Gaussian-kernel c-means clustering algorithms

Partitional clustering is the most used in cluster analysis. In partitional clustering, hard c -means (HCM) (or called k -means) and fuzzy c -means (FCM) are the most known clustering algorithms. However, these HCM and FCM algorithms work worse for data sets in a noisy environment and get inaccuracy...

Full description

Saved in:
Bibliographic Details
Published inSoft computing (Berlin, Germany) Vol. 25; no. 3; pp. 1699 - 1716
Main Authors Chang-Chien, Shou-Jen, Nataliani, Yessica, Yang, Miin-Shen
Format Journal Article
LanguageEnglish
Published Berlin/Heidelberg Springer Berlin Heidelberg 01.02.2021
Subjects
Online AccessGet full text
ISSN1432-7643
1433-7479
DOI10.1007/s00500-020-04924-6

Cover

Abstract Partitional clustering is the most used in cluster analysis. In partitional clustering, hard c -means (HCM) (or called k -means) and fuzzy c -means (FCM) are the most known clustering algorithms. However, these HCM and FCM algorithms work worse for data sets in a noisy environment and get inaccuracy when the data set has different shape clusters. For solving these drawbacks in HCM and FCM, Wu and Yang (Pattern Recognit 35:2267–2278, 2002) proposed the alternative c -means clustering with an exponential-type distance that extends HCM and FCM into alternative HCM (AHCM) and alternative FCM (AFCM). In this paper, we construct a more generalization of AHCM and AFCM with Gaussian-kernel c -means clustering, called GK-HCM and GK-FCM. For theoretical behaviors of GK-FCM, we analyze the bordered Hessian matrix and then give the theoretical properties of the GK-FCM algorithm. Some numerical and real data sets are used to compare the proposed GK-HCM and GK-FCM with AHCM and AFCM methods. Experimental results and comparisons actually demonstrate these good aspects of the proposed GK-HCM and GK-FCM algorithms with its effectiveness and usefulness. Finally, we apply the GK-FCM algorithm to MRI segmentation.
AbstractList Partitional clustering is the most used in cluster analysis. In partitional clustering, hard c -means (HCM) (or called k -means) and fuzzy c -means (FCM) are the most known clustering algorithms. However, these HCM and FCM algorithms work worse for data sets in a noisy environment and get inaccuracy when the data set has different shape clusters. For solving these drawbacks in HCM and FCM, Wu and Yang (Pattern Recognit 35:2267–2278, 2002) proposed the alternative c -means clustering with an exponential-type distance that extends HCM and FCM into alternative HCM (AHCM) and alternative FCM (AFCM). In this paper, we construct a more generalization of AHCM and AFCM with Gaussian-kernel c -means clustering, called GK-HCM and GK-FCM. For theoretical behaviors of GK-FCM, we analyze the bordered Hessian matrix and then give the theoretical properties of the GK-FCM algorithm. Some numerical and real data sets are used to compare the proposed GK-HCM and GK-FCM with AHCM and AFCM methods. Experimental results and comparisons actually demonstrate these good aspects of the proposed GK-HCM and GK-FCM algorithms with its effectiveness and usefulness. Finally, we apply the GK-FCM algorithm to MRI segmentation.
