Gaussian-kernel c-means clustering algorithms
Partitional clustering is the most used in cluster analysis. In partitional clustering, hard c -means (HCM) (or called k -means) and fuzzy c -means (FCM) are the most known clustering algorithms. However, these HCM and FCM algorithms work worse for data sets in a noisy environment and get inaccuracy...
Saved in:
| Published in | Soft computing (Berlin, Germany) Vol. 25; no. 3; pp. 1699 - 1716 |
|---|---|
| Main Authors | , , |
| Format | Journal Article |
| Language | English |
| Published |
Berlin/Heidelberg
Springer Berlin Heidelberg
01.02.2021
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 1432-7643 1433-7479 |
| DOI | 10.1007/s00500-020-04924-6 |
Cover
| Abstract | Partitional clustering is the most used in cluster analysis. In partitional clustering, hard
c
-means (HCM) (or called
k
-means) and fuzzy
c
-means (FCM) are the most known clustering algorithms. However, these HCM and FCM algorithms work worse for data sets in a noisy environment and get inaccuracy when the data set has different shape clusters. For solving these drawbacks in HCM and FCM, Wu and Yang (Pattern Recognit 35:2267–2278, 2002) proposed the alternative
c
-means clustering with an exponential-type distance that extends HCM and FCM into alternative HCM (AHCM) and alternative FCM (AFCM). In this paper, we construct a more generalization of AHCM and AFCM with Gaussian-kernel
c
-means clustering, called GK-HCM and GK-FCM. For theoretical behaviors of GK-FCM, we analyze the bordered Hessian matrix and then give the theoretical properties of the GK-FCM algorithm. Some numerical and real data sets are used to compare the proposed GK-HCM and GK-FCM with AHCM and AFCM methods. Experimental results and comparisons actually demonstrate these good aspects of the proposed GK-HCM and GK-FCM algorithms with its effectiveness and usefulness. Finally, we apply the GK-FCM algorithm to MRI segmentation. |
|---|---|
| AbstractList | Partitional clustering is the most used in cluster analysis. In partitional clustering, hard
c
-means (HCM) (or called
k
-means) and fuzzy
c
-means (FCM) are the most known clustering algorithms. However, these HCM and FCM algorithms work worse for data sets in a noisy environment and get inaccuracy when the data set has different shape clusters. For solving these drawbacks in HCM and FCM, Wu and Yang (Pattern Recognit 35:2267–2278, 2002) proposed the alternative
c
-means clustering with an exponential-type distance that extends HCM and FCM into alternative HCM (AHCM) and alternative FCM (AFCM). In this paper, we construct a more generalization of AHCM and AFCM with Gaussian-kernel
c
-means clustering, called GK-HCM and GK-FCM. For theoretical behaviors of GK-FCM, we analyze the bordered Hessian matrix and then give the theoretical properties of the GK-FCM algorithm. Some numerical and real data sets are used to compare the proposed GK-HCM and GK-FCM with AHCM and AFCM methods. Experimental results and comparisons actually demonstrate these good aspects of the proposed GK-HCM and GK-FCM algorithms with its effectiveness and usefulness. Finally, we apply the GK-FCM algorithm to MRI segmentation. |
| Author | Nataliani, Yessica Chang-Chien, Shou-Jen Yang, Miin-Shen |
