for J. Neyman: Research Papers in Statistics year: 1966 ident: bibr16-JAE-171011 – ident: bibr21-JAE-171011 doi: 10.1016/0893-6080(88)90166-9 – volume: 47 start-page: 97 issue: 11 year: 2013 ident: bibr6-JAE-171011 publication-title: Journal of Xi’an JiaoTong University – ident: bibr8-JAE-171011 doi: 10.1006/mssp.2002.1570 – volume-title: In-Operation Modal Analysis and its Application year: 2001 ident: bibr5-JAE-171011 – ident: bibr12-JAE-171011 doi: 10.1016/j.ymssp.2006.07.009 – ident: bibr7-JAE-171011 doi: 10.3233/JAE-141823 – ident: bibr15-JAE-171011 doi: 10.1080/14786440109462720 – ident: bibr17-JAE-171011 doi: 10.1109/TPDS.2016.2626289 – ident: bibr3-JAE-171011 doi: 10.1111/j.1747-1567.2008.00400.x – volume-title: Principal Component Neural Networks: Theory and Application year: 1996 ident: bibr24-JAE-171011 – volume: 24 start-page: 12 issue: 4 year: 1996 ident: bibr23-JAE-171011 publication-title: Acta ELectronica Sinica – volume: 318 start-page: 39 volume-title: Applied Mechanics and Materials year: 2013 ident: bibr2-JAE-171011 – ident: bibr10-JAE-171011 doi: 10.1016/j.ymssp.2006.12.005 – volume-title: New Methods for Stochastic Approximation of Truncated Karhunen-Loeve Expansions year: 1981 ident: bibr28-JAE-171011 – volume: 47 start-page: 85 issue: 1 year: 2013 ident: bibr13-JAE-171011 publication-title: Journal of Xi’an Jiaotong University |
| SSID | ssj0018293 |
| Score | 2.1298203 |
| Snippet | To address the problems of singularities, sensitivity to measurement noise, and low efficiency in traditional principal component analysis (PCA)-based... |
| SourceID | proquest crossref sage |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 1401 |
| SubjectTerms | Algorithms Computer simulation Convergence Electronic devices Embedded systems Fault diagnosis Modal analysis Modal identification Neural networks Neurons Noise measurement Noise sensitivity Parameter identification Principal components analysis Sensitivity analysis Singularities |
| Title | Parallel principal components algorithm for OMA following Sanger neural network |
| URI | https://journals.sagepub.com/doi/full/10.3233/JAE-171011 https://www.proquest.com/docview/2195334833 |
| Volume | 59 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVEBS databaseName: EBSCOhost Academic Search Ultimate customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn eissn: 1875-8800 dateEnd: 20250201 omitProxy: true ssIdentifier: ssj0018293 issn: 1383-5416 databaseCode: ABDBF dateStart: 19960301 isFulltext: true titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn providerName: EBSCOhost – providerCode: PRVEBS databaseName: Inspec with Full Text customDbUrl: eissn: 1875-8800 dateEnd: 20250201 omitProxy: false ssIdentifier: ssj0018293 issn: 1383-5416 databaseCode: ADMLS dateStart: 19960901 isFulltext: true titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text providerName: EBSCOhost |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1ti9NAEF5qD8Ev4itWT1lQBJHV7EvS5GM5W8rRXgVbrJ_CZrO5HqRpvbYc-lv8sc5mt0mqRdQvadlsN2H26e7M7MwzCL1KNfd0KgOi0wgMFJEGRKbUJ0KxVKlARjQ0Cc7ji2A4E-dzf95q_WhELe22yTv1_Wheyf_MKrTBvJos2X-Y2WpQaIDvML9whRmG61_N8Ud5bUqh5G_X1mVecn0s16uiTFuT-eUKTP_FsgwlnIx78Jnnq5uSg9um-xo2S_hRYWPBm4rqoaewwS8hndrq6ucs5WWhK6rnpTaJxI0A-s_OHX220G6LLCHkWofy6pus2yvn9RQwu1ns6tADuzZ-0Tf73s5PQaNGeMuvIUg2xq8OWzILL1jKxBfU0WLbNrClCKwvXnO1dvzhV01XRLn0Gkvx2J7AmfFZD857fUJBnXJL-wHx9sUkHsxGo3jan09fr78SU5PMnN27Ai230AmDPcNro5Peh_HoU3VKFbKS1Ll6d0t_ax74vn7cocJTWzGNwMFSl5neQ3edEYJ7FlH3UUsXD9DtMhhYbR6iyR5XuMIVrnGFK1xhwBUGXOEKV9jiCltcYYerR2g26E_PhsQV3iCKRXRLmDakRjyRoJ92k0wI31MqoZqzKPW5FEwmHlUhpZnS3M-UyMJuogPhK8m04gF_jNoFvNMThLupMpWQksxkuwSmnAGYdNTrRqmIApolHfRmL51YOVZ6Uxwlj8E6NZKMQZKxlWQHvaz6ri0Xy9Fep3shx-7fsYmZOS3mIuS8g7ARfH3r9xGe_nmEZ-hOje9T1N5e7_Rz0Ey3yQsHkJ9G4ZMs |
| linkProvider | EBSCOhost |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Parallel+principal+components+algorithm+for+OMA+following+Sanger+neural+network&rft.jtitle=International+journal+of+applied+electromagnetics+and+mechanics&rft.au=Wang%2C+Cheng&rft.au=Huang%2C+Haiyang&rft.au=Zhang%2C+Tianshu&rft.au=Chen%2C+Yewang&rft.date=2019-04-01&rft.pub=Sage+Publications+Ltd&rft.issn=1383-5416&rft.eissn=1875-8800&rft.volume=59&rft.issue=4&rft.spage=1401&rft_id=info:doi/10.3233%2FJAE-171011&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1383-5416&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1383-5416&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1383-5416&client=summon |