Author Nataliani, Yessica
Chang-Chien, Shou-Jen
Yang, Miin-Shen
Author_xml – sequence: 1
  givenname: Shou-Jen
  surname: Chang-Chien
  fullname: Chang-Chien, Shou-Jen
  organization: Department of Applied Mathematics, Chung Yuan Christian University
– sequence: 2
  givenname: Yessica
  surname: Nataliani
  fullname: Nataliani, Yessica
  organization: Department of Applied Mathematics, Chung Yuan Christian University, Department of Information Systems, Satya Wacana Christian University
– sequence: 3
  givenname: Miin-Shen
  surname: Yang
  fullname: Yang, Miin-Shen
  email: msyang@math.cycu.edu.tw
  organization: Department of Applied Mathematics, Chung Yuan Christian University
BookMark eNp9z7FOwzAQgGELFYm28AJMeQHDne3YeEQVFKRKLDBbjuMUl8Sp7HTg7Ukbpg4drPNw_0nfgsxiHz0h9wgPCKAeM0AJQIGNT2gmqLwicxScUyWUnp3-jCop-A1Z5LwDYKhKPid0bQ85Bxvpj0_Rt4WjnbcxF6495MGnELeFbbd9CsN3l2_JdWPb7O_-55J8vb58rt7o5mP9vnreUMc0DpRVDUqneAUWNXpfO1GWTqP0TS1drWontagbLLHSXmg7blSVRQ6MS-0Y50vCprsu9Tkn35h9Cp1NvwbBHMFmApsRbE5gI8fo6SxyYbBD6OOQbGgvp3xK8_4o9sns-kOKI_FS9QeDVWzk
CitedBy_id crossref_primary_10_1007_s11042_023_15267_3
crossref_primary_10_3389_frsgr_2023_1129541
crossref_primary_10_1007_s11042_023_17259_9
crossref_primary_10_1016_j_eswa_2022_117728
crossref_primary_10_1007_s00357_023_09443_1
crossref_primary_10_1109_TFUZZ_2023_3327688
crossref_primary_10_1007_s11063_024_11450_1
Cites_doi 10.1016/S0730-725X(02)00477-0
10.1080/01969727308546046
10.1016/S0019-9958(65)90241-X
10.1109/TIT.1982.1056481
10.1109/TPAMI.2004.1265860
10.1109/TSMCB.2004.831165
10.1073/pnas.96.12.6745
10.1109/91.227387
10.1016/j.patcog.2007.02.006
10.1016/j.ijpe.2005.06.003
10.4324/9780203401385
10.1109/91.873580
10.1007/978-1-4757-0450-1
10.1109/3477.809032
10.1109/TFUZZ.2017.2692203
10.1016/S0031-3203(03)00235-8
10.1016/j.patcog.2012.04.031
10.1016/j.eswa.2017.09.010
10.1016/j.knosys.2013.12.023
10.1016/S0031-3203(01)00197-2
10.1016/0167-8655(91)90002-4
10.1109/TNN.2002.1000127
10.1016/S0019-9958(69)90591-9
10.1109/TFUZZ.2015.2421072
10.1093/bioinformatics/btg119
10.1109/TFUZZ.2012.2233479
10.1007/s10044-005-0250-9
10.1002/9780470316801
10.1109/21.299710
10.1016/j.patrec.2009.09.011
10.1080/01621459.1971.10482356
10.2307/2527894
10.1007/978-981-10-3322-3_27
10.1111/j.2517-6161.1977.tb01600.x
ContentType Journal Article
Copyright Springer-Verlag GmbH Germany, part of Springer Nature 2020
Copyright_xml – notice: Springer-Verlag GmbH Germany, part of Springer Nature 2020
DBID AAYXX
CITATION
DOI 10.1007/s00500-020-04924-6
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
EISSN 1433-7479
EndPage 1716
ExternalDocumentID 10_1007_s00500_020_04924_6
GroupedDBID -5B
-5G
-BR
-EM
-Y2
-~C
.86
.VR
06D
0R~
0VY
1N0
1SB
203
29~
2J2
2JN
2JY
2KG
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
5VS
67Z
6NX
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTD
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACZOJ
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
BA0
BDATZ
BENPR
BGLVJ
BGNMA
BSONS
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
EBLON
EBS
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IHE
IJ-
IKXTQ
IWAJR
IXC
IXD
IXE
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K7-
KDC
KOV
LAS
LLZTM
M4Y
MA-
N2Q
NB0
NPVJJ
NQJWS
NU0
O9-
O93
O9J
OAM
P2P
P9P
PF0
PT4
PT5
QOS
R89
R9I
RIG
RNI
ROL
RPX
RSV
RZK
S16
S1Z
S27
S3B
SAP
SDH
SEG
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
Z5O
Z7R
Z7X