| Author_xml | – sequence: 1 givenname: Shou-Jen surname: Chang-Chien fullname: Chang-Chien, Shou-Jen organization: Department of Applied Mathematics, Chung Yuan Christian University – sequence: 2 givenname: Yessica surname: Nataliani fullname: Nataliani, Yessica organization: Department of Applied Mathematics, Chung Yuan Christian University, Department of Information Systems, Satya Wacana Christian University – sequence: 3 givenname: Miin-Shen surname: Yang fullname: Yang, Miin-Shen email: msyang@math.cycu.edu.tw organization: Department of Applied Mathematics, Chung Yuan Christian University |
| BookMark | eNp9z7FOwzAQgGELFYm28AJMeQHDne3YeEQVFKRKLDBbjuMUl8Sp7HTg7Ukbpg4drPNw_0nfgsxiHz0h9wgPCKAeM0AJQIGNT2gmqLwicxScUyWUnp3-jCop-A1Z5LwDYKhKPid0bQ85Bxvpj0_Rt4WjnbcxF6495MGnELeFbbd9CsN3l2_JdWPb7O_-55J8vb58rt7o5mP9vnreUMc0DpRVDUqneAUWNXpfO1GWTqP0TS1drWontagbLLHSXmg7blSVRQ6MS-0Y50vCprsu9Tkn35h9Cp1NvwbBHMFmApsRbE5gI8fo6SxyYbBD6OOQbGgvp3xK8_4o9sns-kOKI_FS9QeDVWzk |
| CitedBy_id | crossref_primary_10_1007_s11042_023_15267_3 crossref_primary_10_3389_frsgr_2023_1129541 crossref_primary_10_1007_s11042_023_17259_9 crossref_primary_10_1016_j_eswa_2022_117728 crossref_primary_10_1007_s00357_023_09443_1 crossref_primary_10_1109_TFUZZ_2023_3327688 crossref_primary_10_1007_s11063_024_11450_1 |
| Cites_doi | 10.1016/S0730-725X(02)00477-0 10.1080/01969727308546046 10.1016/S0019-9958(65)90241-X 10.1109/TIT.1982.1056481 10.1109/TPAMI.2004.1265860 10.1109/TSMCB.2004.831165 10.1073/pnas.96.12.6745 10.1109/91.227387 10.1016/j.patcog.2007.02.006 10.1016/j.ijpe.2005.06.003 10.4324/9780203401385 10.1109/91.873580 10.1007/978-1-4757-0450-1 10.1109/3477.809032 10.1109/TFUZZ.2017.2692203 10.1016/S0031-3203(03)00235-8 10.1016/j.patcog.2012.04.031 10.1016/j.eswa.2017.09.010 10.1016/j.knosys.2013.12.023 10.1016/S0031-3203(01)00197-2 10.1016/0167-8655(91)90002-4 10.1109/TNN.2002.1000127 10.1016/S0019-9958(69)90591-9 10.1109/TFUZZ.2015.2421072 10.1093/bioinformatics/btg119 10.1109/TFUZZ.2012.2233479 10.1007/s10044-005-0250-9 10.1002/9780470316801 10.1109/21.299710 10.1016/j.patrec.2009.09.011 10.1080/01621459.1971.10482356 10.2307/2527894 10.1007/978-981-10-3322-3_27 10.1111/j.2517-6161.1977.tb01600.x |
| ContentType | Journal Article |
| Copyright | Springer-Verlag GmbH Germany, part of Springer Nature 2020 |
| Copyright_xml | – notice: Springer-Verlag GmbH Germany, part of Springer Nature 2020 |
| DBID | AAYXX CITATION |
| DOI | 10.1007/s00500-020-04924-6 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Computer Science |
| EISSN | 1433-7479 |
| EndPage | 1716 |
| ExternalDocumentID | 10_1007_s00500_020_04924_6 |
| GroupedDBID | -5B -5G -BR -EM -Y2 -~C .86 .VR 06D 0R~ 0VY 1N0 1SB 203 29~ 2J2 2JN 2JY 2KG 2LR 2P1 2VQ 2~H 30V 4.4 406 408 409 40D 40E 5VS 67Z 6NX 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTD ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACSNA ACZOJ ADHHG ADHIR ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFGCZ AFKRA AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARAPS ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN B-. BA0 BDATZ BENPR BGLVJ BGNMA BSONS CAG CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 EBLON EBS EIOEI EJD ESBYG FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I09 IHE IJ- IKXTQ IWAJR IXC IXD IXE IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ K7- KDC KOV LAS LLZTM M4Y MA- N2Q NB0 NPVJJ NQJWS NU0 O9- O93 O9J OAM P2P P9P PF0 PT4 PT5 QOS R89 R9I RIG RNI ROL RPX RSV RZK S16 S1Z S27 S3B SAP SDH SEG SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 TSG TSK TSV TUC U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR Z45 Z5O Z7R Z7X Z7Y Z7Z Z81 Z83 Z88 ZMTXR AAPKM AAYXX ABBRH ABDBE ABFSG ABRTQ ACSTC ADHKG ADKFA AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT PQGLB PUEGO |