Z7Y
Z7Z
Z81
Z83
Z88
ZMTXR
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADHKG
ADKFA
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
PQGLB
PUEGO
ID FETCH-LOGICAL-c291t-2bf16c73b0a191eedc455c916efd6cd7dc694df151b9e49aeedbba1302369c233
IEDL.DBID U2A
ISSN 1432-7643
IngestDate Thu Apr 24 23:12:14 EDT 2025
Wed Oct 01 03:00:08 EDT 2025
Fri Feb 21 02:49:27 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords Hard
means (FCM)
means (HCM)
Fuzzy
Clustering
MRI segmentation
Gaussian-kernel HCM (GK-HCM)
Gaussian-kernel FCM (GK-FCM)
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c291t-2bf16c73b0a191eedc455c916efd6cd7dc694df151b9e49aeedbba1302369c233
PageCount 18
ParticipantIDs crossref_primary_10_1007_s00500_020_04924_6
crossref_citationtrail_10_1007_s00500_020_04924_6
springer_journals_10_1007_s00500_020_04924_6
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20210200
2021-02-00
PublicationDateYYYYMMDD 2021-02-01
PublicationDate_xml – month: 2
  year: 2021
  text: 20210200
PublicationDecade 2020
PublicationPlace Berlin/Heidelberg
PublicationPlace_xml – name: Berlin/Heidelberg
PublicationSubtitle A Fusion of Foundations, Methodologies and Applications
PublicationTitle Soft computing (Berlin, Germany)
PublicationTitleAbbrev Soft Comput
PublicationYear 2021
Publisher Springer Berlin Heidelberg
Publisher_xml – name: Springer Berlin Heidelberg
References Antal, Hajdu (CR2) 2014; 60
Jain (CR19) 2010; 31
Bandyopadhyay (CR3) 2004; 37
Pollard (CR25) 1982; 28
Wu, Yang (CR32) 2007; 40
Yang, Lai, Lin (CR39) 2012; 45
Chen, Zhang (CR8) 2004; 34
Yang, Wu (CR35) 2004; 26
CR15
CR13
Bezdek (CR5) 1981
Hathaway, Bezdek, Hu (CR17) 2000; 8
Yager, Filev (CR33) 1994; 24
Gyamfi, Brusey, Hunt, Gaura (CR16) 2018; 91
Zadeh (CR40) 1965; 8
Ruspini (CR28) 1969; 15
Yang, Hu, Lin, Lin (CR37) 2002; 20
Yang, Hung, Cheng (CR38) 2006; 103
Yang, Wu (CR36) 2005; 8
Dembélé, Kastner (CR11) 2003; 19
Krishnapuram, Keller (CR21) 1993; 1
Baraldi, Blonda (CR4) 1999; 29
Kaufman, Rousseeuw (CR20) 1990
Wei, Fahn (CR29) 2002; 13
Rand (CR26) 1971; 66
McLachlan, Basford (CR24) 1988
Coombs, Dawes, Tversky (CR9) 1970
Alon, Barkai, Notterman, Gish, Ybarra, Mack, Levine (CR1) 1999; 96
Dunn (CR14) 1974; 3
Dave (CR10) 1991; 12
Yang, Nataliani (CR34) 2018; 26
CR27
CR23
Werner, Sotskov (CR30) 2006
Wu, Yang (CR31) 2002; 35
Chang, Lu, Yang (CR7) 2015; 23
Izakian, Pedrycz, Jamal (CR18) 2013; 21
Lubischew (CR22) 1962; 18
Dempster, Laird, Rubin (CR12) 1977; 39
Bhatt (CR6) 2005
D Pollard (4924_CR25) 1982; 28
MS Yang (4924_CR38) 2006; 103
U Alon (4924_CR1) 1999; 96
R Bhatt (4924_CR6) 2005
H Izakian (4924_CR18) 2013; 21
E Ruspini (4924_CR28) 1969; 15
MS Yang (4924_CR36) 2005; 8
MS Yang (4924_CR39) 2012; 45
MS Yang (4924_CR35) 2004; 26
AA Lubischew (4924_CR22) 1962; 18
A Baraldi (4924_CR4) 1999; 29
D Dembélé (4924_CR11) 2003; 19
R Krishnapuram (4924_CR21) 1993; 1
SC Chen (4924_CR8) 2004; 34
L Kaufman (4924_CR20) 1990
RJ Hathaway (4924_CR17) 2000; 8
CH Coombs (4924_CR9) 1970
JC Dunn (4924_CR14) 1974; 3
ST Chang (4924_CR7) 2015; 23
F Werner (4924_CR30) 2006
4924_CR15
4924_CR13
JC Bezdek (4924_CR5) 1981
KL Wu (4924_CR32) 2007; 40
KS Gyamfi (4924_CR16) 2018; 91
WM Rand (4924_CR26) 1971; 66
MS Yang (4924_CR34) 2018; 26
GJ McLachlan (4924_CR24) 1988
KL Wu (4924_CR31) 2002; 35
AP Dempster (4924_CR12) 1977; 39
LA Zadeh (4924_CR40) 1965; 8
C Wei (4924_CR29) 2002; 13
MS Yang (4924_CR37) 2002; 20
RN Dave (4924_CR10) 1991; 12