| ID | FETCH-LOGICAL-c291t-2bf16c73b0a191eedc455c916efd6cd7dc694df151b9e49aeedbba1302369c233 |
| IEDL.DBID | U2A |
| ISSN | 1432-7643 |
| IngestDate | Thu Apr 24 23:12:14 EDT 2025 Wed Oct 01 03:00:08 EDT 2025 Fri Feb 21 02:49:27 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 3 |
| Keywords | Hard means (FCM) means (HCM) Fuzzy Clustering MRI segmentation Gaussian-kernel HCM (GK-HCM) Gaussian-kernel FCM (GK-FCM) |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c291t-2bf16c73b0a191eedc455c916efd6cd7dc694df151b9e49aeedbba1302369c233 |
| PageCount | 18 |
| ParticipantIDs | crossref_primary_10_1007_s00500_020_04924_6 crossref_citationtrail_10_1007_s00500_020_04924_6 springer_journals_10_1007_s00500_020_04924_6 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 20210200 2021-02-00 |
| PublicationDateYYYYMMDD | 2021-02-01 |
| PublicationDate_xml | – month: 2 year: 2021 text: 20210200 |
| PublicationDecade | 2020 |
| PublicationPlace | Berlin/Heidelberg |
| PublicationPlace_xml | – name: Berlin/Heidelberg |
| PublicationSubtitle | A Fusion of Foundations, Methodologies and Applications |
| PublicationTitle | Soft computing (Berlin, Germany) |
| PublicationTitleAbbrev | Soft Comput |
| PublicationYear | 2021 |
| Publisher | Springer Berlin Heidelberg |
| Publisher_xml | – name: Springer Berlin Heidelberg |
| References | Antal, Hajdu (CR2) 2014; 60 Jain (CR19) 2010; 31 Bandyopadhyay (CR3) 2004; 37 Pollard (CR25) 1982; 28 Wu, Yang (CR32) 2007; 40 Yang, Lai, Lin (CR39) 2012; 45 Chen, Zhang (CR8) 2004; 34 Yang, Wu (CR35) 2004; 26 CR15 CR13 Bezdek (CR5) 1981 Hathaway, Bezdek, Hu (CR17) 2000; 8 Yager, Filev (CR33) 1994; 24 Gyamfi, Brusey, Hunt, Gaura (CR16) 2018; 91 Zadeh (CR40) 1965; 8 Ruspini (CR28) 1969; 15 Yang, Hu, Lin, Lin (CR37) 2002; 20 Yang, Hung, Cheng (CR38) 2006; 103 Yang, Wu (CR36) 2005; 8 Dembélé, Kastner (CR11) 2003; 19 Krishnapuram, Keller (CR21) 1993; 1 Baraldi, Blonda (CR4) 1999; 29 Kaufman, Rousseeuw (CR20) 1990 Wei, Fahn (CR29) 2002; 13 Rand (CR26) 1971; 66 McLachlan, Basford (CR24) 1988 Coombs, Dawes, Tversky (CR9) 1970 Alon, Barkai, Notterman, Gish, Ybarra, Mack, Levine (CR1) 1999; 96 Dunn (CR14) 1974; 3 Dave (CR10) 1991; 12 Yang, Nataliani (CR34) 2018; 26 CR27 CR23 Werner, Sotskov (CR30) 2006 Wu, Yang (CR31) 2002; 35 Chang, Lu, Yang (CR7) 2015; 23 Izakian, Pedrycz, Jamal (CR18) 2013; 21 Lubischew (CR22) 1962; 18 Dempster, Laird, Rubin (CR12) 1977; 39 Bhatt (CR6) 2005 D Pollard (4924_CR25) 1982; 28 MS Yang (4924_CR38) 2006; 103 U Alon (4924_CR1) 1999; 96 R Bhatt (4924_CR6) 2005 H Izakian (4924_CR18) 2013; 21 E Ruspini (4924_CR28) 1969; 15 MS Yang (4924_CR36) 2005; 8 MS Yang (4924_CR39) 2012; 45 MS Yang (4924_CR35) 2004; 26 AA Lubischew (4924_CR22) 1962; 18 A Baraldi (4924_CR4) 1999; 29 D Dembélé (4924_CR11) 2003; 19 R Krishnapuram (4924_CR21) 1993; 1 SC Chen (4924_CR8) 2004; 34 L Kaufman (4924_CR20) 1990 RJ Hathaway (4924_CR17) 2000; 8 CH Coombs (4924_CR9) 1970 JC Dunn (4924_CR14) 1974; 3 ST Chang (4924_CR7) 2015; 23 F Werner (4924_CR30) 2006 4924_CR15 4924_CR13 JC Bezdek (4924_CR5) 1981 KL Wu (4924_CR32) 2007; 40 KS Gyamfi (4924_CR16) 2018; 91 WM Rand (4924_CR26) 1971; 66 MS Yang (4924_CR34) 2018; 26 GJ McLachlan (4924_CR24) 1988 KL Wu (4924_CR31) 2002; 35 AP Dempster (4924_CR12) 1977; 39 LA Zadeh (4924_CR40) 1965; 8 C Wei (4924_CR29) 2002; 13 MS Yang (4924_CR37) 2002; 20 RN Dave (4924_CR10) 1991; 12 RR Yager (4924_CR33) 1994; 24 S Bandyopadhyay (4924_CR3) 2004; 37 AK Jain (4924_CR19) 2010; 31 4924_CR27 B Antal (4924_CR2) 2014; 60 4924_CR23 |
| References_xml | – volume: 20 start-page: 173 year: 2002 end-page: 179 ident: CR37 article-title: Segmentation techniques for tissue differentiation in MRI of ophthalmology using fuzzy clustering algorithms publication-title: Magn Reson Imaging doi: 10.1016/S0730-725X(02)00477-0 – volume: 3 start-page: 32 year: 1974 end-page: 57 ident: CR14 article-title: A fuzzy relative of the ISODATA process and its use in detecting compact, well-separated clusters publication-title: J Cybern doi: 10.1080/01969727308546046 – year: 1970 ident: CR9 publication-title: Mathematical psychology: an elementary introduction – volume: 8 start-page: 338 year: 1965 end-page: 353 ident: CR40 article-title: Fuzzy sets publication-title: Inf Control doi: 10.1016/S0019-9958(65)90241-X – volume: 28 start-page: 199 year: 1982 end-page: 205 ident: CR25 article-title: Quantization and the method of -means publication-title: IEEE Trans Inf Theory doi: 10.1109/TIT.1982.1056481 – volume: 26 start-page: 434 year: 2004 end-page: 448 ident: CR35 article-title: A similarity-based robust clustering method publication-title: IEEE Trans Pattern Anal Mach Intell doi: 10.1109/TPAMI.2004.1265860 – year: 2005 ident: CR6 publication-title: Fuzzy-rough approaches for pattern classification: hybrid measures, mathematical analysis, feature selection algorithms, decision tree algorithms, neural learning, and applications – volume: 34 start-page: 1907 year: 2004 end-page: 1916 ident: CR8 article-title: Robust image segmentation using FCM with spatial constrains based on new kernel-induced distance measure publication-title: IEEE Trans Syst Man Cybern B doi: 10.1109/TSMCB.2004.831165 – volume: 96 start-page: 6745 issue: 12 year: 1999 end-page: 6750 ident: CR1 article-title: Broad patterns of gene expression revealed by clustering analysis of tumor and normal colon tissues probed by oligonucleotide arrays publication-title: Proc Natl Acad Sci doi: 10.1073/pnas.96.12.6745 – volume: 1 start-page: 98 year: 1993 end-page: 110 ident: CR21 article-title: A possibilistic approach to clustering publication-title: IEEE Trans Fuzzy Syst doi: 10.1109/91.227387 – volume: 40 start-page: 3035 year: 2007 end-page: 3052 ident: CR32 article-title: Mean shift-based clustering publication-title: Pattern Recognit doi: 10.1016/j.patcog.2007.02.006 – volume: 103 start-page: 185 year: 2006 end-page: 198 ident: CR38 article-title: Mixed-variable fuzzy clustering approach to part family and machine cell formation for GT applications publication-title: Int J Prod Econ doi: 10.1016/j.ijpe.2005.06.003 – year: 2006 ident: CR30 publication-title: Mathematics of economics and business doi: 10.4324/9780203401385 – volume: 8 start-page: 576 year: 2000 end-page: 582 ident: CR17 article-title: Generalized fuzzy -means clustering strategies using norm distances publication-title: IEEE Trans Fuzzy Syst doi: 10.1109/91.873580 – year: 1981 ident: CR5 publication-title: Pattern recognition with fuzzy objective function algorithms doi: 10.1007/978-1-4757-0450-1 – volume: 29 start-page: 778 year: 1999 end-page: 801 ident: CR4 article-title: A survey of fuzzy clustering algorithms for pattern recognition part I and II publication-title: IEEE Trans Syst Man Cybern B Cybern doi: 10.1109/3477.809032 – ident: CR27 – volume: 26 start-page: 817 year: 2018 end-page: 835 ident: CR34 article-title: A feature-reduction fuzzy clustering algorithm with feature-weighted entropy publication-title: IEEE Trans Fuzzy Syst doi: 10.1109/TFUZZ.2017.2692203 – ident: CR23 – volume: 37 start-page: 33 year: 2004 end-page: 45 ident: CR3 article-title: An automatic shape independent clustering technique publication-title: Pattern Recognit doi: 10.1016/S0031-3203(03)00235-8 – volume: 45 start-page: 3950 year: 2012 end-page: 3961 ident: CR39 article-title: A robust EM clustering algorithm for Gaussian mixture models publication-title: Pattern Recognit doi: 10.1016/j.patcog.2012.04.031 – volume: 91 start-page: 252 year: 2018 end-page: 262 ident: CR16 article-title: Linear dimensionality reduction for classification via a sequential Bayes error minimisation with an application to flow meter diagnostics publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2017.09.010 – volume: 60 start-page: 20 year: 2014 end-page: 27 ident: CR2 article-title: An ensemble-based system for automatic screening of diabetic retinopathy publication-title: Knowl Based Syst doi: 10.1016/j.knosys.2013.12.023 – ident: CR15 – volume: 35 start-page: 2267 year: 2002 end-page: 2278 ident: CR31 article-title: Alternative -means clustering algorithms publication-title: Pattern Recognit doi: 10.1016/S0031-3203(01)00197-2 – volume: 12 start-page: 657 year: 1991 end-page: 664 ident: CR10 article-title: Characterization and detection of noise in clustering publication-title: Pattern Recognit Lett doi: 10.1016/0167-8655(91)90002-4 – volume: 13 start-page: 600 year: 2002 end-page: 618 ident: CR29 article-title: The multisynapse neural network and its application to fuzzy clustering publication-title: IEEE Trans Neural Netw doi: 10.1109/TNN.2002.1000127 – ident: CR13 – volume: 15 start-page: 22 year: 1969 end-page: 32 ident: CR28 article-title: A new approach to clustering publication-title: Inf Control doi: 10.1016/S0019-9958(69)90591-9 – volume: 23 start-page: 2343 year: 2015 end-page: 2357 ident: CR7 article-title: Fuzzy change-point algorithms for regression models publication-title: IEEE Trans Fuzzy Syst doi: 10.1109/TFUZZ.2015.2421072 – volume: 19 start-page: 973 year: 2003 end-page: 980 ident: CR11 article-title: Fuzzy -means method for clustering microarray data publication-title: Bioinformatics doi: 10.1093/bioinformatics/btg119 – volume: 21 start-page: 855 year: 2013 end-page: 868 ident: CR18 article-title: Clustering spatiotemporal data: an augmented fuzzy -means publication-title: IEEE Trans Fuzzy Syst doi: 10.1109/TFUZZ.2012.2233479 – volume: 8 start-page: 125 year: 2005 end-page: 138 ident: CR36 article-title: A modified mountain clustering algorithm publication-title: Pattern Anal Appl doi: 10.1007/s10044-005-0250-9 – year: 1990 ident: CR20 publication-title: Finding groups in data: an introduction to cluster analysis