RR Yager (4924_CR33) 1994; 24
S Bandyopadhyay (4924_CR3) 2004; 37
AK Jain (4924_CR19) 2010; 31
4924_CR27
B Antal (4924_CR2) 2014; 60
4924_CR23
References_xml – volume: 20
  start-page: 173
  year: 2002
  end-page: 179
  ident: CR37
  article-title: Segmentation techniques for tissue differentiation in MRI of ophthalmology using fuzzy clustering algorithms
  publication-title: Magn Reson Imaging
  doi: 10.1016/S0730-725X(02)00477-0
– volume: 3
  start-page: 32
  year: 1974
  end-page: 57
  ident: CR14
  article-title: A fuzzy relative of the ISODATA process and its use in detecting compact, well-separated clusters
  publication-title: J Cybern
  doi: 10.1080/01969727308546046
– year: 1970
  ident: CR9
  publication-title: Mathematical psychology: an elementary introduction
– volume: 8
  start-page: 338
  year: 1965
  end-page: 353
  ident: CR40
  article-title: Fuzzy sets
  publication-title: Inf Control
  doi: 10.1016/S0019-9958(65)90241-X
– volume: 28
  start-page: 199
  year: 1982
  end-page: 205
  ident: CR25
  article-title: Quantization and the method of -means
  publication-title: IEEE Trans Inf Theory
  doi: 10.1109/TIT.1982.1056481
– volume: 26
  start-page: 434
  year: 2004
  end-page: 448
  ident: CR35
  article-title: A similarity-based robust clustering method
  publication-title: IEEE Trans Pattern Anal Mach Intell
  doi: 10.1109/TPAMI.2004.1265860
– year: 2005
  ident: CR6
  publication-title: Fuzzy-rough approaches for pattern classification: hybrid measures, mathematical analysis, feature selection algorithms, decision tree algorithms, neural learning, and applications
– volume: 34
  start-page: 1907
  year: 2004
  end-page: 1916
  ident: CR8
  article-title: Robust image segmentation using FCM with spatial constrains based on new kernel-induced distance measure
  publication-title: IEEE Trans Syst Man Cybern B
  doi: 10.1109/TSMCB.2004.831165
– volume: 96
  start-page: 6745
  issue: 12
  year: 1999
  end-page: 6750
  ident: CR1
  article-title: Broad patterns of gene expression revealed by clustering analysis of tumor and normal colon tissues probed by oligonucleotide arrays
  publication-title: Proc Natl Acad Sci
  doi: 10.1073/pnas.96.12.6745
– volume: 1
  start-page: 98
  year: 1993
  end-page: 110
  ident: CR21
  article-title: A possibilistic approach to clustering
  publication-title: IEEE Trans Fuzzy Syst
  doi: 10.1109/91.227387
– volume: 40
  start-page: 3035
  year: 2007
  end-page: 3052
  ident: CR32
  article-title: Mean shift-based clustering
  publication-title: Pattern Recognit
  doi: 10.1016/j.patcog.2007.02.006
– volume: 103
  start-page: 185
  year: 2006
  end-page: 198
  ident: CR38
  article-title: Mixed-variable fuzzy clustering approach to part family and machine cell formation for GT applications
  publication-title: Int J Prod Econ
  doi: 10.1016/j.ijpe.2005.06.003
– year: 2006
  ident: CR30
  publication-title: Mathematics of economics and business
  doi: 10.4324/9780203401385
– volume: 8
  start-page: 576
  year: 2000
  end-page: 582
  ident: CR17
  article-title: Generalized fuzzy -means clustering strategies using norm distances
  publication-title: IEEE Trans Fuzzy Syst
  doi: 10.1109/91.873580
– year: 1981
  ident: CR5
  publication-title: Pattern recognition with fuzzy objective function algorithms
  doi: 10.1007/978-1-4757-0450-1
– volume: 29
  start-page: 778
  year: 1999
  end-page: 801