doi: 10.1002/9780470316801 – year: 1988 ident: CR24 publication-title: Mixture models: inference and applications to clustering – volume: 39 start-page: 1 year: 1977 end-page: 38 ident: CR12 article-title: Maximum likelihood from incomplete data via the EM algorithm publication-title: J R Stat Soc Ser B – volume: 24 start-page: 1279 year: 1994 end-page: 1284 ident: CR33 article-title: Approximate clustering via the mountain method publication-title: IEEE Trans Syst Man Cybern doi: 10.1109/21.299710 – volume: 31 start-page: 651 year: 2010 end-page: 666 ident: CR19 article-title: Data clustering: 50 years beyond -means publication-title: Pattern Recognit Lett doi: 10.1016/j.patrec.2009.09.011 – volume: 66 start-page: 846 year: 1971 end-page: 850 ident: CR26 article-title: Objective criteria for the evaluation of clustering methods publication-title: J Am Stat Assoc doi: 10.1080/01621459.1971.10482356 – volume: 18 start-page: 455 year: 1962 end-page: 477 ident: CR22 article-title: On the use of discriminant functions in taxonomy publication-title: Biometrics doi: 10.2307/2527894 – ident: 4924_CR13 – volume: 35 start-page: 2267 year: 2002 ident: 4924_CR31 publication-title: Pattern Recognit doi: 10.1016/S0031-3203(01)00197-2 – volume: 37 start-page: 33 year: 2004 ident: 4924_CR3 publication-title: Pattern Recognit doi: 10.1016/S0031-3203(03)00235-8 – ident: 4924_CR15 – ident: 4924_CR27 doi: 10.1007/978-981-10-3322-3_27 – volume: 13 start-page: 600 year: 2002 ident: 4924_CR29 publication-title: IEEE Trans Neural Netw doi: 10.1109/TNN.2002.1000127 – volume: 15 start-page: 22 year: 1969 ident: 4924_CR28 publication-title: Inf Control doi: 10.1016/S0019-9958(69)90591-9 – volume: 20 start-page: 173 year: 2002 ident: 4924_CR37 publication-title: Magn Reson Imaging doi: 10.1016/S0730-725X(02)00477-0 – volume: 66 start-page: 846 year: 1971 ident: 4924_CR26 publication-title: J Am Stat Assoc doi: 10.1080/01621459.1971.10482356 – volume: 103 start-page: 185 year: 2006 ident: 4924_CR38 publication-title: Int J Prod Econ doi: 10.1016/j.ijpe.2005.06.003 – volume: 29 start-page: 778 year: 1999 ident: 4924_CR4 publication-title: IEEE Trans Syst Man Cybern B Cybern doi: 10.1109/3477.809032 – volume: 8 start-page: 125 year: 2005 ident: 4924_CR36 publication-title: Pattern Anal Appl doi: 10.1007/s10044-005-0250-9 – volume: 96 start-page: 6745 issue: 12 year: 1999 ident: 4924_CR1 publication-title: Proc Natl Acad Sci doi: 10.1073/pnas.96.12.6745 – volume: 39 start-page: 1 year: 1977 ident: 4924_CR12 publication-title: J R Stat Soc Ser B doi: 10.1111/j.2517-6161.1977.tb01600.x – volume: 26 start-page: 434 year: 2004 ident: 4924_CR35 publication-title: IEEE Trans Pattern Anal Mach Intell doi: 10.1109/TPAMI.2004.1265860 – ident: 4924_CR23 – volume-title: Mixture models: inference and applications to clustering year: 1988 ident: 4924_CR24 – volume: 8 start-page: 338 year: 1965 ident: 4924_CR40 publication-title: Inf Control doi: 10.1016/S0019-9958(65)90241-X – volume-title: Mathematical psychology: an elementary introduction year: 1970 ident: 4924_CR9 – volume: 8 start-page: 576 year: 2000 ident: 4924_CR17 publication-title: IEEE Trans Fuzzy Syst doi: 10.1109/91.873580 – volume: 1 start-page: 98 year: 1993 ident: 4924_CR21 publication-title: IEEE Trans Fuzzy Syst doi: 10.1109/91.227387 – volume-title: Mathematics of economics and business year: 2006 ident: 4924_CR30 doi: 10.4324/9780203401385 – volume: 26 start-page: 817 year: 2018 ident: 4924_CR34 publication-title: IEEE Trans Fuzzy Syst doi: 10.1109/TFUZZ.2017.2692203 – volume: 91 start-page: 252 year: 2018 ident: 4924_CR16 publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2017.09.010 – volume: 12 start-page: 657 year: 1991 ident: 4924_CR10 publication-title: Pattern Recognit Lett doi: 10.1016/0167-8655(91)90002-4 – volume: 3 start-page: 32 year: 1974 ident: 4924_CR14 publication-title: J Cybern doi: 10.1080/01969727308546046 – volume: 18 start-page: 455 year: 1962 ident: 4924_CR22 publication-title: Biometrics doi: 10.2307/2527894 – volume-title: Finding groups in data: an introduction to cluster analysis year: 1990 ident: 4924_CR20 doi: 10.1002/9780470316801 – volume-title: Pattern recognition with fuzzy objective function algorithms year: 1981 ident: 4924_CR5 doi: 10.1007/978-1-4757-0450-1 – volume: 23 start-page: 2343 year: 2015 ident: 4924_CR7 publication-title: IEEE Trans Fuzzy Syst doi: 10.1109/TFUZZ.2015.2421072 – volume: 21 start-page: 855 year: 2013 ident: 4924_CR18 publication-title: IEEE Trans Fuzzy Syst doi: 10.1109/TFUZZ.2012.2233479 – volume: 60 start-page: 20 year: 2014 ident: 4924_CR2 publication-title: Knowl Based Syst doi: 10.1016/j.knosys.2013.12.023 – volume: 19 start-page: 973 year: 2003 ident: 4924_CR11 publication-title: Bioinformatics doi: 10.1093/bioinformatics/btg119 – volume: 28 start-page: 199 year: 1982 ident: 4924_CR25 publication-title: IEEE Trans Inf Theory doi: 10.1109/TIT.1982.1056481 – volume: 31 start-page: 651 year: 2010 ident: 4924_CR19 publication-title: Pattern Recognit Lett doi: 10.1016/j.patrec.2009.09.011 – volume: 34 start-page: 1907 year: 2004 ident: 4924_CR8 publication-title: IEEE Trans Syst Man Cybern B doi: 10.1109/TSMCB.2004.831165 – volume-title: Fuzzy-rough approaches for pattern classification: hybrid measures, mathematical analysis, feature selection algorithms, decision tree algorithms, neural learning, and applications year: 2005 ident: 4924_CR6 – volume: 40 start-page: 3035 year: 2007 ident: 4924_CR32 publication-title: Pattern Recognit doi: 10.1016/j.patcog.2007.02.006 – volume: 24 start-page: 1279 year: 1994 ident: 4924_CR33 publication-title: IEEE Trans Syst Man Cybern doi: 10.1109/21.299710 – volume: 45 start-page: 3950 year: 2012 ident: 4924_CR39 publication-title: Pattern Recognit doi: 10.1016/j.patcog.2012.04.031 |
| SSID | ssj0021753 |
| Score | 2.3120036 |
| Snippet | Partitional clustering is the most used in cluster analysis. In partitional clustering, hard
c
-means (HCM) (or called
k
-means) and fuzzy
c
-means (FCM) are... |
| SourceID | crossref springer |
| SourceType | Enrichment Source Index Database Publisher |
| StartPage | 1699 |
| SubjectTerms | Artificial Intelligence Computational Intelligence Control Engineering Focus Mathematical Logic and Foundations Mechatronics Robotics |
| Title | Gaussian-kernel c-means clustering algorithms |
| URI | https://link.springer.com/article/10.1007/s00500-020-04924-6 |