  ident: CR4
  article-title: A survey of fuzzy clustering algorithms for pattern recognition part I and II
  publication-title: IEEE Trans Syst Man Cybern B Cybern
  doi: 10.1109/3477.809032
– ident: CR27
– volume: 26
  start-page: 817
  year: 2018
  end-page: 835
  ident: CR34
  article-title: A feature-reduction fuzzy clustering algorithm with feature-weighted entropy
  publication-title: IEEE Trans Fuzzy Syst
  doi: 10.1109/TFUZZ.2017.2692203
– ident: CR23
– volume: 37
  start-page: 33
  year: 2004
  end-page: 45
  ident: CR3
  article-title: An automatic shape independent clustering technique
  publication-title: Pattern Recognit
  doi: 10.1016/S0031-3203(03)00235-8
– volume: 45
  start-page: 3950
  year: 2012
  end-page: 3961
  ident: CR39
  article-title: A robust EM clustering algorithm for Gaussian mixture models
  publication-title: Pattern Recognit
  doi: 10.1016/j.patcog.2012.04.031
– volume: 91
  start-page: 252
  year: 2018
  end-page: 262
  ident: CR16
  article-title: Linear dimensionality reduction for classification via a sequential Bayes error minimisation with an application to flow meter diagnostics
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2017.09.010
– volume: 60
  start-page: 20
  year: 2014
  end-page: 27
  ident: CR2
  article-title: An ensemble-based system for automatic screening of diabetic retinopathy
  publication-title: Knowl Based Syst
  doi: 10.1016/j.knosys.2013.12.023
– ident: CR15
– volume: 35
  start-page: 2267
  year: 2002
  end-page: 2278
  ident: CR31
  article-title: Alternative -means clustering algorithms
  publication-title: Pattern Recognit
  doi: 10.1016/S0031-3203(01)00197-2
– volume: 12
  start-page: 657
  year: 1991
  end-page: 664
  ident: CR10
  article-title: Characterization and detection of noise in clustering
  publication-title: Pattern Recognit Lett
  doi: 10.1016/0167-8655(91)90002-4
– volume: 13
  start-page: 600
  year: 2002
  end-page: 618
  ident: CR29
  article-title: The multisynapse neural network and its application to fuzzy clustering
  publication-title: IEEE Trans Neural Netw
  doi: 10.1109/TNN.2002.1000127
– ident: CR13
– volume: 15
  start-page: 22
  year: 1969
  end-page: 32
  ident: CR28
  article-title: A new approach to clustering
  publication-title: Inf Control
  doi: 10.1016/S0019-9958(69)90591-9
– volume: 23
  start-page: 2343
  year: 2015
  end-page: 2357
  ident: CR7
  article-title: Fuzzy change-point algorithms for regression models
  publication-title: IEEE Trans Fuzzy Syst
  doi: 10.1109/TFUZZ.2015.2421072
– volume: 19
  start-page: 973
  year: 2003
  end-page: 980
  ident: CR11
  article-title: Fuzzy -means method for clustering microarray data
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btg119
– volume: 21
  start-page: 855
  year: 2013
  end-page: 868
  ident: CR18
  article-title: Clustering spatiotemporal data: an augmented fuzzy -means
  publication-title: IEEE Trans Fuzzy Syst
  doi: 10.1109/TFUZZ.2012.2233479
– volume: 8
  start-page: 125
  year: 2005
  end-page: 138
  ident: CR36
  article-title: A modified mountain clustering algorithm
  publication-title: Pattern Anal Appl
  doi: 10.1007/s10044-005-0250-9
– year: 1990
  ident: CR20
  publication-title: Finding groups in data: an introduction to cluster analysis
  doi: 10.1002/9780470316801
– year: 1988
  ident: CR24
  publication-title: Mixture models: inference and applications to clustering
– volume: 39
  start-page: 1
  year: 1977
  end-page: 38
  ident: CR12
  article-title: Maximum likelihood from incomplete data via the EM algorithm
  publication-title: J R Stat Soc Ser B
– volume: 24
  start-page: 1279
  year: 1994
  end-page: 1284
  ident: CR33
  article-title: Approximate clustering via the mountain method
  publication-title: IEEE Trans Syst Man Cybern
  doi: 10.1109/21.299710
– volume: 31
  start-page: 651
  year: 2010
  end-page: 666
  ident: CR19
  article-title: Data clustering: 50 years beyond -means
  publication-title: Pattern Recognit Lett
  doi: 10.1016/j.patrec.2009.09.011
– volume: 66
  start-page: 846
  year: 1971
  end-page: 850
  ident: CR26
  article-title: Objective criteria for the evaluation of clustering methods
  publication-title: J Am Stat Assoc
  doi: 10.1080/01621459.1971.10482356
– volume: 18
  start-page: 455
  year: 1962
  end-page: 477
  ident: CR22
  article-title: On the use of discriminant functions in taxonomy
  publication-title: Biometrics
  doi: 10.2307/2527894
– ident: 4924_CR13
– volume: 35
  start-page: 2267
  year: 2002
  ident: 4924_CR31
  publication-title: Pattern Recognit
  doi: 10.1016/S0031-3203(01)00197-2
– volume: 37
  start-page: 33
  year: 2004
  ident: 4924_CR3
  publication-title: Pattern Recognit
  doi: 10.1016/S0031-3203(03)00235-8
– ident: 4924_CR15
– ident: 4924_CR27
  doi: 10.1007/978-981-10-3322-3_27
– volume: 13
  start-page: 600
  year: 2002
  ident: 4924_CR29
  publication-title: IEEE Trans Neural Netw
  doi: 10.1109/TNN.2002.1000127
– volume: 15
  start-page: 22
  year: 1969
  ident: 4924_CR28
  publication-title: Inf Control
  doi: 10.1016/S0019-9958(69)90591-9
– volume: 20
  start-page: 173
  year: 2002
  ident: 4924_CR37
  publication-title: Magn Reson Imaging
  doi: 10.1016/S0730-725X(02)00477-0
– volume: 66
  start-page: 846
  year: 1971
  ident: 4924_CR26
  publication-title: J Am Stat Assoc
  doi: 10.1080/01621459.1971.10482356
– volume: 103
  start-page: 185
  year: 2006
  ident: 4924_CR38
  publication-title: Int J Prod Econ
  doi: 10.1016/j.ijpe.2005.06.003
– volume: 29
  start-page: 778
  year: 1999
  ident: 4924_CR4
  publication-title: IEEE Trans Syst Man Cybern B Cybern
  doi: 10.1109/3477.809032
– volume: 8
  start-page: 125
  year: 2005
  ident: 4924_CR36
  publication-title: Pattern Anal Appl
  doi: 10.1007/s10044-005-0250-9
– volume: 96
  start-page: 6745
  issue: 12
  year: 1999
  ident: 4924_CR1
  publication-title: Proc Natl Acad Sci
  doi: 10.1073/pnas.96.12.6745
– volume: 39
  start-page: 1
  year: 1977
  ident: 4924_CR12
  publication-title: J R Stat Soc Ser B
  doi: 10.1111/j.2517-6161.1977.tb01600.x
– volume: 26
  start-page: 434
  year: 2004
  ident: 4924_CR35
  publication-title: IEEE Trans Pattern Anal Mach Intell
  doi: 10.1109/TPAMI.2004.1265860
– ident: 4924_CR23
– volume-title: Mixture models: inference and applications to clustering
  year: 1988
  ident: 4924_CR24
– volume: 8
  start-page: 338
  year: 1965
  ident: 4924_CR40
  publication-title: Inf Control
  doi: 10.1016/S0019-9958(65)90241-X
– volume-title: Mathematical psychology: an elementary introduction
  year: 1970
  ident: 4924_CR9
– volume: 8
  start-page: 576
  year: 2000
  ident: 4924_CR17
  publication-title: IEEE Trans Fuzzy Syst
  doi: 10.1109/91.873580
– volume: 1
  start-page: 98
  year: 1993
  ident: 4924_CR21
  publication-title: IEEE Trans Fuzzy Syst