| Volume | 25 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVLSH databaseName: SpringerLink Journals customDbUrl: mediaType: online eissn: 1433-7479 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0021753 issn: 1432-7643 databaseCode: AFBBN dateStart: 19970401 isFulltext: true providerName: Library Specific Holdings – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 1433-7479 dateEnd: 20241102 omitProxy: true ssIdentifier: ssj0021753 issn: 1432-7643 databaseCode: BENPR dateStart: 20090101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVAVX databaseName: SpringerLINK - Czech Republic Consortium customDbUrl: eissn: 1433-7479 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0021753 issn: 1432-7643 databaseCode: AGYKE dateStart: 19970101 isFulltext: true titleUrlDefault: http://link.springer.com providerName: Springer Nature – providerCode: PRVAVX databaseName: SpringerLink Journals (ICM) customDbUrl: eissn: 1433-7479 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0021753 issn: 1432-7643 databaseCode: U2A dateStart: 19970404 isFulltext: true titleUrlDefault: http://www.springerlink.com/journals/ providerName: Springer Nature |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwED5Bu8DAo4AojyoDG1hqYsdtxhb1IRCdqFSmKHZsQKQpStL_zzl1IiqhSkxZLhkuZ3_f6e6-A7jTEY85FZpoXynCkPMSwfqUMI1cQXgYAeXqhJcZn87Z08Jf2KGwvOp2r0qS5U1dD7sZqZIuMekOslqPEb4PTd_IeWEUz71BnWZZ7UkkAsgdEXDtqMzf39iGo-1aaAkx4xM4stzQGWx-5insqbQFx9XeBccewxYc_hIRPAMyida5GYUkXypLVeJIslQIQI5M1kYFAY2cKHlfZZ_FxzI_h_l49Po4JXYJApFe4BbEE9rlskdFN8LUChFNMt-XSOqUjrmMe7HkAYs1ArcIFAsitBAiMuVIygPpUXoBjXSVqktwZL-r3RgZjU-RN8TIrSOhRY8pIVSfBbINbuWLUFqFcLOoIglrbePSfyH6Lyz9F_I23NfvfG_0MXZaP1QuDu1ZyXeYX_3P_BoOPNNxUvZU30CjyNbqFilDITrQHIyHw5l5Tt6eR50yYn4AmT646A |
| linkProvider | Springer Nature |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlZ1LT8JAEMcnCgf1IIoa8dmDN11C2-1Cj8TwUB4nSPDUdLe7aijFQLn46Z2WbSPGkHCfNpvJ7s5vsjP_AXhQPguYzRVRjpSEIvMSThs2oQpZgVu4A9LRCYMh647p68SZ6KawZVbtnj1Jpjd13uyWSJXUSJLuINValLB9KFJMUKwCFJudt14rT7S0-iSiANIjhlzdLPP_XzYD0uZraBpk2iUYZ8tb15ZMq6uYV8X3H-XGXdd_AseaOo3mepucwp6MylDKJjoY-oCX4eiXPOEZkI6_WiZNlmQqF5EMDUFmEkObIcJVoq-ARoYfvs8Xn_HHbHkO43Zr9NwlerwCEZZrxsTiymSibvOaj0kbxkpBHUcgLkoVMBHUA8FcGihEAu5K6vpowbmfPHTazBWWbV9AIZpH8hIM0agpM0BWcmwkkgCp3eeK16nkXDaoKypgZj72hNYeT0ZghF6umpx6x0PveKl3PFaBx_ybr7Xyxlbrp8zrnj6Fyy3mV7uZ38NBdzToe_2XYe8aDq2kriWt3L6BQrxYyVsEk5jf6X34A2011aw |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8JAEJ4oJkYPPlAjPnvwphtou13okaiIL-JBEm5N94XGUgiU_-9s2TaQGBLvs3uYnc33TWbmG4AbHTPJfK6JDpQiFDkv4bTlE6qRK3APIyBfnfDeY90-fRkEg6Up_rzbvShJLmYajEpTmtUnUtfLwTcjW9IgJvVBhutRwjZhixqhBIzovtcuUy6rQ4mkAHkkgq8dm_n7jlVoWq2L5nDTOYA9yxOd9uJhD2FDpVXYL3YwOPZLVmF3SVDwCMhTPJ-ZsUjyo6apShxBRgrByBHJ3CgioJETJ8Px9Dv7Gs2Ood95_LzvErsQgQgvdDPice0y0fR5I8Y0C9FN0CAQSPCUlkzIphQspFIjiPNQ0TBGC85jU5r0WSg83z-BSjpO1Sk4otXQrkR2E_jIISTy7Jhr3qSKc9WioaiBW_giElYt3CytSKJS5zj3X4T-i3L_RawGt-WZyUIrY631XeHiyP6b2Rrzs_-ZX8P2x0MnenvuvZ7DjmcaUfJW6wuoZNO5ukQmkfGrPFh-AfOAvQA |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Gaussian-kernel+c-means+clustering+algorithms&rft.jtitle=Soft+computing+%28Berlin%2C+Germany%29&rft.au=Chang-Chien%2C+Shou-Jen&rft.au=Nataliani%2C+Yessica&rft.au=Yang%2C+Miin-Shen&rft.date=2021-02-01&rft.issn=1432-7643&rft.eissn=1433-7479&rft.volume=25&rft.issue=3&rft.spage=1699&rft.epage=1716&rft_id=info:doi/10.1007%2Fs00500-020-04924-6&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s00500_020_04924_6 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1432-7643&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1432-7643&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1432-7643&client=summon |