  doi: 10.1109/91.227387
– volume-title: Mathematics of economics and business
  year: 2006
  ident: 4924_CR30
  doi: 10.4324/9780203401385
– volume: 26
  start-page: 817
  year: 2018
  ident: 4924_CR34
  publication-title: IEEE Trans Fuzzy Syst
  doi: 10.1109/TFUZZ.2017.2692203
– volume: 91
  start-page: 252
  year: 2018
  ident: 4924_CR16
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2017.09.010
– volume: 12
  start-page: 657
  year: 1991
  ident: 4924_CR10
  publication-title: Pattern Recognit Lett
  doi: 10.1016/0167-8655(91)90002-4
– volume: 3
  start-page: 32
  year: 1974
  ident: 4924_CR14
  publication-title: J Cybern
  doi: 10.1080/01969727308546046
– volume: 18
  start-page: 455
  year: 1962
  ident: 4924_CR22
  publication-title: Biometrics
  doi: 10.2307/2527894
– volume-title: Finding groups in data: an introduction to cluster analysis
  year: 1990
  ident: 4924_CR20
  doi: 10.1002/9780470316801
– volume-title: Pattern recognition with fuzzy objective function algorithms
  year: 1981
  ident: 4924_CR5
  doi: 10.1007/978-1-4757-0450-1
– volume: 23
  start-page: 2343
  year: 2015
  ident: 4924_CR7
  publication-title: IEEE Trans Fuzzy Syst
  doi: 10.1109/TFUZZ.2015.2421072
– volume: 21
  start-page: 855
  year: 2013
  ident: 4924_CR18
  publication-title: IEEE Trans Fuzzy Syst
  doi: 10.1109/TFUZZ.2012.2233479
– volume: 60
  start-page: 20
  year: 2014
  ident: 4924_CR2
  publication-title: Knowl Based Syst
  doi: 10.1016/j.knosys.2013.12.023
– volume: 19
  start-page: 973
  year: 2003
  ident: 4924_CR11
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btg119
– volume: 28
  start-page: 199
  year: 1982
  ident: 4924_CR25
  publication-title: IEEE Trans Inf Theory
  doi: 10.1109/TIT.1982.1056481
– volume: 31
  start-page: 651
  year: 2010
  ident: 4924_CR19
  publication-title: Pattern Recognit Lett
  doi: 10.1016/j.patrec.2009.09.011
– volume: 34
  start-page: 1907
  year: 2004
  ident: 4924_CR8
  publication-title: IEEE Trans Syst Man Cybern B
  doi: 10.1109/TSMCB.2004.831165
– volume-title: Fuzzy-rough approaches for pattern classification: hybrid measures, mathematical analysis, feature selection algorithms, decision tree algorithms, neural learning, and applications
  year: 2005
  ident: 4924_CR6
– volume: 40
  start-page: 3035
  year: 2007
  ident: 4924_CR32
  publication-title: Pattern Recognit
  doi: 10.1016/j.patcog.2007.02.006
– volume: 24
  start-page: 1279
  year: 1994
  ident: 4924_CR33
  publication-title: IEEE Trans Syst Man Cybern
  doi: 10.1109/21.299710
– volume: 45
  start-page: 3950
  year: 2012
  ident: 4924_CR39
  publication-title: Pattern Recognit
  doi: 10.1016/j.patcog.2012.04.031
SSID ssj0021753
Score 2.3120036
Snippet Partitional clustering is the most used in cluster analysis. In partitional clustering, hard c -means (HCM) (or called k -means) and fuzzy c -means (FCM) are...
SourceID crossref
springer
SourceType Enrichment Source
Index Database
Publisher
StartPage 1699
SubjectTerms Artificial Intelligence
Computational Intelligence
Control
Engineering
Focus
Mathematical Logic and Foundations
Mechatronics
Robotics
Title Gaussian-kernel c-means clustering algorithms
URI https://link.springer.com/article/10.1007/s00500-020-04924-6
Volume 25
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVLSH
  databaseName: SpringerLink Journals
  customDbUrl:
  mediaType: online
  eissn: 1433-7479
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0021753
  issn: 1432-7643
  databaseCode: AFBBN
  dateStart: 19970401
  isFulltext: true
  providerName: Library Specific Holdings
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 1433-7479
  dateEnd: 20241102
  omitProxy: true
  ssIdentifier: ssj0021753
  issn: 1432-7643
  databaseCode: BENPR
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: SpringerLINK - Czech Republic Consortium
  customDbUrl:
  eissn: 1433-7479
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0021753
  issn: 1432-7643
  databaseCode: AGYKE
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://link.springer.com
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: SpringerLink Journals (ICM)
  customDbUrl:
  eissn: 1433-7479
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0021753
  issn: 1432-7643
  databaseCode: U2A
  dateStart: 19970404
  isFulltext: true
  titleUrlDefault: http://www.springerlink.com/journals/
  providerName: Springer Nature
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwED5Bu8DAo4AojyoDG1hqYsdtxhb1IRCdqFSmKHZsQKQpStL_zzl1IiqhSkxZLhkuZ3_f6e6-A7jTEY85FZpoXynCkPMSwfqUMI1cQXgYAeXqhJcZn87Z08Jf2KGwvOp2r0qS5U1dD7sZqZIuMekOslqPEb4PTd_IeWEUz71BnWZZ7UkkAsgdEXDtqMzf39iGo-1aaAkx4xM4stzQGWx-5insqbQFx9XeBccewxYc_hIRPAMyida5GYUkXypLVeJIslQIQI5M1kYFAY2cKHlfZZ_FxzI_h_l49Po4JXYJApFe4BbEE9rlskdFN8LUChFNMt-XSOqUjrmMe7HkAYs1ArcIFAsitBAiMuVIygPpUXoBjXSVqktwZL-r3RgZjU-RN8TIrSOhRY8pIVSfBbINbuWLUFqFcLOoIglrbePSfyH6Lyz9F_I23NfvfG_0MXZaP1QuDu1ZyXeYX_3P_BoOPNNxUvZU30CjyNbqFilDITrQHIyHw5l5Tt6eR50yYn4AmT646A
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlZ1LT8JAEMcnCgf1IIoa8dmDN11C2-1Cj8TwUB4nSPDUdLe7aijFQLn46Z2WbSPGkHCfNpvJ7s5vsjP_AXhQPguYzRVRjpSEIvMSThs2oQpZgVu4A9LRCYMh647p68SZ6KawZVbtnj1Jpjd13uyWSJXUSJLuINValLB9KFJMUKwCFJudt14rT7S0-iSiANIjhlzdLPP_XzYD0uZraBpk2iUYZ8tb15ZMq6uYV8X3H-XGXdd_AseaOo3mepucwp6MylDKJjoY-oCX4eiXPOEZkI6_WiZNlmQqF5EMDUFmEkObIcJVoq-ARoYfvs8Xn_HHbHkO43Zr9NwlerwCEZZrxsTiymSibvOaj0kbxkpBHUcgLkoVMBHUA8FcGihEAu5K6vpowbmfPHTazBWWbV9AIZpH8hIM0agpM0BWcmwkkgCp3eeK16nkXDaoKypgZj72hNYeT0ZghF6umpx6x0PveKl3PFaBx_ybr7Xyxlbrp8zrnj6Fyy3mV7uZ38NBdzToe_2XYe8aDq2kriWt3L6BQrxYyVsEk5jf6X34A2011aw
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8JAEJ4oJkYPPlAjPnvwphtou13okaiIL-JBEm5N94XGUgiU_-9s2TaQGBLvs3uYnc33TWbmG4AbHTPJfK6JDpQiFDkv4bTlE6qRK3APIyBfnfDeY90-fRkEg6Up_rzbvShJLmYajEpTmtUnUtfLwTcjW9IgJvVBhutRwjZhixqhBIzovtcuUy6rQ4mkAHkkgq8dm_n7jlVoWq2L5nDTOYA9yxOd9uJhD2FDpVXYL3YwOPZLVmF3SVDwCMhTPJ-ZsUjyo6apShxBRgrByBHJ3CgioJETJ8Px9Dv7Gs2Ood95_LzvErsQgQgvdDPice0y0fR5I8Y0C9FN0CAQSPCUlkzIphQspFIjiPNQ0TBGC85jU5r0WSg83z-BSjpO1Sk4otXQrkR2E_jIISTy7Jhr3qSKc9WioaiBW_giElYt3CytSKJS5zj3X4T-i3L_RawGt-WZyUIrY631XeHiyP6b2Rrzs_-ZX8P2x0MnenvuvZ7DjmcaUfJW6wuoZNO5ukQmkfGrPFh-AfOAvQA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Gaussian-kernel+c-means+clustering+algorithms&rft.jtitle=Soft+computing+%28Berlin%2C+Germany%29&rft.au=Chang-Chien%2C+Shou-Jen&rft.au=Nataliani%2C+Yessica&rft.au=Yang%2C+Miin-Shen&rft.date=2021-02-01&rft.issn=1432-7643&rft.eissn=1433-7479&rft.volume=25&rft.issue=3&rft.spage=1699&rft.epage=1716&rft_id=info:doi/10.1007%2Fs00500-020-04924-6&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s00500_020_04924_6
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1432-7643&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1432-7643&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1432-7643&client=summon